

Java
vs

C/C++

Cliff Click
www.azulsystems.com/blogs

Java vs C/C++

● "I declare a Flamewar!!!!"Flamewar!!!!"
● Lots of noise & heat
● Not many facts
● Lots of obvious mistakes being made

● Situation is more subtle than expected
● This is my attempt to clarify the situation

C/C++ Beats Java
● Very small footprint – under 300KB

● e.g. Embedded controllers, cars, clocks
● Very deterministic or fast (re)boot times –

● e.g. engine controllers, pacemakers
● Very big problems: Fortran optimizations

● Array reshaping & tiling for cache
● Value types - Complex, Point

● e.g. Overhead costs of 1b objects
● vs array-of-doubles

C/C++ Beats Java
● Direct Machine Access

● e.g. OS's (special ops, registers), device drivers
– Hard to do in Java (i.e. JavaOS effort)

● AAA Games / First Person Shooter Games
● Maxine Java-in-Java might be a counter-example

● Direct Code-Generation
● gnu "asm"
● Write bits to buffer & exec

– 'sort' inner loop key-compare
● Interpreters

C++ Beats Java
● Destructors vs finalizers

● Destructors are reliable out-of-language cleanup
● Finalizers will "eventually" run

– But maybe after running out of e.g. file handles
– So weird force-GC-cycle hooks to force cleanup

● Destructors vs & try/finally
● Destructors are reliable exit-scope action
● try/finally requires adding explicit exit-scope-action

– For each new enter-scope-action
– Maintenance mess

Java Beats C/C++
● Most Programs - profiling pays off

● But nobody bothers for C/C++, too hard
● All JIT systems profile at least some
● More profiling added as systems mature

● Very Large Programs >1MLOC
● Large program tool chain is better
● A lot more 1MLOC Java apps than C

Java Beats C/C++
● GC is easier to get right than malloc/free

● Faster time-to-market
● Why so many variations on Regions, Arenas,

Resource Areas? Basically hand-rolled GC...
● GC is efficient

● Parallel, concurrent
● Good locality, fragmentation

● GC allows concurrent algorithms
● Trivially track shared memory lifetimes
● Fundamental change, can't "fake it"

Java Beats C/C++
● Single CPU speed stalled

● Bigger problem => parallel solution
● Better multi-threading support

● Real Memory Model - synchronized, volatile
● Threads are built-in
● Large multi-threaded library base

– JDK Concurrent Collections
● GC vs concurrent malloc/free

● Tools for parallel coding, debugging

Libraries
● Vast Java Library collection

● Can COTS many many problems
● Downside: too many 3rd party libraries

● Java Mentality: download from web, don't build
● C Mentality: build before download
● Too many layers of Java crap
● Nobody knows what's going on

● Application plagued by failures
no one understands

Claims C-beats-Java
But I Dont Think So

● Most modest sized programs
● Fast enough is fast enough

● 16bit chars vs 8bit chars
● Lots of noise here (and lots of optimizations)
● Rarely makes a difference in practice

● Raw small benchmark speed
● Usually I don't care

– "C gets more BogoMips so it's better!"
● OR broken testing methodology

– "C makes a better WebServer because printf is faster!"

Common Flaws
When Comparing

● No Warmup
● Only interesting for quick-reboot, e.g. Pacemakers
● Most apps run for minutes to days

● Basic timing errors
● API reports in nanos
● OS rounds to millis (or 10's of millis)

● Caching Effects
● CPU caches, OS-level, disk & network
● DB cache, JIT/JVM level

vs

Common Flaws
When Comparing

● Basic Broken Statistics
● Run-once-and-report
● No averages, std-devs
● Throwing out "outliers"
● Not accounting for "compile plan"

– "Statistically rigorous Java performance evaluation"
– "Producing wrong data without doing anything obviously

wrong!"
● Flags, version-numbers, env-factors all matter

● "java" not same as "java -client" or "java -server"
● Some JDK versions have 30% faster XML parsing

Common Flaws
When Comparing

● Varying Datasets or Constant-time workloads
● Have seen cycles-per-work-unit vary by 10x

● Claiming X but testing Y
● 209_db: claims DB test but is shell-sort test
● SpecJBB: claims middleware test but is GC test
● Lots more here

● Not comparing same program
● e.g. Debian language shootout

– http://shootout.alioth.debian.org

Commonly Mentioned
Non-Issues

● Stack Allocation "Does So" beat GC
● Does Not. You got evidence?

