containerization:

more than the
new virtualization

Con




Jérome Petazzoni
(@jpetazzo)

"Grumpy French DevOps

- Go away or I will replace you
with a very small shell script

"Runs everything in containers
- Docker-in-Docker
- VPN-in-Docker
- KVM-in-Docker
- Xorg-in-Docker

Con










Outline

"Containers as lightweight VMs
"Containers vs VMs

"Separation of operational concerns
" Benefits

" Conclusions







contalners as
lightweight VMs

Con




It looks like a VM

"Private process space

"Can run stuff as root

"Private network interface and IP address
" Custom routes, iptables rules, etc.

"Can mount filesystems and more




Process tree in a "machine container”

PID TTY STAT TIME COMMAND
1 7? Ss+ 0:00 /usr/bin/python3 -u /sbin/my 1nit --enable-insecure-key
104 7 S+ 0:00 /usr/bin/runsvdir -P /etc/service
105 7 Ss 0:00 \ runsv syslog-ng
108 7 S 0:00 | \ syslog-ng -F -p /var/run/syslog-ng.pid --no-caps
1006 7 Ss ©:00 \ runsv sshd
109 ? S 0:00 | \ /usr/sbin/sshd -D
117 2 Ss 0:00 | \ sshd: root@pts/0
119 pts/0 Ss 0:00 | \ -bash
135 pts/0 R+ 0:00 | \ ps fx
107 7 Ss 0:00 \ runsv cron
110 ? S 0:00 \ /usr/sbin/cron -f

Con



Faster to boot, less overhead than a VM

$ time docker run ubuntu echo hello world
hello world
real Om0@.258s

Disk usage: less than 100 kB
Memory usage: less than 1.5 MB

Con



Benchmark: infiniband

InfiniBand bandwidth performance InfiniBand latency performance
MBfs 3200 usec 5.00
-
. 0
2400 3.78 E
0
1600 . 2.60
5
o 1.26 '
500 0
ib_read bw ib_write bw I0_read lat D _write_lat

B Native B LXC{Docker container) B Native W LXC(Docker container)




Benchmark: boot OpenStack instances

Con

5.00E+09

4. 50E+09

4.00E+09

3.50E+09

3.00E+09

2.50E+09

Memory Used

2. 00E+09

1.50E+0%

1.00E+09

Docker / KVM: Compute Node Memory Used (Unnormalized Overlay)

5.00E+08 -

0.00E+00

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 &5 89 93 97 101105109113117121125

Time

kv i

docker



Benchmark: memory speed

Memory Benchmark Performance

14000

12881.6112905 .68

12000

10000

s000

F223.23
® Bare Metal (MIB/s)

MiB/s

® docker (MIB/s)
6000

m VM (MIB/s)

43593.3 4385.92

3823.3 3813 .38
4000 JA7E.05

2000 -

MEMCPY DUMB MCBLOCK
Memory Test




Impossibru!







contalners
VS

virtual machines

Con




Virtual Machines

*Emulate CPU instructions
(painfully slow)

" Emulate hardware (storage, network...)
(painfully slow)

"Run as a userland process on top of a kernel
(painfully slow)

Con



Virtual Machines

" Use native CPU
(fast!)

" Paravirtualized storage, network...
(fast, but higher resource usage)

"Run on top of a hypervisor
(faster, but still some overhead)

Con



Containers

" Processes isolated from each other

"Very little extra code path
(in many cases, it's comparable to UID checking)




Virtual Machines vs Containers

"Native CPU "Native CPU
" Paravirtualized devices "Native syscalls
"Hypervisor "Native kernel




Inter-VM commmunication

"Strong isolation, enforced by hypervisor + hardware

- no fast-path data transfer between virtual machines

- yes, there are PCI pass-throughs and things like xenbus,
but that's not easy to use, very specific, not portable

"Most convenient method: network protocols (L2/L3)
"But: huge advantage from a security POV




Inter-container commmunication

"Tunable isolation
- each namespace can be isolated or shared

=" Allows normal Unix communication mechanisms

- hetwork protocols on loopback interface
- UNIX sockets

- shared memory

- IPC...

"Reuse techniques that we know and love (?)

Con






INnter-container
commuhnication

Con



Shared localhost

" Multiple containers can share the same “localhost”
(by reusing the same network namespace)

*Communication over localhost is very very fast
" Also: localhost is a well-known address




Shared filesystem

" A directory can be shared by multiple containers
(by using a bind-mount)

"That directory can contain:
- named pipes (FIFOs)
- UNIX sockets
- memory-mapped files

"Bind-mount = zero overhead

Con



Shared IPC

" Multiple containers can share IPC resources
(using the special IPC namespace)

"Semaphores, Shared Memory, Message Queues...
"Is anybody still using this?




