
Mantis: Netflix's Event
Stream Processing System

Justin Becker Danny Yuan
10/26/2014

Motivation

Traditional TV just works

Netflix wants Internet TV to work just as well

Especially when things aren’t working

Tracking “big signals” is not
enough

Need to track all kinds of permutations

Detect quickly, to resolve ASAP

Cheaper than product services

Here comes the problem

12 ~ 20 million metrics updates per
second

750 billion metrics updates per day

4 ~ 18 Million App Events Per Second
> 300 Billion Events Per Day

They Solve Specific Problems

They Require Lots of Domain Knowledge

A System to Rule Them All

Mantis: A Stream Processing System

3

1. Versatile User Demands

Asynchronous Computation Everywhere

3. Same Source, Multiple Consumers

We want Internet TV to just work

One problem we need to solve,
detect movies that are failing?

Do it fast → limit impact, fix early
Do it at scale → for all permutations
Do it cheap → cost detect <<< serve

Work through the details for how
to solve this problem in Mantis

Goal is to highlight unique and
interesting design features

… begin with batch approach,
the non-Mantis approach

Batch algorithm, runs every N minutes

for(play in playAttempts()){
 Stats movieStats = getStats(play.movieId);
 updateStats(movieStats, play);
 if (movieStats.failRatio > THRESHOLD){

alert(movieId, failRatio, timestamp);
 }
}

First problem, each run requires
reads + writes to data store per run

Batch algorithm, runs every N minutes

for(play in playAttempts()){
 Stats movieStats = getStats(play.movieId);
 updateStats(movieStats, play);
 if (movieStats.failRatio > THRESHOLD){

alert(movieId, failRatio, timestamp);
 }
}

For Mantis don’t want to pay that
cost: for latency or storage

Batch algorithm, runs every N minutes

for(play in playAttempts()){
 Stats movieStats = getStats(play.movieId);
 updateStats(movieStats, play);
 if (movieStats.failRatio > THRESHOLD){

alert(movieId, failRatio, timestamp);
 }
}

Next problem, “pull” model great for
batch processing, bit awkward for
stream processing

Batch algorithm, runs every N minutes

for(play in playAttempts()){
 Stats movieStats = getStats(play.movieId);
 updateStats(movieStats, play);
 if (movieStats.failRatio > THRESHOLD){

alert(movieId, failRatio, timestamp);
 }
}

By definition, batch processing
requires batches. How do I chunk
my data? Or, how often do I run?

Batch algorithm, runs every N minutes

for(play in playAttempts()){
 Stats movieStats = getStats(play.movieId);
 updateStats(movieStats, play);
 if (movieStats.failRatio > THRESHOLD){

alert(movieId, failRatio, timestamp);
 }
}

For Mantis, prefer “push” model,
natural approach to data-in-motion
processing

Batch algorithm, runs every N minutes

for(play in playAttempts()){
 Stats movieStats = getStats(play.movieId);
 updateStats(movieStats, play);
 if (movieStats.failRatio > THRESHOLD){

alert(movieId, failRatio, timestamp);
 }
}

For our “push” API we decided
to use Reactive Extensions (Rx)

1. Observable is a natural abstraction for
stream processing, Observable = stream

2. Rx already leveraged throughout the
company

Two reasons for choosing Rx:
theoretical, practical

So, what is an Observable?
A sequence of events, aka a stream

Observable<String> o =
Observable.just(“hello”,
 “qcon”, “SF”);
o.subscribe(x->{println x;})

What can I do with an Observable?

Apply operators → New observable
Subscribe → Observer of data

Operators, familiar lambda functions
map(), flatMap(), scan(), ...

What is the connection with Mantis?

In Mantis, a job (code-to-run) is the
collection of operators applied to a
sourced observable where the
output is sinked to observers

Think of a “source” observable as
the input to a job.

Think of a “sink” observer as the
output of the job.

Let’s refactor previous problem
using Mantis API terminology

Source: Play attempts
Operators: Detection logic
Sink: Alerting service

Sounds OK, but how will this scale?

