
containerization:
more than the

new virtualization

Jérôme Petazzoni
(@jpetazzo)

Grumpy French DevOps
- Go away or I will replace you

with a very small shell script

Runs everything in containers
- Docker-in-Docker

- VPN-in-Docker

- KVM-in-Docker

- Xorg-in-Docker

- ...

outline

Outline

Containers as lightweight VMs
Containers vs VMs
Separation of operational concerns
Benefits
Conclusions

containers as
lightweight VMs

It looks like a VM

Private process space
Can run stuff as root
Private network interface and IP address
Custom routes, iptables rules, etc.
Can mount filesystems and more

Process tree in a “machine container”
 PID TTY STAT TIME COMMAND
 1 ? Ss+ 0:00 /usr/bin/python3 -u /sbin/my_init --enable-insecure-key
 104 ? S+ 0:00 /usr/bin/runsvdir -P /etc/service
 105 ? Ss 0:00 _ runsv syslog-ng
 108 ? S 0:00 | _ syslog-ng -F -p /var/run/syslog-ng.pid --no-caps
 106 ? Ss 0:00 _ runsv sshd
 109 ? S 0:00 | _ /usr/sbin/sshd -D
 117 ? Ss 0:00 | _ sshd: root@pts/0
 119 pts/0 Ss 0:00 | _ -bash
 135 pts/0 R+ 0:00 | _ ps fx
 107 ? Ss 0:00 _ runsv cron
 110 ? S 0:00 _ /usr/sbin/cron -f

Faster to boot, less overhead than a VM

$ time docker run ubuntu echo hello world
hello world
real 0m0.258s

Disk usage: less than 100 kB
Memory usage: less than 1.5 MB

Benchmark: infiniband

Benchmark: boot OpenStack instances

Benchmark: memory speed

impossibru!

containers
vs

virtual machines

Virtual Machines

Emulate CPU instructions
(painfully slow)

Emulate hardware (storage, network...)
(painfully slow)

Run as a userland process on top of a kernel
(painfully slow)

Virtual Machines

Use native CPU
(fast!)

Paravirtualized storage, network...
(fast, but higher resource usage)

Run on top of a hypervisor
(faster, but still some overhead)

Containers

Processes isolated from each other
Very little extra code path
(in many cases, it's comparable to UID checking)

Virtual Machines vs Containers

Native CPU
Paravirtualized devices
Hypervisor

Native CPU
Native syscalls
Native kernel

Inter-VM communication

Strong isolation, enforced by hypervisor + hardware
- no fast-path data transfer between virtual machines

- yes, there are PCI pass-throughs and things like xenbus,
but that's not easy to use, very specific, not portable

Most convenient method: network protocols (L2/L3)
But: huge advantage from a security POV

Inter-container communication

Tunable isolation
- each namespace can be isolated or shared

Allows normal Unix communication mechanisms
- network protocols on loopback interface

- UNIX sockets

- shared memory

- IPC...

Reuse techniques that we know and love (?)

inter-container
communication

Shared localhost

Multiple containers can share the same “localhost”
(by reusing the same network namespace)

Communication over localhost is very very fast
Also: localhost is a well-known address

Shared filesystem

A directory can be shared by multiple containers
(by using a bind-mount)

That directory can contain:
- named pipes (FIFOs)

- UNIX sockets

- memory-mapped files

Bind-mount = zero overhead

Shared IPC

Multiple containers can share IPC resources
(using the special IPC namespace)

Semaphores, Shared Memory, Message Queues...
Is anybody still using this?

Host networking

Containers can share the host's network stack
(by reusing its network namespace)

They can use the host's interfaces without penalty
(high speed, low latency, no overhead!)

Native performance to talk with external containers

Host filesystems

Containers can share a directory with the host
Example: use fast storage (SAN, SSD...) in container
- mount it on the host

- share it with the container

- done!

Native performance to use I/O subsystem

separation of
operational
concerns

...What?

