Google Docs version of slides (with animations) available at:

X

Have Your Cake & Eat It Too

Further Dispelling the Myths of the Lambda Architecture

)(..

Tyler Akidau
Staff Software Engineer

MillWheel - Stream Processing System
Streaming Flume - High-level API

Cloud Dataflow - Data Processing Service

Google Cloud Dataﬂow

~ — Optimize —»

MillWheel - slava Chernyak, Josh Haberman, Reuven Lax,
Daniel Mills, Paul Nordstrom, Sam McVeety,
Sam Whittle, and more...

Streaming Flume - Robert Bradshaw, Daniel Mills,
and more...

Cloud Dataflow - Robert Bradshaw, Craig Chambers, Reuven
Lax, Daniel Mills, Frances Perry, and
more...

Cloud Dataflow is unreleased.

Things may change.

Agenda

1. Lambda vs Streaming

€

9| http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

How to beat the CAP theorem

E] THURSDAY, OCTOBER 13, 2011

The CAP theorem states a database cannot guarantee consistency, availability, and
partition-tolerance at the same time. But you can't sacrifice partition-tolerance (see
here and here), so you must make a tradeoff between availability and consistency.

Managing this tradeoff is a central focus of the NoSQL movement.

Consistency means that after you do a successful write, future reads will always take
that write into account. Availability means that you can always read and write to the
system. During a partition, you can only have one of these properties.

Systems that choose consistency over availability have to deal with some awkward
issues. What do you do when the database isn't available? You can try buffering
writes for later, but you risk losing those writes if you lose the machine with the
buffer. Also, buffering writes can be a form of inconsistency because a client thinks a
write has succeeded but the write isn't in the database yet. Alternatively, you can
return errors back to the client when the database is unavailable. But if you've ever
used a product that told you to "try again later", you know how aggravating this can
be.

11

The Lambda Architecture

oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo

oooooo
oooooo

oooooo

oooooo

HAH=85

dBo5 A

€

9| http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.htmi

Questioning the Lambda Architecture = L

The Lambda Architecture has its merits, but alternatives are
worth exploring.

A

by Jay Kreps | @jaykreps | +Jay Kreps | Comments: 19 | July 2, 2014

]3] fJin RO

Nathan Marz wrote a popular blog post describing an idea he called the Lambda
Architecture (“How to beat the CAP theorem®). The Lambda Architecture is an approach
to building stream processing applications on top of MapReduce and Storm or similar
systems. This has proven to be a surprisingly popular idea, with a dedicated website and
an upcoming book. Since I've been involved in building out the real-time data processing
infrastructure at LinkedIn using Kafka and Samza, | often get asked about the Lambda
Architecture. | thought | would describe my thoughts and experiences.

What is a Lambda Architecture and how do | become one?

The Lambda Architecture looks something like this:

Storm

Kafka Cluster | _Serving DB(s)

11

The Evolution of Streaming

oooooo
oooooo
o0ooooao

oooooo

ORE

Ecgﬁﬁﬁa

What does it take?

Strong Consistency

Tools for Reasoning About Time

2 Strong Consistency

Consistent Storage

Why consistency is important

» Mostly correct is not good enough
» Required for exactly-once processing
» Required for repeatable results

» Cannot replace batch without it

ow?

» Sequencers (e.g. BigTable)

* Leases (e.g. Spanner)

» Federation of storage silos (e.g. Samza,
Dataflow)

* RDDs (e.g. Spark)

MillWheel: Fault-Tolerant Stream Processing at
Internet Scale

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, Sam Whittle
Google
{takidau, alexgb, kayab, chernyak, haberman,
relax, sgmc, millsd, pgn, samuelw}@google.com

ABSTRACT

MillWheel is a framework for building low-latency data-processing
applications that is widely used at Google. Users specify a directed
computation graph and application code for individual nodes, and
the system manages persistent state and the continuous flow of
records, all within the envelope of the framework’s fault-tolerance
guarantees.

