
containerization:
more than the

new virtualization

Jérôme Petazzoni
(@jpetazzo)

Grumpy French DevOps
- Go away or I will replace you

with a very small shell script

Runs everything in containers
- Docker-in-Docker

- VPN-in-Docker

- KVM-in-Docker

- Xorg-in-Docker

- ...

outline

Outline

Containers as lightweight VMs
Containers vs VMs
Separation of operational concerns
Benefits
Conclusions

containers as
lightweight VMs

It looks like a VM

Private process space
Can run stuff as root
Private network interface and IP address
Custom routes, iptables rules, etc.
Can mount filesystems and more

Process tree in a “machine container”
 PID TTY STAT TIME COMMAND
 1 ? Ss+ 0:00 /usr/bin/python3 -u /sbin/my_init --enable-insecure-key
 104 ? S+ 0:00 /usr/bin/runsvdir -P /etc/service
 105 ? Ss 0:00 _ runsv syslog-ng
 108 ? S 0:00 | _ syslog-ng -F -p /var/run/syslog-ng.pid --no-caps
 106 ? Ss 0:00 _ runsv sshd
 109 ? S 0:00 | _ /usr/sbin/sshd -D
 117 ? Ss 0:00 | _ sshd: root@pts/0
 119 pts/0 Ss 0:00 | _ -bash
 135 pts/0 R+ 0:00 | _ ps fx
 107 ? Ss 0:00 _ runsv cron
 110 ? S 0:00 _ /usr/sbin/cron -f

Faster to boot, less overhead than a VM

$ time docker run ubuntu echo hello world
hello world
real 0m0.258s

Disk usage: less than 100 kB
Memory usage: less than 1.5 MB

Benchmark: infiniband

Benchmark: boot OpenStack instances

Benchmark: memory speed

impossibru!

containers
vs

virtual machines

Virtual Machines

Emulate CPU instructions
(painfully slow)

Emulate hardware (storage, network...)
(painfully slow)

Run as a userland process on top of a kernel
(painfully slow)

Virtual Machines

Use native CPU
(fast!)

Paravirtualized storage, network...
(fast, but higher resource usage)

Run on top of a hypervisor
(faster, but still some overhead)

Containers

Processes isolated from each other
Very little extra code path
(in many cases, it's comparable to UID checking)

Virtual Machines vs Containers

Native CPU
Paravirtualized devices
Hypervisor

Native CPU
Native syscalls
Native kernel

Inter-VM communication

Strong isolation, enforced by hypervisor + hardware
- no fast-path data transfer between virtual machines

- yes, there are PCI pass-throughs and things like xenbus,
but that's not easy to use, very specific, not portable

Most convenient method: network protocols (L2/L3)
But: huge advantage from a security POV

Inter-container communication

Tunable isolation
- each namespace can be isolated or shared

Allows normal Unix communication mechanisms
- network protocols on loopback interface

- UNIX sockets

- shared memory

- IPC...

Reuse techniques that we know and love (?)

inter-container
communication

Shared localhost

Multiple containers can share the same “localhost”
(by reusing the same network namespace)

Communication over localhost is very very fast
Also: localhost is a well-known address

Shared filesystem

A directory can be shared by multiple containers
(by using a bind-mount)

That directory can contain:
- named pipes (FIFOs)

- UNIX sockets

- memory-mapped files

Bind-mount = zero overhead

Shared IPC

Multiple containers can share IPC resources
(using the special IPC namespace)

Semaphores, Shared Memory, Message Queues...
Is anybody still using this?

Host networking

Containers can share the host's network stack
(by reusing its network namespace)

They can use the host's interfaces without penalty
(high speed, low latency, no overhead!)

Native performance to talk with external containers

Host filesystems

Containers can share a directory with the host
Example: use fast storage (SAN, SSD...) in container
- mount it on the host

- share it with the container

- done!

Native performance to use I/O subsystem

separation of
operational
concerns

...What?

