Priming Java for Speed

Getting Fast & Staying Fast

Gil Tene, CTO & co-Founder, Azul Systems

KSYSTEMS

High level agenda

@ Intro

@ Java realities at "Load Start”

@ A whole bunch of compiler optimization stuff
@ Deoptimization...

® What we can do about it

About me: Gil Tene

® co-founder, CTO @Azul
Systems

@ Have been working on “think
different” GC approaches
since 2002

@ At Azul we make JVMs that
dramatically improve latency
behavior

@ As a result, we end up
working a lot with low latency
trading systems

@ And (after GC is solved) the

“Load Start” problem seems to
dominate concerns * working on real-world trash compaction issues, circa 2004

AZUL

©2013 Azul Systems, Inc. SYSTEMS

i

Vg -y
’

e PILS o |

i ":-t’i 1,..‘}

-

Shans & oo
-
i

V.-.. e
on S M a3 L-P..@Ju.lluldu

A T e

.
e .

Market Open

N

'%f Speed speed SDBE(] ‘

r

Java at Market Open

Javas “"Just In Time” Reality

4 F F

F

3 £2 s Speed @ Tpeed ‘Speed

F
r

® Starts slow, learns fast =g

Warmup

@ Lazy loading & initialization 4

@ Aggressively optimized for
the common case

- Deoptimization

@ (temporarily) Reverts to 4
slower execution to adapt

KSYSTEMS

i

Vg -y
’

e PILS o |

i ":-t’i 1,..‘}

-

Shans & oo
-
i

V.-.. e
on S M a3 L-P..@Ju.lluldu

A T e

.
e .

Some simple compiler tricks

SSSSSSS

Code can be reordered...

int doMath(int x, int vy, int z) 1
int a=x+Y;
int b =X -Y;
int ¢ =z + X;
return a + b;

5

Can be reordered fto:

int doMath(int x, int vy, int z) {
int ¢'= z +8X;
int b=x-vy;
inta=X+Y;
return a + b;

;

SSSSSSS

Dead code can be removed

int doMath(int x, int vy, int z) {
int a =X +V;
int b =X -Yy;
IR C = Z + X;
return a + b;

;

Can be reduced to:

int doMath(int x, int vy, int z) {
intfa=x+Y,;
int b =X -Yy;
return a + b;

;

SSSSSSS

Values can be propagated

int doMath(int x, int vy, int z) {
int a=X+VY;
int b = X -v;
Int ¢ =z + X;
return a + b;

;

Can be reduced to:

int doMath(int x, int vy, int z) {
refurn x + ¥y + X - v;

;

SSSSSSS

Math can be simplified

int doMath(int x, int vy, int z) {
int a =X +V;
int b =X -Yy;
Int ¢ =z + X;
return a + b;

;

Can be reduced to:

int doMath(int x, int vy, int z) {
refurn X + X;

;

SSSSSSS

Some more compiler tricks

SSSSSSS

Reads can be cached

int distanceRatio(Object a) ¢
Int distanceTo = a.x - start;
int distanceAfter = end - a.x;
return distanceTo/distanceAfter;

;

Is the same as

int distanceRatio(Object a) ¢
Int X = a.x;
int distanceTo = x - start;
int distanceAfter = end - x;
return distanceTo/distanceAfter;

;

SSSSSSS

Reads can be cached

void loopUntilFlagSet(Object a) 1
while (!a.flag) {
loopcount++;
?
;

Is the same as:

void loopUntilFlagSet(Object a) {
boolean flaglsSet = a.flag:;
while (!flagIsSet) {
loopcount++;

;
;

Thats what volatile is for... AZUL

SSSSSSS

Writes can be eliminated

Intermediate values might never be visible

void updateDistance(Object a) {
int distance = 100;
a.x = distance;
a.x = distance * 2;
a.x = distance * 3;

;

Is the same as

void updateDistance(Object a) {
a.Xx = 300;

;

SSSSSSS

Writes can be eliminated

Intermediate values might never be visible

void updateDistance(Object a) {

avisibleValue = O;
for (int i = 0; i < 1000000; i++) §
a.internalValue = i;

|

aVvisibleValue = a.InTernalValue;

Is the same as

void updateDistance(Object a) {
a.internalValue = 1000000;

a.visibleValue = 1000000;

} AZUL

SSSSSSS

Inlining...

public class Thing {
private int X;
public final int getX() { return x };

;
myX = thing.getX();

Is the same as

Class Thing {
int X;

;

myX = thing.x;

SSSSSSS

Speculative compiler tricks

JIT compilers can do things that
static compilers can have
a hard time with...

