
The FT eb pp:
Coding responsively

Dr Robert Shilston (rob@labs.ft.com)
Director, FT Labs (@ftlabs)

Historical comparison
1880 1900 1920 1940 1960 1980 2000 2020

orks offline

Portable

Long battery life

Can be read in bright sunlight

Cheap

Ubiquity

Bookmarking

Sharing

Nesprint
Fast start up

Clipping/saving

Can be read in the dark

Updates in real time

Electronic delivery

Search

Personalisation

Deep linking

orks offline

Portable

Long battery life

Can be read in bright sunlight

Cheap

Ubiquity

Bookmarking

Sharing

‘Traditional’ eb
Fast start up

Clipping/saving

Can be read in the dark

Updates in real time

Electronic delivery

Search

Personalisation

Deep linking

orks offline

Portable

Long battery life

Can be read in bright sunlight

Cheap

Ubiquity

Bookmarking

Sharing

pps
Fast start up

Clipping/saving

Can be read in the dark

Updates in real time

Electronic delivery

Search

Personalisation

Deep linking

HTML5 is not a ‘mobile thing’.
It’s not an alternative to native
apps.

It’s a ay of making better
ebsites.

elcome back to the eb
The FT eb app provides a touch optimised user
experience ithout native code.

Sometimes it’s

hat e’ve done

But e’ve learned a lot, so to be honest sometimes it’s
hat e ould do if e did it
again.

genda

•  Coding responsively
– Layout and interactions
– Connection state
– OS

•  Development process
– Branching and feature flags
– Testing and deployment

hat is an app?
But first, let’s consider:

hat is an ‘app’?

•  Built for a single platform
•  In an app store
•  ritten in native code
•  Built for mobile
•  Designed for touch interactions

NO THNKS

hat an ‘app’ is to us:

app (n). a distributed computer softare
application designed for optimal use on specific
screen sizes and ith particular interface
technologies,

hy code responsively?
So let’s start:

+

Desktop Click

Point

Ho an app might run

Laptop Type

Move Tablet Touch Phone

Speak In car screen Listen eroplane

TV

Billboard Kiosk

Games
console Think?

???

Layout and interactions

•  Screen size
– Not the same as resolution

•  Instant touch feedback
•  Click and mouse hover effects
•  Keyboard shortcuts
•  Reading experience
– Easier to read narro columns
– Paragraph leading and guttering

Floed columns

Floed columns

Scroller

Fastclick

•  Speed up touch interactions
•  Eliminates 300ms lag

<script src='fastclick.js'></script>

window.addEventListener('load', function() {
 new FastClick(document.body);
}, false);

Connection state

Or hy online and offline events should
not be trusted to anser the question ‘are
e online?’

navigator.onLine

re you online if?
– You’ve got ifi signal?
– You’ve got 3G signal?
–  If DNS resolves?

If Titter loads?
– ill my site?
– ill Facebook?

Q: If the value of navigator.onLine is true,
hat does that mean?

: The device might be online.

For hen there’s no connection
•  ppCache
– Essential for offline functionality
–  Just use it to bootstrap your app.

•  LocalStorage
– Great for code and templates

•  Cookies
–  Shared ith the server
–  Included in every request

•  ebSQL / IndexedDB
– Great for content

Splash	
 screen	

Basic	
 CSS	
 /	
 Fonts	

Bootstrap	
 &	
 error	
 handling	

Main	
 app	
 code	

Main	
 CSS	
 &	
 HTML	
 templates	

Authen=ca=on	

Text	
 and	
 image	
 content	

HTML5	
 AppCache	
 for	

ini=al	
 page	
 load	

	

Beware.	
 	
 AppCache	
 needs	

careful	
 handling.	

LocalStorage	
 for	
 code	
 	

and	
 templates	

Cookies	
 for	
 data	
 shared	

with	
 the	
 server	

WebSQL	
 /	
 IndexedDB	
 for	

news	
 content	

Squeezing your bits

•  Devices tend to limit HTML5 storage
•  Storing images offline:

 Base64 encoded data-URIs
 + UTF-16 storage encoding
 = Inefficient

n image storage solution

1.  Donload images as gzipped base64
2.  Squeeze 2⅔ base64 characters into one

UTF-16 character
3.  Push that into the database
4.  Reverse hen rendering the page

•  Go to http://labs.ft.com/ to read more.

