
1

Going Under the Hood with Intel’s Next Generation

Microarchitecture Codename Haswell

QCon San Francisco

Nov 9, 2012

Ravi Rajwar

Intel Corporation

2

What is Haswell?

Westmere Sandy Bridge

Intel
Microarchitecture
(Nehalem)

Intel
Microarchitecture
(Sandy Bridge)

NEW Intel
Microarchitecture
(Sandy Bridge)

Nehalem Ivy Bridge

45nm 32nm 22nm

TOCK TICK TOCK TICK TOCK

Haswell CPU Family

22nm Process Technology

NEW Intel®

Microarchitecture
(Nehalem)

Haswell

NEW Intel
Microarchitecture
(Haswell)

Builds upon Innovations in the 2nd and 3rd Generation Intel® Core ™ Processors

3

TALK FOCUS:

PERFORMANCE THROUGH PARALLELISM

4

Parallelism: A Hardware Perspective

4

Instructions Data Threads/Cores Sockets

Clusters/Nodes Cloud

5

Increased
processor

performance

Larger, more
feature-full
software

Larger
development

teams

High-level
languages

and
programming
abstractions

Slower
programs

cf. Jim Larus

Faster software

But also about software innovation

• Size

• Rich Functionality

• Improved Abstractions

Productivity and manageability

Performance Matters

Must Exploit All Dimensions of Parallelism to Achieve Highest Performance

6

Agenda

Next Generation Intel® Microarchitecture (Haswell)

a. Instruction Level Parallelism

b. Data Level Parallelism

c. Thread Level Parallelism

A Matter of Time

7

EXPLOITING

PARALLELISM ACROSS INSTRUCTIONS

2004 2013

Single Thread

Instructions Per Cycle
(broad workload mixture)

Flat or decreasing power envelopes

2010
2011

2012
2013

Power Envelopes for
Comparable
Segments Mainstream

Lowest

More performance per core

8

Haswell Core at a Glance

Decode Decode

µop Cache
Tag

Icache
Tag

Intel® Microarchitecture (Haswell)

Branch Prediction

ITLB

µop Cache
Data

Icache Data

Deeper buffers

• Extract more instruction parallelism

More execution units, shorter latencies

More load/store bandwidth

• 2x32 byte loads, 32 byte store / cycle to L1

• Better prefetching, better cache line split latency &

throughput, double L2 bandwidth

No pipeline growth

• Same branch misprediction latency

• Same L1/L2 cache latency

µop Allocation/Rename

72

Load
Buffers

42

Store
Buffers

192

Reorder
Buffers

Move Elimination
Zero Idioms

Out-of-Order Execution

1 2 3 4 5 6 7 0

32k L1

Data Cache

L2 Cache

(MLC)
Fill
Buffers

Next generation branch prediction

• Improves performance and saves wasted work

Improved front-end

• Initiate TLB and cache misses speculatively

• Handle cache misses in parallel to hide latency

• Leverages improved branch prediction

9

EXPLOITING

PARALLELISM ACROSS DATA

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

255 128 127 0

10

Intel® Advanced Vector Extensions (Intel® AVX)

Intel® AVX (on Sandybridge)

• Extends all 16 XMM registers to 256 bits

• Intel® AVX instructions operate on

– All 256 bits (FP only)

– Lower 128 bits (SSE instructions)

Intel® AVX2 (on Haswell)

• Extends 128-bit integer vector instructions to 256 bit

• Enhanced vectorization with Gather, Shifts, and powerful permutes

– 20+ new operations to the vector ISA

– E.g., building block for sparse, indirect memory accesses

• FP Fused Multiply Add for FLOPS

256 bits(2011)

 YMM0

128 bits (1999)

XMM0

Intel® Microarchitecture (Haswell); Intel® Microarchitecture (Sandy Bridge)

11

Bit Manipulation Instructions

New instructions for

• Arbitrary bit field manipulations

• Leading and trailing zero bits counts

• Trailing set bit manipulations

• Improved rotates and arbitrary

 precision multiplies

Speedup algorithms performing

• Bit-field extract & packing, bit-granular encoded data processing
(compression algorithms, universal coding)

• Arbitrary precision multiplication, hashes

Group Instructions

Bit Field Pack/Extract BZHI, SHLX, SHRX,
SARX, BEXTR

Variable Bit Length
Stream Decode

LZCNT, TZCNT, BLSR,
BLSMSK, BLSI, ANDN

Bit Gather/Scatter PDEP, PEXT

Arbitrary Precision
Arithmetic & Hashing

MULX, RORX

Replace Complex and Slow Instruction Sequences

12

EXPLOITING

PARALLELISM ACROSS THREADS

13

Synchronization Improvements

Improving existing primitives

• Faster LOCK-prefixed instructions

• A focus in recent generations

But locks still limit concurrency

• Lock-protected critical sections

• Needed for threading correctness

0

5

10

15

20

25

30

35
Yonah

Merom

Sandy

Bridge

Haswell

Cached Lock
Performance

What Can We Do About Exposing Concurrency?