This paper describes MillWheel’s programming model as well as
its implementation. The case study of a continuous anomaly detec-
tor in use at Google serves to motivate how many of MillWheel’s
features are used. MillWheel’s programming model provides a no-
tion of logical time, making it simple to write time-based aggre-
gations. MillWheel was designed from the outset with fault toler-
ance and scalability in mind. In practice, we find that MillWheel’s
unique combination of scalability, fault tolerance, and a versatile
programming model lends itself to a wide variety of problems at
Google.

allowing users to create massive distributed systems that are simply
expressed. By allowing users to focus solely on their application
logic, this kind of programming model allows users to reason about
the semantics of their system without being distributed systems ex-
perts. In particular, users are able to depend on framework-level
correctness and fault-tolerance guarantees as axiomatic, vastly re-
stricting the surface area over which bugs and errors can manifest.
Supporting a variety of common programming languages further
drives adoption, as users can leverage the utility and convenience
of existing libraries in a familiar idiom, rather than being restricted
to a domain-specific language.

MillWheel is such a programming model, tailored specifically to
streaming, low-latency systems. Users write application logic as
individual nodes in a directed compute graph, for which they can
define an arbitrary, dynamic topology. Records are delivered con-
tinuously along edges in the graph. MillWheel provides fault tol-
erance at the framework level, where any node or any edge in the
topology can fail at any time without affecting the correctness of

http://research.google.com/pubs/pub41378.html

® Reasoning About Time

Event Time vs Stream Time
Batch vs Streaming
Approaches
Dataflow API

Event Time - When Events Happened

Stream Time - When Events Are Processed

Batch vs Streaming

Batch

MapReduce

oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo

Batch: Fixed Windows

[10:00 - 11:00)

[10:00 - 11:00)

oooooo
oooooo
oooooo
oooooo

[23:00 - 0:00)

MapReduce

oooooo
oooooo
oooooo

oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo

Batch: User Sessions

[10:00 - 11:00) [11:00 - 12:00)

[10:00 - 11:00) [11:00 - 12:00)

Joan
Larry
MapReduce Ingo
Amanda
Cheryl

Arthur

Streaming

Confounding characteristics of data streams

Unordered
Unbounded
Of Varying Event Time Skew

Stream Time

Event Time

. Google Cloud Platform

Approaches

Approaches to reasoning about time

1. Time-Agnostic Processing
2. Approximation
3. Stream Time Windowing

4. Event Time Windowing

1. Time-Agnostic Processing - Filters

O O

oo o poP ooo o poP ooo o goP og
o o o o

16:00 15:00 14:00 13:00 12:00 11:00 10:00

Example Input: Web server traffic logs
Example Output: All traffic from specific domains

Stream Time

Pros: Straightforward
Efficient
Cons: Limited utility

1. Time-Agnostic Processing - Hash Join

16:00 15:00 14:00 13:00 12:00 11:00 10:00 Stream Time

Example Input: Query & Click traffic
Example Output: Joined stream of Query + Click pairs

Pros: Straightforward
Efficient
Cons: Limited utility

2. Approximation via Online Algorithms

O O

oo o poP ooo o poP ooo o goP og
o o o o 0 O

A

16:00 15:00 14:00 13:00 12:00 11:00 10:00 Stream Time

Example Input: Twitter hashtags
Example Output: Approximate top N hashtags per prefix

Pros: Efficient
Cons: Inexact
Complicated Algorithms

3. Windowing by Stream Time

16:00 15:00 14:00 13:00 12:00 11:00 10:00

Example Input: Web server request traffic

Example Output: Per-minute rate of received requests
Pros: Straightforward

Results reflect contents of stream
Cons: Results don't reflect events as they happened
f approximating event time, usefulness varies

Stream Time

4. Windowing by Event Time - Fixed Windows

Stream Time

oooooo oooooo oooooo oooooo Oooooono ooooono
oooooo oooooo oooooo oooooo oooooo oooooo
oooooo oooooo oooooo oooooo oooooo oooooo

A A A A A A A

16:00 15:00 14:00 13:00 12:00 11:00 10:00 Event Time

Example Input: Twitter hashtags
Example Output: Top N hashtags by prefix per hour.
Pros: Reflects events as they occurred
Cons: More complicated buffering
Completeness issues

4. Windowing by Event Time - Sessions

\ ~
16:00 15:00 14:00 s~ 13:00 > 12:00 11:00 10:00 Stream Time
0 0 jo | EIEI\ \\EIE-EI =N =X
\
EE=IE =N =N ooo =N
00 MO0 O (N0 | 00 Poo O 0 |
16:00 15:00 14:00 13:00 12:00 11:00 10:00 Event Time

Example Input: User activity stream
Example Output: Per-session group of activities
Pros: Reflects events as they occurred
Cons: More complicated buffering
Completeness issues

Dataflow API

are you computing?
In event time?