Tips for coping ith the netork

•  Batching your requests
•  Prioritise requests
– User requested content first
– nalytics last

•  Progress bars
– Sho feedback fast
– Be pessimistic

One HTTP request!

•  ggressive batching - collect requests
asynchronously:

•  Callbacks per action and per group

api.add('getStory', {'path': '/1'}, callback1);
api.add('getStory', {'path': '/2'}, callback2);
api.send(callback3);
api.add('analytics', params, callback4);
api.send(callback5);

Going native

cclimatised users
•  ndroid
– Back and Search buttons
– Sharing: Intent.ACTION_SEND
– idgets
– Background content donloading

•  indos 8
– Sharing and Search charms
– Home screen tile
– Nav bar

Search on ndroid

Search on indos 8

Search on iPad

Search on iPhone

Native rappers

•  Invoke same core online eb site
•  rapper to eb communication
– via HTML5 postMessage
– JavaScript function calls

Managing the release process
But ith multiple devices, surely

is hard?

The Old Days: Branches

Test	

Dev	

Trunk	

Feature	
 “Apple”	

Feature	
 “Banana”	

Release	

to	
 live	

Merge	

Merge	

The alternative: Feature flags
•  Develop in one place
•  Sitch bits of code on and off

•  Centralise those sitches

•  Don’t associate multiple things to the same flag

function get(flagname) {
 switch flagname:
 case 'WidgetEnabled':
 return isAndroid
 ...

if (Flags.get('WidgetEnabled’)) { ... }

Feature flags: Override for testing

Screenshot of flag tool

Feature flags: Override for testing

•  Code example:
function get(flagname) {
 flagoverrides = JSON.parse(localstorage.getItem('flags'));
 if (flagname in flagoverrides) {
 return flagoverrides[flagname];
 }
 switch flagname:
 case 'AppleEnabled':
 return isAndroid
 ...

Feature flags 2.0

•  Server-side decisions control client side
behaviour
– Enable /B feature release
– Deploy features to different platforms
– Push flags to client

•  Share flags client and server side
– Get feedback on /B testing

•  Remember analytics!

Client-side code updates

•  The bootstrap code:
– Runs hat’s in localStorage
– sks the server if there’s a ne version
•  llo beta users to get version first

– Donloads it for use next time

•  Minimises ppCache aggravation
•  Gives us complete control

Final points

HTML5 sites can be great

But building a good HTML5
site is very hard.

“The biggest mistake e made as a
company as betting too much on
HTML5 as opposed to native,”

“It just asn’t ready”

Summary

•  Less separation, more adaptation
– Feer, more adaptive ebsites

•  Less native, more eb
•  HTML5 is NOT just a mobile solution, but a
ay of making better ebsites.

•  Responsiveness is not about multiple static
designs, it's a multi-variable equation

Summary

•  appCache + localStorage + intelligent
bootstrapping + good use of storage
 = reliable offline app

•  You don’t have to sacrifice features
•  ith good optimisations you can get a great

app experience

e're trying to help

•  Your dev team can use our code
– github.com/ftlabs

•  e blog about techniques at labs.ft.com
•  Talks at conferences like this one

“Don’t build native apps,
 build eb apps”

-­‐	
 Tim	
 Berners-­‐Lee	

Thanks
rob@labs.ft.com
@FTLabs

Do you ant to build this stuff? Join in.
jobs@labs.ft.com

Image	
 credits::	
 	

hOp://cdn3.worldcarfans.co/2008/2/medium/9080214.017.Mini1L.jpg,	
 	
 hOp://www.netbasic.com/blog/2008/10/mini-­‐car-­‐parking-­‐fail,	
 hOp://runningstopsigns.files.wordpress.com/
2011/04/smart-­‐car.jpg	

	

