
Continuous Delivery
for the rest of us

About me

• Lisa van Gelder

• Consultant at Cyrus Innovation

• lvangelder@cyrusinnovation.com

• @techbint

mailto:lvangelder@cyrusinnovation.com

Continuous Delivery

Is not:!

• Continuous deployment

• Automating all the things

Is:

• Removing the bottlenecks that stop you delivering

Ooda loop

• observe, orient, decide, and act

- John Boyd, Father of the F16

Continuous Delivery

• Measure the total cycle time

• Reduce your cycle time

• Improve your reaction time

How do you choose
where to start?

Double the frequency
of releases

Benefits of smaller releases
• Code only has value in production - get it there

quicker!

• Less co-ordination required

• Easier to test

• Easier to see if it caused issues in production

• Easier to rollback

If you can’t release,
fake it

Blockers
• Releases cause problems for users

• Ops team don’t have time to do more releases

• Ops/dev don’t have time to support more releases

• QA don’t have time to test new features

• Takes too long to get a green build

Releases cause problems
for users

• data loss

• performance issues

• broken functionality

The cms that made journalists
stop work for 20 minutes…

• db changes tied to code changes

• too much state in session

Releases cause
performance problems

• play back logs

• soak test

• dark launch

• performance test as soon as you can

Releases break existing
functionality

• missing tests

• no env like prod to test on

The cdn that broke the
release

• POST /myapp/comment/123/recommend

Ops don’t have the time
to perform more releases

Ops/dev don’t have time to
watch releases

• Release interrupts normal work

• Team on standby in case of issues

Help!

Rollbacks
• The risk is much higher when rollback isn’t possible

• Rollbacks should be normal operation, not a failure

• Users don’t care about your new feature if the site
is down

1. It should be possible to rollback

2. It should be quick to rollback

Rollbacks

A release should be a non-
event

• Done in working hours

• Easy to monitor

• Easy to rollback

QA don’t have time to test

Cross-functional issues
• release waiting on qa sign off

• release waiting on product manager sign off

• developers waiting on designs

• ux waiting on developers

• front-end developers waiting on back-end

Cross functional teams

• don’t start story if all resources aren’t available

• blockers should block

• when work is held up - can someone else perform
that function?

Takes too long to get a
green build

• Flaky tests

• Slow-running tests

• Merge hell

Flaky tests
• The tests that cry wolf

• Isolate them

• Fix them or delete them

Slow running tests
• More than 5 minutes is slow

• Waste of developer time

• Interrupt flow to fix

• People deploy without waiting for tests

• Frequent broken build

Slow running tests
• separate unit tests from acceptance tests

• limit the amount of acceptance tests

• mock dependencies - limit calls to db

• run tests in parallel

Merge hell
• Continuous Integration is more often than you think!

• Don’t have long lived feature branches

• Check in to master at least once a day

• Feature switches

• Branch by abstraction

QA define automated testing
strategy

Automate performance tests

What criteria do humans use to evaluate
performance tests?

• Have a performance test environment that is a scaled-
down replica of production

• Automate log collection, make sure tests reflect current
traffic patterns.

• Use your application-specific metrics

• Define acceptable ranges for your application

Automate release process

What criteria do humans use to evaluate
a successful release?

Use your application-specific metrics
and acceptable ranges

Summary

• Measure your cycle time

• Fix your bottlenecks

• Improve your reaction time

Questions?

Feedback please!

http://bit.ly/1q3FFIo

http://bit.ly/1q3FFIo

Suggestions for further
reading

• Continuous Delivery by Jez Humble & David Farley

• The Phoenix Project by Gene Kim, Kevin Behr &
George Spafford

• The Goal by Eliyahu M. Goldratt & Jeff Cox

• Lean Software Development by Mary Poppendieck
& Tom Poppendieck

• Release It! by Michael T. Nygard