For pull model luxury of requesting
data at specified rates/time
Analogous to drinking
from a straw

In contrast, push is the firehose

No explicit control to limit the
flow of data

In Mantis, we solve this problem
by scaling horizontally

Horizontal scale is accomplished
by arranging operators into
logical “stages”, explicitly by job
writer or implicitly with fancy
tooling (future work)

A stage is a boundary between
computations. The boundary
may be a network boundary,
process boundary, etc.

So, to scale, Mantis job is really,

Source → input observable
Stage(s) → operators
Sink → output observer

Let’s refactor previous problem to
follow the Mantis job API structure

MantisJob
.source(Netflix.PlayAttempts())
.stage({ // detection logic })
.sink(Alerting.email())

We need to provide a computation
boundary to scale horizontally

MantisJob
.source(Netflix.PlayAttempts())
.stage({ // detection logic })
.sink(Alerting.email())

For our problem, scale is a function
of the number of movies tracking

MantisJob
.source(Netflix.PlayAttempts())
.stage({ // detection logic })
.sink(Alerting.email())

Lets create two stages, one producing
groups of movies, other to run detection

MantisJob
.source(Netflix.PlayAttempts())
.stage({ // groupBy movieId })
.stage({ // detection logic })
.sink(Alerting.email())

OK, computation logic is split, how is the
code scheduled to resources for execution?

MantisJob
.source(Netflix.PlayAttempts())
.stage({ // groupBy movieId })
.stage({ // detection logic })
.sink(Alerting.email())

One, you tell the Mantis Scheduler explicitly
at submit time: number of instances, CPU
cores, memory, disk, network, per instance

Two, Mantis Scheduler learns how to
schedule job (work in progress)

Looks at previous run history
Looks at history for source input
Over/under provision, auto adjust

A scheduled job creates a topology
Stage 1 Stage 2 Stage 3

Worker

Worker

WorkerWorker

Worker

Worker

Worker

Application 1

Mantis cluster
Application

clusters

Application 2

Application 3

cluster boundary

Computation is split, code is scheduled,
how is data transmitted over stage
boundary?

Worker Worker
?

Worker Worker
?

Depends on the service level agreement
(SLA) for the Job, transport is pluggable

Worker Worker
?

Decision is usually a trade-off
between latency and fault tolerance

Worker Worker
?

A “weak” SLA job might trade-off fault
tolerance for speed, using TCP as the
transport

A “strong” SLA job might trade-off speed
for fault tolerance, using a queue/broker as
a transport

Worker Worker
?

Forks and joins require data partitioning,
collecting over boundaries

Worker

Worker

Worker

Fork Worker

Worker

Worker

Join

Need to partition data Need to collect data

Mantis has native support for partitioning,
collecting over scalars (T) and groups (K,V)

Worker

Worker

Worker

Fork Worker

Worker

Worker

Join

Need to partition data Need to collect data

Let’s refactor job to include SLA, for the
detection use case we prefer low latency
MantisJob
.source(Netflix.PlayAttempts())
.stage({ // groupBy movieId })
.stage({ // detection logic })
.sink(Alerting.email())
.config(SLA.weak())

The job is scheduled and running what
happens when the input-data’s volume
changes?

Previous scheduling decision may not hold
Prefer not to over provision, goal is for cost
insights <<< product

Good news, Mantis Scheduler has the
ability to grow and shrink (autoscale) the
cluster and jobs

The cluster can scale up/down for two
reasons: more/less job (demand) or jobs
themselves are growing/shrinking

For cluster we can use submit pending
queue depth as a proxy for demand

For jobs we use backpressure as a proxy to
grow shrink the job

Backpressure is “build up” in a system

Imagine we have a two stage Mantis job,
Second stage is performing a complex
calculation, causing data to queue up in the
previous stage

We can use this signal to increase nodes at
second stage

Having touched on key points in Mantis
architecture, want to show a complete job
definition

Source

Stage 1

Stage 2

Sink

Play Attempts

Grouping by
movie Id

Detection
algorithm

Email alert

Sourcing play attempts

Static set of
sources

Grouping by movie Id

GroupBy operator
returns key
selector function

Simple detection algorithms

Windows for 10 minutes
or 1000 play events

Reduce the window to
an experiment, update
counts

Filter out if less than
threshold

Sink alerts