“Ops” functions (backups, logging...) can be
performed in separate containers

Application containers can run unchanged in various
environments: dev, test, QA, prod...

logs

Old style

ssh into container
cd /var/log
tail, grep, ack-grep, awk, sed, apachetop, perl, etc.

New style

Create a “data container” to hold the logs
docker run --name logs -v /var/log busybox true

Start app container sharing that volume
docker run --volumes-from logs myapp

Inspect logs
docker run -ti --volumes-from logs -w /var/log ubuntu bash

Use fancy tools without polluting app container
docker run -ti --volumes-from logs turbogrep ...

Bonus points

Ship logs to something else (logstash, syslog...)
docker run --volumes-from logs pipestash

Change logging system independently:
- without rebuilding app container

- without restarting app container

- run multiple logging systems at the same time (e.g. for migration)

backups

Old style

Prepare the tools
- install things like rsync, s3cmd, boto, mysqldump...

- get backup script

Perform one-shot manual backup
- SSH and run the backup script

Set up routine backups
- edit crontab

New style: setup

Create a “data container” to hold the files to back up
docker run --name mysqldata -v /var/lib/mysql busybox true

Start app container sharing that volume
docker run --volumes-from mysqldata mysql

Create a separate image with backup tools
- Dockerfile with “apt-get install rsync s3cmd...”

New style: one-shot manual backup

Use the special backup image
docker run --rm --volumes-from mysqldata mysqlbackup \
 tar -cJf- /var/lib/mysql | stream-it-to-the-cloud.py

Of course, you can use something fancier than tar
(e.g. rsync, tarsnap...)

New style: routine backups

Option 1
- run “crond” in backup image

- start backup image and keep it running

Option 2
- start backup script from a crontab entry on the Docker host

Option 3
- have a special “cron” container

- give it access to the Docker API

- let it start the backup container at regular intervals

network
debugging

Old style

ssh into container
Install tcpdump, ngrep, …
Run them

New style

Make a container image with tcpdump, ngrep...
(let's call it “netdebug”)

Run it in the namespace of the application container
docker run -ti --net container:<app_cid> netdebug bash

Now run tcpdump, ngrep, etc.
Want to copy a dump to see it with wireshark?
docker run -ti --net container:... -v /tmp:/tmp netdebug \
 tcpdump -s0 -peni eth0 -w/tmp/myapp.pcap

configuration
tweaking

Old style

ssh into container
vi /etc/tomcat/something.xml
(maybe) /etc/init.d/tomcat restart

New style

Option 1
- set up /etc/tomcat to be a “data container”

- start another container sharing this volume; install vi/emacs here

Option 2
- set up /etc/tomcat to be on the host:

docker run -v /etc/containers/myapp:/etc/tomcat …

If needed: restart the container
- docker stop; docker start

- docker kill -s HUP

epiphany

composition

Virtual Machine deployment

Linux base system
Libraries
Application
Logging
Backups
Metrics
...

With configuration management

node www {

 include common

 include web

 include logstash

 include backup

 include graphite

}

Problems

Conflicts between two components
- example: logging and metrics systems use different Java versions

Software certified for different distro
- example: one component requires RHEL 6.4 but you run Ubuntu

Migration from one component to another
- example: from syslog to splunk

Container deployment

Linux base system
Docker
Application container
Logging container
Backups container
Metrics container
...

benefits

Immutable infrastructure

What's an immutable infrastructure?
- re-create images each time you change a line of code

- prevent (or track) modifications of running images

Why is it useful?
- no more rebellious servers after manual upgrades

- no more “oops, how do we roll back?” after catastrophic upgrade

- easier security audit (inspect images at rest)

How can containers help?
- container images are easier to create and manage than VM images

Micro-service architecture

What's a micro-service architecture?
- break your big application down into many small services

Why is it useful?
- it's easier to upgrade/refactor/replace a small service

- encourages to have many small teams*, each owning a service
(*small teams are supposedly better; see Jeff Bezos' “two-pizza rule”)

How can containers help?
- problem: 10 micro-services instead of 1 big application

= 10x more work to deploy everything

- solution: need extremely easy deployment; hello containers!

thank you!
questions?