Host networking

" Containers can share the host's network stack
(by reusing its network namespace)

"They can use the host's interfaces without penalty
(high speed, low latency, no overhead!)

"Native performance to talk with external containers




Host filesystems

" Containers can share a directory with the host

"Example: use fast storage (SAN, SSD...) in container

- mount it on the host
- share it with the container
- done!

"Native performance to use I/O subsystem







separation of
operational
concerns

Con



...What?

""0Ops” functions (backups, logging...) can be
performed in separate containers

" Application containers can run unchanged in various
environments: dev, test, QA, prod...




|0gS




Old style

"ssh into container
"cd /var/log
"tail, grep, ack-grep, awk, sed, apachetop, perl, etc.




New style

"Create a "data container” to hold the logs
docker run --name logs -v /var/log busybox true

"Start app container sharing that volume
docker run --volumes-from logs myapp

"Inspect logs
docker run -ti --volumes-from logs -w /var/log ubuntu bash

"Use fancy tools without polluting app container
docker run -ti --volumes-from logs turbogrep ...

Con



Bonus points

*"Ship logs to something else (logstash, syslog...)
docker run --volumes-from logs pipestash

"Change logging system independently:
- without rebuilding app container
- without restarting app container
- run multiple logging systems at the same time (e.g. for migration)







Old style

"Prepare the tools

- install things like rsync, s3cmd, boto, mysqgldump...
- get backup script

" Perform one-shot manual backup
- SSH and run the backup script

"Set up routine backups
- edit crontab

Con



New style: setup

"Create a "data container” to hold the files to back up
docker run --name mysqldata -v /var/lib/mysql busybox true

"Start app container sharing that volume
docker run --volumes-from mysgldata mysql

"Create a separate image with backup tools
- Dockerfile with “apt-get install rsync s3cmd...”

Con



New style: one-shot manual backup

"Use the special backup image

docker run --rm --volumes-from mysqldata mysqglbackup \
tar -cJf- /var/lib/mysql | stream-it-to-the-cloud.py

" Of course, you can use something fancier than tar
(e.g. rsync, tarsnap...)




New style: routine backups

"Option 1
- run “crond” in backup image
- start backup image and keep it running

"Option 2

- start backup script from a crontab entry on the Docker host
"Option 3

- have a special "cron” container

- give it access to the Docker API
- |let it start the backup container at regular intervals

Con




network
debugging

Con



Old style

"ssh into container

" Install tcpdump, ngrep, ...

*"Run them




New style

"Make a container image with tcpdump, ngrep...
(let's call it "netdebug”)

"Run it in the namespace of the application container
docker run -ti --net container:<app cid> netdebug bash

"Now run tcpdump, ngrep, etc.

*Want to copy a dump to see it with wireshark?

docker run -ti1 --net container:... -v /tmp:/tmp netdebug \
tcpdump -s0 -peni ethO -w/tmp/myapp.pcap

Con



configuration
tweaking




Old style

"ssh into container
"vi /etc/tomcat/something.xml
"(maybe) /etc/init.d/tomcat restart




New style

"Option 1
- set up /etc/tomcat to be a “data container”
- start another container sharing this volume; install vi/emacs here

"Option 2
- set up /etc/tomcat to be on the host:
docker run -v /etc/containers/myapp:/etc/tomcat ..

*"If needed: restart the container

- docker stop; docker start
- docker kill -s HUP

Con




oy

B L TR










composition

Con



Virtual Machine deployment

"Linux base system
*Libraries

" Application
"lLogging

"Backups

"Metrics

Con



With configuration management

node www {
1nclude common
1nclude web
1nclude Llogstash
1nclude backup
include graphite

Con



Problems

" Conflicts between two components
- example: logging and metrics systems use different Java versions

"Software certified for different distro
- example: one component requires RHEL 6.4 but you run Ubuntu

" Migration from one component to another
- example: from syslog to splunk

Con



Container deployment

"Linux base system
"Docker

" Application container
"lLogging container
"Backups container
"Metrics container

Con






benefits




Immutable Iinfrastructure

*\What's an immutable infrastructure?

- re-create images each time you change a line of code
- prevent (or track) modifications of running images

*Why is it useful?

- no more rebellious servers after manual upgrades
- no more “oops, how do we roll back?” after catastrophic upgrade
- easier security audit (inspect images at rest)

"How can containers help?
- container images are easier to create and manage than VM images

Con




Micro-service architecture

*What's a micro-service architecture?
- break your big application down into many small services

*Why is it useful?

- it's easier to upgrade/refactor/replace a small service

- encourages to have many small teams*, each owning a service
(*small teams are supposedly better; see Jeff Bezos' "two-pizza rule”)

"How can containers help?

- problem: 10 micro-services instead of 1 big application
= 10x more work to deploy everything

- solution: need extremely easy deployment; hello containers!

Con







thank you!
questions?

Con