SSSSSSS

Class Hierarchy Analysis (CHA)

@ Can perform global analysis on currently loaded code
@ Deduce stuff about inheritance, method overrides, etc.
@ Can make optimization decisions based on assumptions
@ Re-evaluate assumptions when loading new classes

@ Throw away code that conflicts with assumptions
before class loading makes them invalid

SSSSSSS

Inlining works without “final”

public class Animal {
private int color;
public int getColor() { return color };

;

myColor = animal.getColor();

Is the same as

Class Animal {
int color;

;

myColor = animal.color;

As long as only one implementer of getColor() exists

SSSSSSS

More Speculative stuff

@ The power of the "uncommon trap”

@ Being able throw away wrong code is very useful

@ E.g. Speculatively assuming callee type

@ polymorphic can be "monomorphic” or "megamorphic”
@ E.g. Can make virtual calls direct even without CHA

@ E.g. Can speculatively inline things

@ E.g. Speculatively assuming branch behavior

@ We've only ever seen this thing go one way, so....

SSSSSSS

Untaken path example

"Never taken” paths can be optimized away with benefits:

void computeMagnitude(int val) {
if (val > 10) §
bias = computeBias(val);
else §
bias = 1;
;
return Math.loglO(bias + 99);

;

When all values so far were <= 10 , can be compiled to:

void computeMagnitude(int val) {
if (val > 10) uncommonTrap();
return 2;

;

SSSSSSS

Implicit Null Check example

All field and array access in Java is null checked

X = foo.x;

is (in equivalent required machine code):

if (foo == null)
throw new NullPointerException();
x = foo.x;

But compiler can “hope” for non-nulls, and handle SEGV

<Point where later SEGV will appear to throw>
X = f00.x;

This is faster *IF* no nulls are encountered...

SSSSSSS

i

Vg -y
’

e PILS o |

i ":-t’i 1,..‘}

-

Shans & oo
-
i

V.-.. e
on S M a3 L-P..@Ju.lluldu

A T e

.
e .

Deoptimization:
Adaptive compilation is... adapftive

@ Micro-benchmarking is a black art

@ So is the art of the Warmup

@ Running code long enough fo compile is just the start...

@ Deoptimization can occur at any time

@ often occur after you *think* the code is warmed up.

@ Many potential causes

SSSSSSS

Warmup often doesnt cut it...

@ Common Example:

@ Trading system wants to have the first trade be fast
@ So run 20,000 “fake” messages through the system to warm up

o let JIT compilers optimize, learn, and deopt before actual trades

® What really happens

@ Code is written to do different things “if this is a fake message”
@ e.g. 'Dont send to the exchange if this is a fake message”
@ JITs optimize for fake path, including speculatively assuming “fake”

@ First real message through deopts...

SSSSSSS

Fun In a Box:
A simple Deoptimization example

@ Deoptimization due to lazy loading/initialization
@ Two classes: ThingOne and ThingTwo

@ Both are actively called in the same method

@ But compiler Kicks in before one is ever called

@ JIT cannot generate call for uninitialized class
@ So it leaves an uncommon trap on that path...

@ And deopts later if it ever gets there.

https://github.com/qiltene/GilExamples/blob/master/src/main/ java/FunInABox.java

SSSSSSS

https://github.com/giltene/GilExamples/blob/master/src/main/java/FunInABox.java

Deopt example: Fun In

public class FunInABox {
static final int THING_ONE_THREASHOLD = 20000000;

static public class ThingOne {
static long valueOne = 0;

static long getValue() { return valueOne++; }

static public class ThingTwo {
static long valueTwo = 3;

static long getValue() { return valueTwo++; }

}

public static long testRun(int iterations) {
long sum = 0O;

for(int iter = 0; iter < iterations; iter++) {
if (iter > THING ONE THREASHOLD
else
sum += ThingTwo.getValue();
}

return sum;

Deopt example: Fun In a Box

Lumpy.local-40%
Lumpy.local-40% java -XX:+PrintCompilation FunInABox
777 java.lang.String::hashCode (64 bytes)
109 sun.nio.cs.UTF 8$Decoder::decodeArrayLoop (553 bytes)
115 Java.math.BigInteger: :mulAdd (81 bytes)
118 java.math.BigInteger: :multiplyToLen (219 bytes)
121 Java.math.BigInteger::addOne (77 bytes)
123 Java.math.BigInteger::squareTolLen (172 bytes)
127 java.math.BigInteger::primitiveLeftShift (79 bytes)
130 Java.math.BigInteger: :montReduce (99 bytes)
140 % jJava.math.BigInteger: :multiplyToLen @ 138 (219 bytes)
Starting warmup run (will only use ThingTwo) :
147 9 sun.security.provider.SHA: :1mplCompress (491 bytes)
153 10 jJava.lang.String::charAt (33 bytes)
154 11 FunInABox$ThingTwo: :getValue (10 bytes)
154 2% FunInABox::testRun @ 4 (38 bytes)
lel 12 FunInABox::testRun (38 bytes)
Warmup run [1000000 iterations] took 27 msec..

.Then, out of the box
Came Thing Two and Thing One!
And they ran to us fast
They said, "How do you do?"...

Starting actual run (will start using ThingOne a bit after using

5183 12 made not entrant FunInABox::testRun (38 bytes)
5184 2% made not entrant FunInABox::testRun @ -2 (38 bytes)
3% FunInABox::testRun @ 4 (38 bytes)

Test run [200000000 iterations] took 1299 msec.

