
Let it Crash!
The Erlang Approach
to Building Reliable

Services

Hi, folks.

This talk is not about convincing
Facebook to pay you 19$ billion.

This is a talk about doing good,
careful work…

…on systems that might kill
people or ruin companies,

which is totally rad.

many
processors

in a network

inside an even
bigger network

and none of it’s
reliable

and also it’s
spread across

the globe

Sometimes we don’t care
to make the illusion of

whole-system reliability.

Sometimes we do.

In this talk, we do.

Erlang

A handful simple pieces.

An old-fashioned, explicit
functional language.

All data is immutable,
without exception.

Processes are the smallest
unit of control flow.

Processes are sequential
internally.

Processes are concurrent
to one another.

Processes can
communicate only
through message

passing.

Messages are copied
between processes.

Processes can “link” and
receive messages about

linked pair deaths.

This is called
“trapping exits”.

OR

Processes can “link” and
die when linked pairs die.

This is the
default

behaviour.

That’s basically it.

The implications are
really fun.

Supervision

Well known process traps exits,
restart other processes that fail.

The failed process is restarted
from a static specification.

The failed process state
is not preserved.

The failed process state
is not preserved.

(intentionally)

Registered
Names

These are decoupled
from the underlying

process.

You can change processes
without consumers getting

wise to it.

Protocols

You can’t manipulate another
process’ state.

You have to convince
it to change itself.

Network
Transparency

Network
Transparency

(kinda)

Messages may be addressed
to explicit pid, process name.
Node may be specified, too.

Erlang hides the network
details, leaving just the

abstraction.

Hot Code
Reloading

Code updates can be
inserted at runtime.

New functions and new
processes get inserted

under old names.

Tricky without VM support.

This is all driving to one end:

Fault
Tolerance

Everything in Erlang (and
everything not) is in the
service of building fault-

tolerant systems.

The short-hand for this is:

Let it crash!

Faulty subsystems are
difficult to correct.

Don’t bother.
Just restart.

What’s unique
to Erlang?

VM support for
swapping function
implementations.

Cheap processes.

Cheap processes.

(309 words of memory)

Strict process isolation.

It’s all small
stuff really.

What can you
do now?

Short of using Erlang, that is…

Immutable
Data

This means
embracing
copying.

Rub some
Queue on it.

 Queue
+ Async Execution
= Erlang Process

Structure your
system as

loosely coupled
sub-systems.

Sub-systems communicate
through a well-known

protocol.

They may be co-resident
in memory or across
machine boundaries.

Decoupling brings
many secondary

advantages.

Isolate.

Don’t manipulate
memory that
isn’t yours.

Critical components get
their own machines.

Plan for
failure.

If sub-system A depends
on B and B fails, what

does A need to do?

“Hey, who knew
that system C

relied on B too?”

Supervise.

Negotiate the restarts
of failed sub-systems

into well-known states.

Erlang implements all of
this for you, but there’s
nothing special about it.

Anything else?

Understand the
Network.

0. The network is reliable.
1. Latency is zero.
2. Bandwidth is infinite.
3. The network is secure.
4. Topology doesn’t change.
5. There is one administrator.
6. Transport cost is zero.
7. The network is homogenous.

P.S.

This is how the
Internet works.

This is how hard
real-time systems

work.

This is how
multi-processors

work.

There’s decades
of material to
learn from.

Thanks!
<3

@bltroutwine