I got evidence of non-issue...
● Java has lots of casts

● But they are basically free
– load/compare/branch, roughly 1 clock

● Virtual & Interface calls are slow
● And basically never taken (inline-cache)

● C# curious? I dunno, I don't track Microsoft

Java-vs-C Examples
● Examples limited to what I can fit on slides
● In-Real-Life never get apples-to-apples
● Programs either very small
● Or new re-implementation

● Generally better written 2nd go-round
● Or extremely bad (mis)use of language features

Example: String Hash
● Java tied vs GCC -O2

● Key is loop unrolling
● (i.e. JITs do all major compiler optimizations)

 int h=0;
 for(int i=0; i<len; i++)
 h = 31*h+str[i];
 return h;
Here I ran it on a new X86 for 100 million loops:
 > a.out 100000000
 100000000 hashes in 5.636 secs
 > java str_hash 100000000
 100000000 hashes in 5.745 secs

Sieve of Erathosthenes
● Again tied bool *sieve = new bool[max];

 for (int i=0; i<max; i++) sieve[i] = true;
 sieve[0] = sieve[1] = false;
 int lim = (int)sqrt(max);
 for (int n=2; n<lim; n++) {
 if (sieve[n]) {
 for (int j=2*n; j<max; j+=n)
 sieve[j] = false;
 }
 }

I computed the primes up to 100million:
 > a.out 100000000
 100000000 primes in 1.568 secs
 > java sieve 100000000
 100000000 primes in 1.548 secs

Silly Example
● Silly Example to Make a Point

● Zounds! Java is "infinitely" faster than C

 int sum=0;
 for (int i = 0; i < max; i++)
 sum += x.val(); // virtual call
 return sum;
Here I run it on the same X86:
 > a.out 1000000000 0
 1000000000 adds in 2.657 secs
 > java vcall 1000000000 0
 1000000000 adds in 0.0 secs

??? what happened here ???

Silly Example Explained
● Command-line flag picks 1 of 2 classes for 'x'
● Type profiling at Runtime

● Only 1 type loaded for 'x.val()' call
– "int val() { return 7; }"

● JIT makes the virtual call static, then inlines
– "for(int i=0; i<max; i++) { sum += 7/*x.val*/; }"

● Once inlined, JIT optimizes loop away
– "sum += max*7;"

● True virtual call at static compile-time
● No chance for a static compiler to optimize

Why Silly Example Matters
● Only 1 implementing class for interface
● Common case for large Java programs

● Single-implementor interfaces abound
● Library calls with a zillion options

– But only a single option choosen, etc
● Can see 100+ classes collapsed this way

– 10K call-sites optimized, 1M calls/sec optimized
● Major Optimization not possible without JIT'ing
● Lots more cool JIT tricks to come...

Other Stuff That Matters
● Other Things Also Matter

● Existing infrastructure, libraries, time-to-market
● Programmer training, mind set

– Lots of Java programmers Out There
● Legal issues – open source or man-rating
● Reliability, stability, scalability

● JVMs enabling new languages
● Clojure, Scala, JRuby, Jython, many more
● Much faster time-to-market

Summary
● My Language is Faster!!!

● Except when it's not
● Ummm.... "fast" is not well-defined...

– MOOPS/sec? Faster than thy competitor?
Faster-to-market? Fits in my wrist watch?

● Other-things-matter more in many domains
● If you got 500 X programmers, maybe should use X?

● Each language is a clear winner
in some domains, neither going away soon
● e.g. still room for trains in our auto-dominated world

Summary
● Internet is a Great Amplifier

● Of both the Good, the Bad AND the Ugly
● Real issue: Need Sane Discourse

● Lots of Screaming & Flames
– People with strong opinions, different vested interests,

different experiences & goals
– e.g. Do we even agree on what "faster" means?

● Lots of Bad Science
– Broken & missing statistical evidence
– Misapplied testing, testing unrelated stuff

Summary
● When the noise exceeds communication levels...

● Back up, clarify, acknowlege each side has strengths
● Chill out, think it through

● Recognize a lack-of-evidence for what it is
● yelling louder about what you do know doesn't help
● Good testing helps (and bad testing hurts)

● Realize "faster" has different meanings
– Junior Engineer thinks "faster than the competition"
– Manager thinks "faster to market"
– Senior Engineer thinks "that brick wall is approaching fast!"

Summary

Cliff Click
http://www.azulsystems.com/blogs

It Depends.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

