
November 4, 2014

The Quest for the One True Parser
Terence Parr
The ANTLR guy
University of San Francisco

Am I behind the times?
Buzzword Compliance
✤ What’s a PEG and do I need one? Am I a packrat?

✤ Should I care about context-sensitive parsing?

✤ Do we still need the distinction between the tokenizer and the parser?

✤ Parser Combinators do what, exactly?

✤ Should I be using Generalized-LR (GLR)?

✤ Can I parse tree data structures not just token streams?

✤ How is ANTLR 4’s ALL(*) like the Honey Badger?

Parr-t Like It’s 1989

✤ 25 years ago, LALR/yacc/bison
reigned supreme in tools

✤ In ~1989 you either used yacc or
you built parsers by hand

✤ I didn’t grok yacc with its state
machines and shift/reduce
conflicts

✤ I set out to create a parser generator that generated
what I wrote by hand: recursive-descent parsers

✤ The quest eventually led to some useful innovations

LL(1)

LALR(1)

The Players

✤ Warring religious factions

✤ LL-based, “top-down,” recursive-descent,
“hand built”, LL(1)

✤ LR-based, “bottom-up,” yacc, LALR(1)

✤ Two other camps; researchers working on:

✤ Increasing efficiency of general algorithms
Earley, GLL, GLR, Elkhound, …

✤ Increasing power of top-down parsers
LL(k), predicates, PEG, LL(*), GLL, ALL(*)

Some “Lex Education”
Grammars, parsers, and trees oh my!

Parser Information Flow

✤ The parser feeds off of tokens from the lexer, which feeds off of a char
stream, to check syntax (language membership)

✤ We often want to build a parse tree that records how input matched

stat

assign

expr

100

sp ;=

chars

LEXER

tokens

PARSERsp = 100 ;sp = 100;

parse tree

Language recognizer

Grammar Meta-languages (DSLs)

✤ A grammar is a set of rules that describe a language

✤ A language is just a set of valid sentences

✤ Each rule has a name and set of one or more alternative productions

✤ Most tools use a DSL that looks like this:
stat: ‘if’ expr ‘then’ stat (‘else’ stat)?
 | ID ‘=’ expr
 | ‘return’ expr
 ;
expr: expr ‘*’ expr
 | expr ‘+’ expr
 | ID
 | INT
 ;

Grammar Conditions

✤ Left-recursive grammars have rules that reference rules already in flight; LR
loves this, LL hates this!

✤ Recursive-descent parsers get infinite recursive loops

✤ Ambiguous grammars can match an input phrase in more than one way. In C,
i*j could be an expression or declaration like FILE *f.

✤ GLR was designed for ambiguous grammars; “Police help dog bite victim.”
LL, LR resolve ambiguities at parse-time, picking one path

expr : expr ‘*’ expr
 | INT
 ;

Recursive-descent functions
Top-down, LL(k) for k ≥ 1
assign
 : ID ‘=’ expr ‘;’
 ;

void assign() {
 match(ID);
 match(‘=’);
 expr();
 match(‘;’);
}

void expr() {
 switch (curtoken.getType()) {
 case INT :
 match(INT);
 break;
 case STRING :
 match(STRING);
 break;
 default : error;
 }
}

expr
 : INT | STRING
 ;

Bottom-up, LR(k)

✤ Yacc is LR-based: LALR(1)

✤ LR recognizers are bottom-up recognizers; they match from leaves of
parse tree towards starting rule at the root whereas LL starts at the
root (top-down) and is goal oriented.

✤ LR consumes tokens until it recognizes an alternative, one that will
ultimately lead to a successful parse of the input. At input int x;
parser reduces the input to a decl ; and then reduces to stat

stat : decl ‘;’ ;
decl : ‘int’ ID
 | ‘int’ ID ‘=’ expr
 ;

Should I be using GLR?

Generalized LR (GLR)

✤ Accepts all grammars since designed to handle ambiguous languages

✤ “Forks” subparsers to pursue all possible paths emanating from LR
states with conflicts

✤ Merges all successful parses into parse “forest”

stat : decl ‘;’
 | decl ‘=’ 0 ‘;’
decl : ‘int’ ID
 | ‘int’ ID ‘=’ expr
 ;

Matches int x = 0; via
alternative 1 or 2 of decl
int x = 0; ➞ decl = 0 ; ➞ stat
int x = 0; ➞ decl ; ➞ statOr,

Issues with GLR

✤ Must disambiguate parse forests even for if-then-else ambiguity,
requiring extra time, space, machinery

✤ GLR performance is unpredictable in time and space

✤ Grammar actions don't mix with parser speculation/ambiguities

✤ Semantic predicates less useful w/o side-effecting user actions

✤ Without side effects, actions must buffer data for all interpretations in
immutable data structures or provide undo actions

What’s a PEG and do I need one?
Am I a packrat?

