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Java vs C/C++

● "I declare a Flamewar!!!!"Flamewar!!!!"
● Lots of noise & heat
● Not many facts
● Lots of obvious mistakes being made

● Situation is more subtle than expected
● This is my attempt to clarify the situation



  

C/C++ Beats Java
● Very small footprint – under 300KB

● e.g. Embedded controllers, cars, clocks
● Very deterministic or fast (re)boot times – 

● e.g. engine controllers, pacemakers
● Very big problems: Fortran optimizations

● Array reshaping & tiling for cache
● Value types - Complex, Point

● e.g. Overhead costs of 1b objects
● vs array-of-doubles



  

C/C++ Beats Java
● Direct Machine Access 

● e.g. OS's (special ops, registers), device drivers
– Hard to do in Java (i.e. JavaOS effort)

● AAA Games / First Person Shooter Games
● Maxine Java-in-Java might be a counter-example

● Direct Code-Generation
● gnu "asm"
● Write bits to buffer & exec

– 'sort' inner loop key-compare
● Interpreters



  

C++ Beats Java
● Destructors vs finalizers 

● Destructors are reliable out-of-language cleanup
● Finalizers will "eventually" run

– But maybe after running out of e.g. file handles
– So weird force-GC-cycle hooks to force cleanup

● Destructors vs & try/finally
● Destructors are reliable exit-scope action
● try/finally requires adding explicit exit-scope-action

– For each new enter-scope-action
– Maintenance mess



  

Java Beats C/C++
● Most Programs - profiling pays off 

● But nobody bothers for C/C++, too hard
● All JIT systems profile at least some
● More profiling added as systems mature

● Very Large Programs >1MLOC
● Large program tool chain is better
● A lot more 1MLOC Java apps than C



  

Java Beats C/C++
● GC is easier to get right than malloc/free

● Faster time-to-market
● Why so many variations on Regions, Arenas, 

Resource Areas?  Basically hand-rolled GC...
● GC is efficient

● Parallel, concurrent
● Good locality, fragmentation

● GC allows concurrent algorithms
● Trivially track shared memory lifetimes
● Fundamental change, can't "fake it"



  

Java Beats C/C++
● Single CPU speed stalled

● Bigger problem => parallel solution
● Better multi-threading support

● Real Memory Model - synchronized, volatile
● Threads are built-in
● Large multi-threaded library base

– JDK Concurrent Collections
● GC vs concurrent malloc/free

● Tools for parallel coding, debugging



  

Libraries
● Vast Java Library collection

● Can COTS many many problems
● Downside: too many 3rd party libraries

● Java Mentality: download from web, don't build
● C Mentality: build before download
● Too many layers of Java crap
● Nobody knows what's going on

● Application plagued by failures
no one understands



  

Claims C-beats-Java 
But I Dont Think So

● Most modest sized programs
● Fast enough is fast enough

● 16bit chars vs 8bit chars
● Lots of noise here (and lots of optimizations)
● Rarely makes a difference in practice

● Raw small benchmark speed
● Usually I don't care

– "C gets more BogoMips so it's better!"
● OR broken testing methodology

– "C makes a better WebServer because printf is faster!"



  

Common Flaws 
When Comparing

● No Warmup
● Only interesting for quick-reboot, e.g. Pacemakers
● Most apps run for minutes to days

● Basic timing errors
● API reports in nanos
● OS rounds to millis (or 10's of millis)

● Caching Effects
● CPU caches, OS-level, disk & network
● DB cache, JIT/JVM level

vs



  

Common Flaws 
When Comparing

● Basic Broken Statistics
● Run-once-and-report
● No averages, std-devs
● Throwing out "outliers"
● Not accounting for "compile plan"

– "Statistically rigorous Java performance evaluation"
– "Producing wrong data without doing anything obviously 

wrong!"
● Flags, version-numbers, env-factors all matter

● "java" not same as "java -client" or "java -server"
● Some JDK versions have 30% faster XML parsing



  

Common Flaws 
When Comparing

● Varying Datasets or Constant-time workloads
● Have seen cycles-per-work-unit vary by 10x 

● Claiming X but testing Y
● 209_db: claims DB test but is shell-sort test
● SpecJBB: claims middleware test but is GC test
● Lots more here

● Not comparing same program
● e.g. Debian language shootout

– http://shootout.alioth.debian.org



  

Commonly Mentioned 
Non-Issues

● Stack Allocation "Does So" beat GC
● Does Not.  You got evidence?  