Deopt example: Fun In a Box

public static <T> Class<T>» forceInit(Class<T> klass) {
// Forces actual initialization (not just Lloading) of the class klass:
try {

Class.forName(klass.getName(), klass.getClassLoader());
} catch (ClassNotFoundException e)

throw new AssertionError(e); // Can't happen

}

return klass;

}

public static void tameTheThings() {
forceInit(ThingOne.class);
forcelnit(ThingTwo.class);

https://github.com/qiltene/GilExamples/blob/master/src/main/ java/FunInABox.java

https://github.com/giltene/GilExamples/blob/master/src/main/java/FunInABox.java

Deopt example: Fun In a Box

Lumpy.local-41%
Lumpy.local-41% java -XX:+PrintCompilation FunInABox KeepThingsTame
75 Java.lang.String: :hashCode (64 bytes)

107 sun.nio.cs.UTF 8$SDecoder::decodeArrayLoop (553 bytes)

113 java.math.BigInteger::mulAdd (81 bytes)

115 Java.math.BigInteger::multiplyToLen (219 bytes)

119 Java.math.BigInteger::addOne (77 bytes)

121 java.math.BigInteger::squareTolen (172 bytes)

125 Java.math.BigInteger::primitivelLeftShift (79 bytes)

127 Java.math.BigInteger: :montReduce (99 bytes)

133 3 java.math.BigInteger::multiplyToLen @ 138 (219 bytes)
Keeping ThingOne and ThingTwo tame (by i1nitializing them ahead of time):
Starting warmup run (will only use ThingTwo) :

140 9 sun.security.provider.SHA: :1mplCompress (491 bytes)

147 10 Java.lang.String::charAt (33 bytes)

147 11 FunInABox$ThingTwo: :getValue (10 bytes)

147 2% FunInABox::testRun @ 4 (38 bytes)

154 12 FunInABox::testRun (38 bytes)

Warmup run [1000000 iterations] took 24 msec..

.Then, out of the box
Came Thing Two and Thing One!
And they ran to us fast
They said, "How do you do?"...

Starting actual run (will start using ThingOne a bit after using
ThingTwo) :

5178 13 FunInABox$ThingOne: :getValue (10 bytes)
Test run [200000000 iterations] took 2164 msec...

Example causes for depotimization
at "Load Start”

@ First calls fo method in an uninitialized class
@ First call to a method in a not-yet-loaded class
@ Dynamic branch elimination hitting an unexpected path

@ Implicit Null Check hitting a null

SSSSSSS

Javas “"Just In Time” Reality

4 F F

F

3 £2 s Speed @ Tpeed ‘Speed

F
r

® Starts slow, learns fast =g

Warmup

@ Lazy loading & initialization 4

@ Aggressively optimized for
the common case

- Deoptimization

@ (temporarily) Reverts to 4
slower execution to adapt

KSYSTEMS

Javas “Just In Time” Reality

What we have What we want

@ Starts slow, learns fast @ No Slow Ops or Trades

@ Lazy loading & initialization

.
@ Aggressively optimized for ﬁ ﬁiﬁfﬁ

the common case

@ (temporarily) Reverts to ReadyNow!
slower execution to adapt to the rescue

KSYSTEMS

What can we do about it?

@ Zing has a new feature set called "ReadyNow!”

@ Focused on avoiding deoptimization while keeping code fast

@ First of all, paying attention matters

g;ng;

@ E.g. Some of those dynamic branch eliminations have no benefit...

@ Adds optional controls for helpful things like:

@ Aggressive class loading (load when they come into scope)
@ Safe pre-initialization of classes with empty static initializers
@ Per method compiler directives (e.g. disable ImplicitNullChecks)

- S

SSSSSSS

Logging and “replaying”
optimizations
@ Zings ReadyNow includes optimization logging

@ Records ongoing optimization decisions and stats
@ records optimization dependencies

@ Establishes “stable optimization state” and end of previous run

® Zing can read prior logs at startup

@ Prime JVM with knowledge of prior stable optimizations

@ Optimizations are applied as their dependencies get resolved

@ ReadyNow workflow promotes confidence

@ You'll know if/when all optimizations have been applied

@ If some optimization havent been applied, you'll know why...

SSSSSSS

Load Start

ReadyNow!
T L —
deoptimization

e 2

'%f ‘speed speed speed ‘

Load Start
*4&&
. > > €

'&5 ﬁ% speed Speed ‘speed ‘speed an

SSSSSSSS

&

4

Java at “Load Start”

With Zing & ReadyNow!

Load Start

ol * ,,,,,,,,
Restarts :
2 222

Speed ‘Speed ‘Speed

'
'%f Speed speed speed

Java at "Load Start”

With ReadyNow!

Load Start

\

r F

speed speed 'speed speed speed

SSSSSSSS

r 4 4

Java at “Load Start”

With ReadyNow! and
No Overnight Restarts

Start Fast & Stay Fast

Load Start

\

n

SSSSSSSS

. r r r

speed speed speed speed ' speed o speed

One liner takeaway

Zing: A cure for the Java hiccups

