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HTML5 is not a ‘mobile thing’. 
It’s not an alternative to native 
apps. 
 
It’s a ay of making better 
ebsites. 



elcome back to the eb 
The FT eb app provides a touch optimised user 
experience ithout native code. 



Sometimes it’s 

hat e’ve done 
 
But e’ve learned a lot, so to be honest sometimes it’s 
hat e ould do if e did it 
again. 



genda 

•  Coding responsively 
– Layout and interactions 
– Connection state 
– OS 

•  Development process 
– Branching and feature flags 
– Testing and deployment 



hat is an app? 
But first, let’s consider: 



hat is an ‘app’? 

•  Built for a single platform 
•  In an app store 
•  ritten in native code 
•  Built for mobile 
•  Designed for touch interactions 

NO THNKS 



hat an ‘app’ is to us: 

app (n). a distributed computer softare 
application designed for optimal use on specific 
screen sizes and ith particular interface 
technologies,  



hy code responsively? 
So let’s start: 
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Layout and interactions 

•  Screen size 
– Not the same as resolution 

•  Instant touch feedback 
•  Click and mouse hover effects 
•  Keyboard shortcuts 
•  Reading experience 
– Easier to read narro columns 
– Paragraph leading and guttering 



Floed columns 



Floed columns 



Scroller 



Fastclick 

•  Speed up touch interactions 
•  Eliminates 300ms lag 

<script src='fastclick.js'></script> 

window.addEventListener('load', function() { 
    new FastClick(document.body); 
}, false); 



Connection state 

Or hy online and offline events should 
not be trusted to anser the question ‘are 
e online?’ 



navigator.onLine 

re you online if? 
– You’ve got ifi signal? 
– You’ve got 3G signal? 
–  If DNS resolves? 

If Titter loads? 
– ill my site? 
– ill Facebook? 



Q: If the value of navigator.onLine is true, 
hat does that mean? 
 
: The device might be online. 



For hen there’s no connection 
•  ppCache 
– Essential for offline functionality 
–  Just use it to bootstrap your app. 

•  LocalStorage 
– Great for code and templates 

•  Cookies 
–  Shared ith the server 
–  Included in every request 

•  ebSQL / IndexedDB 
– Great for content 
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Squeezing your bits 

•  Devices tend to limit HTML5 storage 
•  Storing images offline: 

 
  Base64 encoded data-URIs 
 +  UTF-16 storage encoding 
 =  Inefficient  





n image storage solution 

1.  Donload images as gzipped base64 
2.  Squeeze 2⅔ base64 characters into one 

UTF-16 character 
3.  Push that into the database 
4.  Reverse hen rendering the page 

•  Go to http://labs.ft.com/ to read more. 



Tips for coping ith the netork 

•  Batching your requests 
•  Prioritise requests 
– User requested content first 
– nalytics last 

•  Progress bars 
– Sho feedback fast 
– Be pessimistic 



One HTTP request! 

•  ggressive batching - collect requests 
asynchronously: 

•  Callbacks per action and per group 

api.add('getStory', {'path': '/1'}, callback1); 
api.add('getStory', {'path': '/2'}, callback2); 
api.send(callback3); 
api.add('analytics', params, callback4); 
api.send(callback5); 



Going native 



cclimatised users 
•  ndroid 
– Back and Search buttons 
– Sharing: Intent.ACTION_SEND 
– idgets 
– Background content donloading 

•  indos 8 
– Sharing and Search charms 
– Home screen tile 
– Nav bar 



Search on ndroid 



Search on indos 8 



Search on iPad 



Search on iPhone 



Native rappers 

•  Invoke same core online eb site 
•  rapper to eb communication 
– via HTML5 postMessage 
– JavaScript function calls 



Managing the release process 
But ith multiple devices, surely 

is hard? 



The Old Days: Branches 
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The alternative: Feature flags 
•  Develop in one place 
•  Sitch bits of code on and off 

•  Centralise those sitches 

•  Don’t associate multiple things to the same flag 

function get(flagname) { 
  switch flagname: 
    case 'WidgetEnabled': 
      return isAndroid 
      ... 

if (Flags.get('WidgetEnabled’)) { ... } 



Feature flags: Override for testing 

Screenshot of flag tool 
  



Feature flags: Override for testing 

•  Code example: 
function get(flagname) { 
  flagoverrides = JSON.parse(localstorage.getItem('flags')); 
  if (flagname in flagoverrides) { 
    return flagoverrides[flagname]; 
  } 
  switch flagname: 
    case 'AppleEnabled': 
      return isAndroid 
      ... 



Feature flags 2.0 

•  Server-side decisions control client side 
behaviour 
– Enable /B feature release 
– Deploy features to different platforms 
– Push flags to client 

•  Share flags client and server side 
– Get feedback on /B testing 

•  Remember analytics! 



Client-side code updates 

•  The bootstrap code: 
– Runs hat’s in localStorage 
– sks the server if there’s a ne version 
•  llo beta users to get version first 

– Donloads it for use next time 

•  Minimises ppCache aggravation 
•  Gives us complete control 



Final points 



HTML5 sites can be great 
 
But building a good HTML5  
site is very hard. 



“The biggest mistake e made as a  
company as betting too much on  
HTML5 as opposed to native,” 
 
“It just asn’t ready” 



Summary 

•  Less separation, more adaptation 
– Feer, more adaptive ebsites 

•  Less native, more eb 
•  HTML5 is NOT just a mobile solution, but a 
ay of making better ebsites. 

•  Responsiveness is not about multiple static 
designs, it's a multi-variable equation 



Summary 

•  appCache + localStorage + intelligent 
bootstrapping + good use of storage 
 =  reliable offline app 

•  You don’t have to sacrifice features 
•  ith good optimisations you can get a great 

app experience 



e're trying to help 

•  Your dev team can use our code 
– github.com/ftlabs 

•  e blog about techniques at labs.ft.com 
•  Talks at conferences like this one 



“Don’t build native apps, 
                  build eb apps” 

-­‐	
  Tim	
  Berners-­‐Lee	
  



Thanks 
rob@labs.ft.com 
@FTLabs 
 
Do you ant to build this stuff? Join in. 
jobs@labs.ft.com 
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