I got evidence of non-issue...
● Java has lots of casts

● But they are basically free
– load/compare/branch, roughly 1 clock

● Virtual & Interface calls are slow
● And basically never taken (inline-cache)

● C# curious?  I dunno, I don't track Microsoft



  

Java-vs-C Examples
● Examples limited to what I can fit on slides
● In-Real-Life never get apples-to-apples
● Programs either very small
● Or new re-implementation

● Generally better written 2nd go-round
● Or extremely bad (mis)use of language features



  

Example: String Hash
● Java tied vs GCC -O2

● Key is loop unrolling
● (i.e. JITs do all major compiler optimizations)

          int h=0;
          for( int i=0; i<len; i++ )
            h = 31*h+str[i];
          return h;
Here I ran it on a new X86 for 100 million loops:
    > a.out         100000000
    100000000 hashes in 5.636 secs
    > java str_hash 100000000
    100000000 hashes in 5.745 secs



  

Sieve of Erathosthenes
● Again tied              bool *sieve = new bool[max];

              for (int i=0; i<max; i++) sieve[i] = true;
              sieve[0] = sieve[1] = false;
              int lim = (int)sqrt(max);
              for (int n=2; n<lim; n++) {
                if (sieve[n]) {
                  for (int j=2*n; j<max; j+=n)
                    sieve[j] = false;
                }
              }
             
I computed the primes up to 100million:
    > a.out      100000000
    100000000 primes in 1.568 secs
    > java sieve 100000000
    100000000 primes in 1.548 secs



  

Silly Example
● Silly Example to Make a Point

● Zounds!  Java is "infinitely" faster than C

            int sum=0;
            for (int i = 0; i < max; i++) 
              sum += x.val();  // virtual call
            return sum;
Here I run it on the same X86:
    > a.out      1000000000 0
    1000000000 adds in 2.657 secs
    > java vcall 1000000000 0
    1000000000 adds in 0.0 secs

??? what happened here ???



  

Silly Example Explained
● Command-line flag picks 1 of 2 classes for 'x'
● Type profiling at Runtime

● Only 1 type loaded for 'x.val()' call
– "int val() { return 7; }"

● JIT makes the virtual call static, then inlines
– "for( int i=0; i<max; i++ ) { sum += 7/*x.val*/; }" 

● Once inlined, JIT optimizes loop away
– "sum += max*7;"

● True virtual call at static compile-time
● No chance for a static compiler to optimize



  

Why Silly Example Matters
● Only 1 implementing class for interface
● Common case for large Java programs

● Single-implementor interfaces abound
● Library calls with a zillion options

– But only a single option choosen, etc
● Can see 100+ classes collapsed this way

– 10K call-sites optimized, 1M calls/sec optimized
● Major Optimization not possible without JIT'ing
● Lots more cool JIT tricks to come...



  

Other Stuff That Matters
● Other Things Also Matter

● Existing infrastructure, libraries, time-to-market
● Programmer training, mind set

– Lots of Java programmers Out There
● Legal issues – open source or man-rating
● Reliability, stability, scalability

● JVMs enabling new languages
● Clojure, Scala, JRuby, Jython, many more
● Much faster time-to-market



  

Summary
● My Language is Faster!!!

● Except when it's not
● Ummm.... "fast" is not well-defined...

– MOOPS/sec?  Faster than thy competitor?  
Faster-to-market?  Fits in my wrist watch?

● Other-things-matter more in many domains
● If you got 500 X programmers, maybe should use X?

● Each language is a clear winner 
in some domains, neither going away soon
● e.g. still room for trains in our auto-dominated world



  

Summary
● Internet is a Great Amplifier

● Of both the Good, the Bad AND the Ugly
● Real issue: Need Sane Discourse

● Lots of Screaming & Flames
– People with strong opinions, different vested interests,

different experiences & goals
– e.g. Do we even agree on what "faster" means?

● Lots of Bad Science
– Broken & missing statistical evidence 
– Misapplied testing, testing unrelated stuff



  

Summary
● When the noise exceeds communication levels...

● Back up, clarify, acknowlege each side has strengths
● Chill out, think it through

● Recognize a lack-of-evidence for what it is
● yelling louder about what you do know doesn't help
● Good testing helps  (and bad testing hurts)

● Realize "faster" has different meanings
– Junior Engineer thinks "faster than the competition"
– Manager thinks "faster to market"
– Senior Engineer thinks "that brick wall is approaching fast!"



  

Summary

Cliff Click
http://www.azulsystems.com/blogs

It Depends.
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