14

Hard to Write Fast and Correct Multi-Threaded Code

Difficulty of Software Development

Identify concurrency

(algorithmic, manual…)

Manage concurrency

(locks, …)

Correctness Performance

15

What We Want…

Lock Elision: Fine Grain Behavior at Coarse Grain Effort

Developer uses coarse grain lock

Hardware elides the lock to expose concurrency

– Multiple threads don’t serialize on the lock

– Hardware automatically detects real data conflicts

Developer Effort

A $100

B $200

C $200

Lock

Lock

Lock

Lock

Lock

Lock

Hardware

Program Behavior

A $100

B $200

C $200

Lock

Coarse grain locking effort Fine grain locking behavior

16

Benefit of Lock Elision

Exposes Concurrency & Eliminates Unnecessary Communication

T
im

e

T0 T1 T2 T3 T0 T1 T2 T3

Concurrent execution

No lock transfer latencies

Lock transfer latencies

Serialized execution

Reducing lock instruction

latencies insufficient

17

Transactional Synchronization

Hardware support to enable lock elision

• Focus on lock granularity optimizations

• Fine grain performance at coarse grain effort

Intel® TSX: Instruction set extensions for IA‡

• Transactionally execute lock-protected critical sections

• Execute without acquiring lock expose hidden concurrency

• Hardware manages transactional updates – All or None

– Other threads can’t observe intermediate transactional updates

– If lock elision cannot succeed, restart execution & acquire lock

Intel® TSX Exposes Concurrency Through Lock Elision

Intel® Transactional Synchronization Extensions (Intel® TSX)

‡Intel® Architecture Instruction Set Extensions Programming Reference (http://software.intel.com/file/41604)

18

A Canonical Intel® TSX Execution

No Serialization and No Communication if No Data Conflicts

Lock: Free

Hash Table

Thread 1 Thread 2

Acquire Acquire

A

Critical

section

B

Critical

section

Release

Release

Lock remains free

throughout

Intel® Transactional Synchronization Extensions (Intel® TSX)

19

Intel® TSX Interfaces for Lock Elision

Hardware Lock Elision (HLE) – XACQUIRE/XRELEASE

• Software uses legacy compatible hints to identify critical section. Hints ignored on

hardware without TSX

• Hardware support to execute transactionally without acquiring lock

• Abort causes a re-execution without elision

• Hardware manages all architectural state

Restricted Transactional Memory (RTM) – XBEGIN/XEND

• Software uses new instructions to specify critical sections

• Similar to HLE but flexible interface for software to do lock elision

• Abort transfers control to target specified by XBEGIN operand

• Abort information returned in a general purpose register (EAX)

XTEST and XABORT – Additional instructions

 Flexible and Easy To Use

Intel® Transactional Synchronization Extensions (Intel® TSX)

20

Intel® TSX Interface: HLE

Legacy Compatible Enabling Within Libraries

acquire_lock (mutex)

; do critical section

; function calls,

; memory operations, …

release_lock (mutex)

 mov eax, 1

Try: lock xchg mutex, eax

 cmp eax, 0

 jz Success

Spin: pause

 cmp mutex, 1

 jz Spin

 jmp Try

mov mutex, 0

 mov eax, 1

Try: xacquire lock xchg mutex, eax

 cmp eax, 0

 jz Success

Spin: pause

 cmp mutex, 1

 jz Spin

 jmp Try

xrelease mov mutex, 0

Application

Library
If lock not free, execution will abort

either early (if pause used) or when

lock gets free

Enter HLE execution

Commit HLE execution

Intel® Transactional Synchronization Extensions (Intel® TSX)

Code example for illustration purpose only

21

Intel® TSX Interface: RTM

 mov eax, 1

Try: lock xchg mutex, eax

 cmp eax, 0

 jz Success

Spin: pause

 cmp mutex, 1

 jz Spin

 jmp Try

mov mutex, 0

Retry: xbegin Abort

 cmp mutex, 0

 jz Success

 xabort $0xff

Abort:

 … check EAX and do retry policy

 … actually acquire lock or wait

 … to retry.