Parser Expression Grammars
(PEGs)
✤ PEGs are grammars based upon LL with explicitly-ordered

alternatives

✤ Attempt alternatives in order specified; first alternative to match,
wins

✤ Unambiguous by definition and PEGs accept all non-left recursive
grammars; T(i) in C++ matches as decl not function call in stat

✤ Packrat parsers record partial results to avoid reparsing subphrases

stat : decl / expr ;
decl : ‘int’ ID
 / ‘int’ ID ‘=’ expr
 ;

Square PEG, round hole?

✤ PEGs might not do what you want; 2nd alternative of decl never
matches!

✤ PEGs are not great at error reporting and recovery; errors detected at the
end of file

✤ Can’t execute arbitrary actions during the parse; always speculating

✤ Without of side-effecting actions, predicates aren’t as useful

✤ Hard to debug nested backtracking

decl : ‘int’ ID
 / ‘int’ ID ‘=’ expr
 ;

<== Yes, I’m deadcode

Parser Combinators do what,
exactly?

Higher-order functions as
building blocks
✤ Use programming language itself rather than separate grammar DSL,

avoiding a build step to generate code from grammar

✤ Alternation b|c|d becomes Parsers.or(b, c, d)

✤ Sequence bcd becomes Parsers.sequence(b,c,d)

✤ Has higher-order rules; can
pass rules to rules

✤ Essentially equivalent to an inline PEG or packrat parser, with same
issues

✤ ANTLR also has an interpreter, btw, to avoid build step

list[el] : <el> (‘,’ <el>)* ;

Do we still need the distinction
between the tokenizer and the parser?

Scannerless Parsing
GLR and PEGs are typically scannerless

✤ Tokenizing is natural; we do it. “Humuhumunukunukuapua'a have a diamond-
shaped body with armor-like scales.”

✤ Tokenizing is efficient and processing tokens is convenient

✤ But... scannerless parsing supports mixed languages like C+SQL:

✤ That’s pretty cool and supports modular grammars since we can combine
grammar pieces w/o fear that combined input won’t tokenize properly

✤ Easy to fake if parser is strong enough: just make each char a token!

int next = select ID from users where name='Raj'+1;
int from = 1, select = 2;
int x = select * from;

Scannerless Grammars are Quirky

✤ Must test for white space explicitly and frequently

✤ Distinguishing between keywords and identifiers is messy;
e.g., int or int[versus interest or int9

prog: ws? (var|func)+ EOF ;
plus: '+' ws? ;

kint: {notLetterOrDigit(4)}? 'i' 'n' 't' ws? ;
id : letter+ {!keywords.contains($text)}? ws? ;

Should I care about context-
sensitive parsing?

Predicated Parsing

✤ Context-sensitive rules are viable per a runtime test called a semantic
predicate; the expression language depends on the tool

✤ Disambiguating a(i) and f(x) in Fortran requires symbol table
information about a,f

✤ Or, can build a “parse forest” and disambiguate after the parse, but
that can be inefficient in time and space

expr: array
 | call
 ;
array : {isArray(token)}? ID ‘(‘ expr ‘)’ ;
call : {isFunc(token)}? ID ‘(‘ expr ‘)’ ;

Can I parse data structures like trees?
(Are you TRIE-curious?)

WALKER
Rest of

Application

APIs

stat

assign

expr

100

sp ;=

visitTerminal(TerminalNode)

enterStat(StatContext)

exitStat(StatContext)

enterAssign(AssignContext)

exitAssign(AssignContext)

enterExpr(ExprContext)

exitExpr(ExprContext)

visitTerminal(TerminalNode)
visitTerminal(TerminalNode)

visitTerminal(TerminalNode)

StatContext

AssignContext

ExprContext

100
TerminalNode

sp
TerminalNode

;
TerminalNode

=
TerminalNode

visitX() MyVisitor

visitTerminal(TerminalNode)

visitStat(StatContext)
visitAssign(AssignContext)
visitExpr(ExprContext)

Rest of
Application

APIs

Yes, But First...
Imperative processing of parse trees

Visitor

Listener

ANTLR XPath, pattern matching
Declarative+imperative

//	 “Find	 all	 initialized	 int	 local	 variables	 (Java)”
ParserRuleContext	 tree	 =	 parser.compilationUnit();	 //	 parse
String	 xpath	 =	 "//blockStatement/*";	 //	 get	 children	 of	 blockStatement
String	 treePattern	 =	 "int	 <Identifier>	 =	 <expression>;";

ParseTreePattern	 p	 =
	 	 	 	 parser.compileParseTreePattern(treePattern,	 	 	
	 	 	 	 	 	 	 	 ExprParser.RULE_localVariableDeclarationStatement);
List<ParseTreeMatch>	 matches	 =	 p.findAll(tree,	 xpath);
matches.get(0).get(“expression”);	 //	 get	 1st	 init	 expr	 subtree

System.out.println(matches);

/prog/func/'def' Find all def literal kids of func kid of prog
Find all funcs under prog at root/prog/func