“Ops” functions (backups, logging...) can be
performed in separate containers

Application containers can run unchanged in various
environments: dev, test, QA, prod...

logs

Old style

ssh into container
cd /var/log
tail, grep, ack-grep, awk, sed, apachetop, perl, etc.

New style

Create a “data container” to hold the logs
docker run --name logs -v /var/log busybox true

Start app container sharing that volume
docker run --volumes-from logs myapp

Inspect logs
docker run -ti --volumes-from logs -w /var/log ubuntu bash

Use fancy tools without polluting app container
docker run -ti --volumes-from logs turbogrep ...

Bonus points

Ship logs to something else (logstash, syslog...)
docker run --volumes-from logs pipestash

Change logging system independently:
- without rebuilding app container

- without restarting app container

- run multiple logging systems at the same time (e.g. for migration)

backups

Old style

Prepare the tools
- install things like rsync, s3cmd, boto, mysqldump...

- get backup script

Perform one-shot manual backup
- SSH and run the backup script

Set up routine backups
- edit crontab

New style: setup

Create a “data container” to hold the files to back up
docker run --name mysqldata -v /var/lib/mysql busybox true

Start app container sharing that volume
docker run --volumes-from mysqldata mysql

Create a separate image with backup tools
- Dockerfile with “apt-get install rsync s3cmd...”

New style: one-shot manual backup

Use the special backup image
docker run --rm --volumes-from mysqldata mysqlbackup \
 tar -cJf- /var/lib/mysql | stream-it-to-the-cloud.py

Of course, you can use something fancier than tar
(e.g. rsync, tarsnap...)

New style: routine backups

Option 1
- run “crond” in backup image

- start backup image and keep it running

Option 2
- start backup script from a crontab entry on the Docker host

Option 3
- have a special “cron” container

- give it access to the Docker API

- let it start the backup container at regular intervals

network
debugging

Old style

ssh into container
Install tcpdump, ngrep, …
Run them

New style

Make a container image with tcpdump, ngrep...
(let's call it “netdebug”)

Run it in the namespace of the application container
docker run -ti --net container:<app_cid> netdebug bash

Now run tcpdump, ngrep, etc.
Want to copy a dump to see it with wireshark?
docker run -ti --net container:... -v /tmp:/tmp netdebug \
 tcpdump -s0 -peni eth0 -w/tmp/myapp.pcap

configuration
tweaking

Old style

ssh into container
vi /etc/tomcat/something.xml
(maybe) /etc/init.d/tomcat restart

New style

Option 1
- set up /etc/tomcat to be a “data container”

- start another container sharing this volume; install vi/emacs here

Option 2
- set up /etc/tomcat to be on the host:

docker run -v /etc/containers/myapp:/etc/tomcat …

If needed: restart the container
- docker stop; docker start

- docker kill -s HUP

epiphany

composition

Virtual Machine deployment

Linux base system
Libraries
Application
Logging
Backups
Metrics
...

With configuration management

node www {

 include common

 include web

 include logstash

 include backup

 include graphite

}

Problems

Conflicts between two components
- example: logging and metrics systems use different Java versions

Software certified for different distro
- example: one component requires RHEL 6.4 but you run Ubuntu

Migration from one component to another
- example: from syslog to splunk

Container deployment

Linux base system
Docker
Application container
Logging container
Backups container
Metrics container
...

benefits

Immutable infrastructure

What's an immutable infrastructure?
- re-create images each time you change a line of code

- prevent (or track) modifications of running images

Why is it useful?
- no more rebellious servers after manual upgrades

- no more “oops, how do we roll back?” after catastrophic upgrade

- easier security audit (inspect images at rest)

How can containers help?
- container images are easier to create and manage than VM images

Micro-service architecture

What's a micro-service architecture?
- break your big application down into many small services

Why is it useful?
- it's easier to upgrade/refactor/replace a small service

- encourages to have many small teams*, each owning a service
(*small teams are supposedly better; see Jeff Bezos' “two-pizza rule”)

How can containers help?
- problem: 10 micro-services instead of 1 big application

= 10x more work to deploy everything

- solution: need extremely easy deployment; hello containers!

thank you!
questions?