 …

cmp mutex, 0

jnz release_lock

xend

Intel® Transactional Synchronization Extensions (Intel® TSX)

acquire_lock (mutex)

; do critical section

; function calls,

; memory operations, …

release_lock (mutex)

acquire_lock (mutex)

release_lock (mutex)

Code example for illustration purpose only

22

Identify and Elide: HLE

Hardware support to elide multiple locks

• Hardware elision buffer manages actively elided locks

• XACQUIRE/XRELEASE allocate/free elision buffer entries

• Skips elision without aborting if no free entry available

Hardware treats XACQUIRE/XRELEASE as hints

• Functionally correct even if hints used improperly

• Hardware checks if locks meet requirements for elision

• May expose latent bugs and incorrect timing assumptions

Hardware Management of Elision Enables Ease of Use

Implementation specific to the next general Intel® microarchitecture code name Haswell

23

Execute Transactionally

Hardware manages all transactional updates
• Other threads cannot observe any intermediate updates

• If transactional execution doesn’t succeed, hardware restarts execution

• Hardware discards all intermediate updates prior to restart

Transactional abort
• Occurs when abort condition is detected

• Hardware discards all transactional updates

Transactional commit
• Hardware makes transactional updates visible instantaneously

• No cross-thread/core/socket coordination required

Software Does Not Worry About State Recovery

Implementation specific to the next general Intel® microarchitecture code name Haswell

24

Execute Transactionally – Memory

Buffering memory writes

• Hardware uses L1 cache to buffer transactional writes

– Writes not visible to other threads until after commit

– Eviction of transactionally written line causes abort

• Buffering at cache line granularity

Sufficient buffering for typical critical sections

• Cache associativity can occasionally be a limit

• Software always provides fallback path in case of aborts

Hardware Manages All Transactional Writes

Implementation specific to the next general Intel® microarchitecture code name Haswell

25

Detect Conflicts

Read and write addresses for conflict checking

• Tracked at cache line granularity using physical address

• L1 cache tracks addresses written to in transactional region

• L1 cache tracks addresses read from in transactional region

– Cache may evict address without loss of tracking

Data conflicts

• Occurs if at least one request is doing a write

• Detected at cache line granularity

• Detected using existing cache coherence protocol

• Abort when conflicting access detected

Hardware Automatically Detects Conflicting Accesses

Implementation specific to the next general Intel® microarchitecture code name Haswell

26

Software

Enable

Profile

Tune

Architected for Enabling Ease

Extensive performance monitoring

and

profiling support

Easy to pin-point problem spots

Low touch changes

27

Software Enabling and Profiling

Doesn’t need operating system changes to use

Compiler support through intrinsics and inline assembly

• Intel® Compiler (ICC) (v13.0), GCC (v4.8), Microsoft* VS2012

Various managed runtimes
• Enabling inside runtime, hidden from application developer

Changes can be localized to libraries

• Augment existing lock library to support Intel® TSX-based elision

• Dynamic linking no need to recompile (e.g., Linux GLIBC for pthreads (rtm-2.17))

Extensive support for performance monitoring and profiling

• Various TSX specific events and counting modes

• Extensions to Precise Event Based Sampling enables detailed abort profiling

Easy to Get Started with Intel® TSX

Intel® Transactional Synchronization Extensions (Intel® TSX)

28

Software Considerations

Good coding practices will also help Intel® TSX

• Avoid false or inadvertent sharing

• Avoid timing based synchronization

Most common locks are already elision friendly

• Some locks need effort to make them elision friendly

• RTM provides improved flexibility

Not everything can or should use Intel® TSX

Intel® TSX is not a magic bullet

Watch for the Programmer Optimization Guide

Intel® Transactional Synchronization Extensions (Intel® TSX)

29

Applying Intel® TSX

sc
a

lin
g

Threads

sc
a

lin
g

Threads

Application with Coarse

Grain Lock

Application re-written with

Finer Grain Locks

An example of secondary benefits of

Intel® TSX

Coarse Grain Lock

Coarse Grain Lock +

Intel® TSX

Fine Grain Locks

Fine Grain Locks +

Intel® TSX

Fine Grain Behavior at Coarse Grain Effort

Intel® Transactional Synchronization Extensions (Intel® TSX)

30

Intel® TSX Can Enable Simpler Scalable Algorithms

Enabling Simpler Algorithms

Lock-Free Algorithm

• Don’t use critical section locks

• Developer manages concurrency

• Very difficult to get correct & optimize

– Constrain data structure selection

– Highly contended atomic operations

State of the art lock-free algorithm

o
p
s
/s

e
c

Threads

O
p
s
/s

e
c

Threads

TSX lock based algorithm
Lock-Based + Intel® TSX

• Use critical section locks for ease

• Let hardware extract concurrency

• Enables algorithm simplification

– Flexible data structure selection

– Equivalent data structure lock-free
algorithm very hard to verify

Real World Example

Intel® Transactional Synchronization Extensions (Intel® TSX)

31

A MATTER OF TIME IN A PARALLEL WORLD…

Discussion of Time applies to recent hardware generations

32

How to Measure Time?