Tree Grammars

✤ Specify structure of
tree declaratively with
grammar DSL;
translated to parser

✤ SORCERER in 1994
then into ANTLR
directly

✤ ANTLR 3 could
rewrite trees, invoke
StringTemplates

expr returns [int value]
 : ^('+' a=expr b=expr) {$value = a+b;}
 | ^('-' a=expr b=expr) {$value = a-b;}
 | ^('*' a=expr b=expr) {$value = a*b;}
 | INT
 {$value = Integer.parseInt($INT.text);}
 ;

expr
 | ^('+' expr expr)
 | ^('*' expr expr)
 | INT
 ;

OMeta

✤ “A programming language whose control structure is based on PEGs”
with pattern matching like Haskell/LISP

✤ Can process streams of arbitrary datatypes and nested lists (trees)

✤ Higher-order rules; can pass rule arg to another rule (coolness alert)

✤ Actions written in host language not OMeta itself (coder must watch
out for action side-effects during speculation/backtracking)

✤ Other pattern matching, transformation DSLs: TXL, Stratego/XT,
TOM (Java superset), Rascal Metaprogramming Language, ...

Well, should I use tree grammars?

✤ Tree grammars caused lots of code dup; copy grammar for each tree
pass, just with different actions

✤ Change to tree structure requires change to each tree grammar

✤ Actions cause trouble for grammar inheritance; fragile base-class
problem

✤ Ended up being a maintenance hassle so ANTLR 4 dropped them in
favor of listeners/visitors/xpath/tree-patterns
imperative+declarative style

It takes any grammar you give it. “It just doesn’t give a shit.”

Yes, even left-recursive rules! (except indirect left-recursive rules)

ANTLR 4’s ALL(*) Parser
The Nasty-Ass Honey Badger

What is ALL(*)?

✤ ALL(*) combines simplicity, efficiency, and predictability of top-down
LL(k) parsers with power of GLR-like mechanism to make decisions

✤ Key innovation: shift grammar analysis to parse-time, caching results

✤ Launch subparsers that scan ahead to determine which alternative
(path) will ultimately lead to successful parse; warms up like a JIT

✤ All but one subparser die off, yielding unique prediction
(unless ambiguous phrase or syntax error)

✤ Analogy: ticket_line : PEOPLE+ BORAT
 | PEOPLE+ THE_BODY_GUARD
 ;

void stat() { // parse according to rule stat
 switch (adaptivePredict("stat", call stack)) {
 case 1 : // predict production 1
 expr(); match(’=’); expr(); match(’;’);
 break;
 case 2 : // predict production 2
 expr(); match(’;’);
 break;
 }
}

// ALL(*) but non-LL(k), non-LL(*) grammar
stat: expr ’=’ expr ’;’
 | expr ’;’
 ;

ATN

Recursive-descent Parser

Adaptive LL(*): ALL(*)

Incremental DFA construction

Multiple threads
running >1 parser
instance build the

DFA faster

Parsing 132M, 12920 Java files

Summary

✤ You want the most general parser you can get, as long as you don’t pay for it
with poor performance; ALL(*) is the sweet spot

✤ GLR is too unpredictable in performance; general parsers like GLL/GLR that
support all input interpretations will never compete with more deterministic
strategies

✤ Semantic predicates are rarely needed but a godsend when you need them!

✤ Declarative tree matching is good, but just for searching; tree grammars with
embedded actions, not so good. I like mixed declarative+imperative style

✤ Scannerless grammars are cool as hell; useful for modular grammars and mixed
languages but less convenient to build grammars and process artifacts

✤ PEGs are great for smaller languages; at a disadvantage for action execution,
semantic predicates, error handling. OMeta has same issues

Extras in case...

Parsing Innovation Timeline
(Not exhaustive, obviously)

1985 GLR
1992 GLR fixed to be completely general (looped on cyclic grammars)
1993 Linear approximate lookahead makes LL(k) more attractive
1994 Semantic and syntactic predicates for LL(k)
1997 SGLR scannerless parsing
2002 Packrat parsing
2004 Elkhound: novel combination of GLR and LR parsing
2004 PEGs (formalized speculative, ordered-alternative grammars)
2010 GLL (No parser generator available; Rascal uses GLL variant)
2011 LL(*) (2007 tool released)
2014 ALL(*) (2012 tool released)

Frustration Led To...

decl: ‘int’ ID ‘;’
 | ‘int’ ID ‘=’ expr ‘;’

decl: modifier* type ID ‘;’
 | modifier* type ID ‘=’ expr ‘;’

stat: expr ’=’ expr ’;’
 | expr ’;’

expr: ID ‘(‘ expr ‘)’ // array index
 | ID ‘(‘ expr ‘)’ // func call

First this pissed me off:
Led to LL(k) for k>1

Then this:
semantic predicates

Syntactic predicates

LL(*)

stat: decl | expr

ALL(*)

Intellij Plug-in

Answers how was this input tokenized?

Visualizes parse tree live via parser interpreter

How was that phrase recognized?
Critical feature for large input/grammars

Identify ambiguities,
lookahead depth to optimize

AST vs Parse-Tree