When in stream time?

What =
Where = Windowing AP|

When = Watermarks + Triggers API

Aggregation AP|

PCollection<KV<String, Double>> sums = Pipeline
.begin()
.read(“userRequests™)
.apply(new ());

Aggregation API

Sum

Streaming Mode

10:06 10:04 10:02 10:00 Stream Time

10:06 10:04 10:02 10:00 Event Time

Windowing AP|

PCollection<KV<String, Long>> sums = Pipeline

.begin()
.read(“userRequests™)
.apply((new));

.apply(new ());

Windowing AP]

Stream Time

Event Time
Sum
I [I
10:06 10:04 10:02 10:00 Event Time

Watermarks

o f(S)->E
e S =a pointin stream time (i.e. now)

e E =the pointin event time up to
which input data is complete as of S

Stream Time

Event Time

. Google Cloud Platform

Watermarks

Stream Time

Event Time
A A
10:03 10:H2 I 10108 I 10:00 Event Time

Watermark Caveats

Too slow = more latency

Too fast = late data

Triggers

When in stream time to emit?

Triggers API

PCollection<KV<String, Long>> sums = Pipeline

.begin()
.read(“userRequests™)
.apply(QEY

.trigger(new AtWatermark());
.apply(new ());

(]
£
£
€
(]
>
(NE]
O
S
(=]
-
n
S
(=]
-
l“
<
(=)
_- m
S
]]
™ a
52 0 0 =
S
N
(=]
2
-
b2
& =
- 1
]
. . o
E— S| o
] I 1L
10:05 Y TE 10:02 10:01

A Better Strategy

1. Once per stream time minute
2. At watermark

3. Once per record for two weeks

(O]
£
T
c
(]
>
L
S
43
S
n
| 2
(=]
-
7 S
4{s
S
|] | | |

™ M ™ M
- THI22 0 Tol NTo 0 42
S
>
4{s
S
O P) ol o o o) =) AN N V] S
AN w | AN N AN 9\ N -~ ~ o
| |] | | | ||] 1

| |] | | | ||]
(=]
| |] | | | ||] M
S

10:06 10:05 10:04 10:03 10:02 10:01

Triggers API

PCollection<KV<String, Long>> sums = Pipeline

.begin()
.read(“userRequests™)
.apply(QEY)

.trigger(new SequenceOf(
new RepeatUntil(
new AtPeriod(1, MINUTE),
new AtWatermark()),
new AtWatermark(),
new RepeatUntil(
new AfterCount(l),
new AfterDelay(
14, DAYS, TimeDomain.EVENT _TIME))));

.apply(new ());

Lambda vs Streaming

Low-latency, approximate results
Complete, correct results as soon as possible

Ability to deal with changes upstream

One Last Thing...

What if | want sessions?

Triggers API

PCollection<KV<String, Long>> sums = Pipeline

.begin()
.read(“userRequests™)
.apply(QEY)

.trigger(new SequenceOf(
new RepeatUntil(
new AtPeriod(1, MINUTE),
new AtWatermark()),
new AtWatermark(),
new RepeatUntil(
new AfterCount(l),
new AfterDelay(
14, DAYS, TimeDomain.EVENT TIME))));

.apply(new ());

Event Time

10:06

|
o

___ |

10:05

10:04

-
10:03

Summary

Lambda is great
Streaming by itself is better :-)
Strong Consistency = Correctness
Streaming = + + Triggers

Tools For Reasoning About Time = Power + Flexibility

Thank you!

Questions?

Questions about this talk: takidau@google.com (Tyler Akidau)
Questions about Cloud Dataflow: cloude@google.com (Eric Schmidt)

mailto:takidau@google.com
mailto:takidau@google.com
mailto:cloude@google.com
mailto:cloude@google.com