What is time in a modern processor?

Two key components captured in hardware
• Epoch

• Time Stamp Counter (TSC)

– Invariant TSC: Incremented at a constant rate (in all ACPI P-, C-, and T- states)

Through a software API:
• GETTIMEOFDAY()

• Returns time as we normally understand it (Typically Epoch + TSC)

Directly through the Instruction Set:
• RDTSC{P}

• Returns a (monotonically increasing) value of TSC

33

Sounds Simple Enough

Three aspects to keep in mind

Accuracy

• How accurate is the crystal oscillator?

• Variance in crystals, EMI countermeasures, … introduce subtle differences

• Don’t want to compare time with something external to the system

Resolution

• Very high resolution actually… more than software may care…

Timeliness

• When exactly are you reading time?

• This is what is going to trip developers the most

34

Decode Decode

µop Allocation/Rename

Out-of-Order Execution

µop Cache
Tag

Icache
Tag

Branch Prediction

ITLB

µop Cache
Data

Icache Data

1 2 3 4 5 6 7 0

72

Load
Buffers

42

Store
Buffers

192

Reorder
Buffers

Move Elimination
Zero Idioms

32k L1

Data Cache

L2 Cache

(MLC)
Fill
Buffers

When is the TSC Actually Read?

Read at some point within a range

• Guaranteed to be monotonic

• But is not serializing

What about operations around RDTSC?

• Can proceed completely in parallel

• RDTSCP

– Wait for older operations

– But younger ones can go in parallel

Pipeline effects introduce variance

• Unreliable to measure small values

• Measure aggregate loops – not individual

35

SUMMARY

36

Summary

Haswell is the next Intel® “tock” microarchitecture

• Scalability across broad range of domains and workloads

• Per core performance for the vast majority of workloads

• Lower power for better performance and smaller envelopes

Developer-friendly features

• Fundamental performance and power improvements for legacy workloads

• New instructions addressing key developer requests

– Intel® AVX2 with FMA and 256-bit integer vectors

– Intel® Bit Manipulation Instructions

– Intel® TSX for thread parallelism through lock elision

37

Resources

• ISA documentation for Haswell New Instructions
– Intel® Architecture Instruction Set Extensions Programming Reference (PDF).

– Intel®64 and IA-32 Architectures Software Developer Manuals.

• Software Developer Emulator (SDE)
– Emulate new instructions before hardware is available

– Intel® Software Development Emulator (Intel® SDE) (PDF)

• Intel® Architecture Code Analyzer
– Code analysis for new instructions before hardware is available

– Intel® Architecture Code Analyzer

• Intel® Compiler
– Version 12.1 supports most Haswell New Instructions

– Version 13.0 supports Intel® TSX

– Intel® C++ Compiler

• Intel® VTune™ analyzer
– New release will support Haswell PerfMON shortly after shipment

Intel® Microarchitecture (Haswell); Intel® Transactional Synchronization Extensions (TSX)

http://software.intel.com/sites/default/files/319433-014.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://software.intel.com/en-us/articles/intel-software-development-emulator
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
http://software.intel.com/en-us/c-compilers/

38

BACKUP

39

Core Cache Size/Latency/Bandwidth

Metric Nehalem Sandy Bridge Haswell

L1 Instruction Cache 32K, 4-way 32K, 8-way 32K, 8-way

L1 Data Cache 32K, 8-way 32K, 8-way 32K, 8-way

 Fastest Load-to-use 4 cycles 4 cycles 4 cycles

 Load bandwidth 16 Bytes/cycle
32 Bytes/cycle

(banked)
64 Bytes/cycle

 Store bandwidth 16 Bytes/cycle 16 Bytes/cycle 32 Bytes/cycle

L2 Unified Cache 256K, 8-way 256K, 8-way 256K, 8-way

 Fastest load-to-use 10 cycles 11 cycles 11 cycles

 Bandwidth to L1 32 Bytes/cycle 32 Bytes/cycle 64 Bytes/cycle

L1 Instruction TLB
4K: 128, 4-way

2M/4M: 7/thread

4K: 128, 4-way

2M/4M: 8/thread

4K: 128, 4-way

2M/4M: 8/thread

L1 Data TLB

4K: 64, 4-way

2M/4M: 32, 4-way

1G: fractured

4K: 64, 4-way

2M/4M: 32, 4-way

1G: 4, 4-way

4K: 64, 4-way

2M/4M: 32, 4-way

1G: 4, 4-way

L2 Unified TLB 4K: 512, 4-way 4K: 512, 4-way
4K+2M shared: 1024,

8-way
All caches use 64-byte lines

Intel® Microarchitecture (Haswell); Intel® Microarchitecture (Sandy Bridge); Intel® Microarchitecture (Nehalem)

