
A Brief History of
Chain Replication
Christopher Meiklejohn // @cmeik
QCon 2015, November 17th, 2015

1

The Overview
1. Chain Replication for High Throughput and Availability

2. Object Storage on CRAQ

3. FAWN: A Fast Array of Wimpy Nodes

4. Chain Replication in Theory and in Practice

5. HyperDex: A Distributed, Searchable Key-Value Store

6. ChainReaction: a Causal+ Consistent Datastore based on Chain
Replication

7. Leveraging Sharding in the Design of Scalable Replication Protocols

2

Chain Replication

for High Throughput and
Availability

3
OSDI 2004

Storage Service API

• V <- read(objId)  
Read the value for an object in the
system

• write(objId, V)  
Write an object to the system

4

Primary-Backup

Replication

• Primary-Backup  
Primary sequences all write operations
and forwards them to a non-faulty
replica

• Centralized Configuration Manager 
Promotes a backup replica to a primary
replica in the event of a failure

5

Quorum Intersection
Replication

• Quorum Intersection 
Read and write quorums used to perform
requests against a replica set, ensure
overlapping quorums

• Increased performance 
Increased performance when you do not perform
operations against every replica in the replica set

• Centralized Configuration Manager 
Establishes replicas, replica sets and quorums

6

Chain Replication
Contributions

• High-throughput  
Nodes process updates in serial, responsibility of
“primary” divided between the head and the tail
nodes

• High-availability 
Objects are tolerant to f failures with only f + 1
nodes

• Linearizability  
Total order over all read and write operations

7

Chain Replication Algorithm
• Head applies update and ships state change 

Head performs the write operation and send the result
down the chain where it is stored in replicas history

• Tail “acknowledges” the request 
Tail node “acknowledges” the user and services write
operations

• “Update Propagation Invariant” 
Reliable FIFO links for delivering messages, we can
say that servers in a chain will have potentially greater
histories than their successors

9

Failures?

11

Reconfigure Chains

Chain Replication

Failure Detection

• Centralized Configuration Manager 
Responsible for managing the “chain”
and performing failure detection

• “Fail-stop” failure model 
Processors fail by halting, do not
perform an erroneous state transition,
and can be reliably detected

12

Chain Replication
Reconfiguration

• Failure of the head node  
Remove H replace with successor to H

• Failure of the tail node 
Remove T replace with predecessor to T

13

Chain Replication
Reconfiguration

• Failure of a “middle” node 
Introduce acknowledgements, and track
“in-flight” updates between members of
a chain

• “Inprocess Request Invariant”  
History of a given node is the history of
its successor with “in-flight” updates

14

Object Storage on
CRAQ

15
USENIX 2009

CRAQ Motivation
• CRAQ 

“Chain Replication with Apportioned
Queries”

• Motivation 
Read operations can only be serviced
by the tail

16

CRAQ Contributions
• Read Operations 

Any node can service read operations for the
cluster, removing hotspots

• Partitioning  
During network partitions: “eventually consistent”
reads

• Multi-Datacenter Load Balancing  
Provide a mechanism for performing multi-
datacenter load balancing

17

CRAQ Consistency Models
• Strong Consistency 

Per-key linearizability

• Eventual Consistency 
For committed writes, monotonic read
consistency

• Restricted Eventual Consistency 
Restricted with maximal bounded inconsistency
based on versioning or physical time

18

CRAQ Algorithm
• Replicas store multiple versions for each object 

Each object copy contains version number and a dirty/clean
status

• Tail nodes mark objects “clean”  
Through acknowledgements, tail nodes mark an object “clean”
and remove other versions

• Read operations only serve “clean” values 
Any replica can accept write and “query” the tail for the identifier
of a “clean” version

• “Interesting Observation” 
No longer can we provide a total order over reads, only writes
and reads or writes and writes.

19

CRAQ Single-Key API
• Prepend or append to a given object 

Apply a transformation for a given object in
the data store

• Increment/decrement 
Increment or decrement a value for an
object in the data store

• Test-and-set 
Compare and swap a value in the data store

22

CRAQ Multi-Key API
• Single-Chain 

Single-chain atomicity for objects
located in the same chain

• Multi-Chain 
Multi-Chain update use a 2PC protocol
to ensure objects are committed across
chains

23

CRAQ Chain Placement
• Multiple Chain Placement Strategies

• “Implicit Datacenters and Global Chain Size” 
Specify number of DC’s and chain size during creation

• “Explicit Datacenters and Global Chain Size” 
Specify datacenters and chain size per datacenter

• “Explicit Datacenters Chain Size” 
Specify datacenters and chains size per datacenter

• “Lower Latency” 
Ability to read from local nodes reduces read latency under
geo-distribution

24

CRAQ TCP Multicast
• Can be used for disseminating updates 

Chain used only for signaling messages
about how to sequence update
messages

• Acknowledgements 
Can be multicast as well, as long as we
ensure a downward closed set on
message identifiers

25

FAWN:

A Fast Array of Wimpy
Nodes

26
SOSP 2009

FAWN-KV & FAWN-DS
• “Low-power, data-intensive computing” 

Massively powerful, low-power, mostly random-
access computing

• Solution: FAWN architecture 
Close the IO/CPU gap, optimize for low-power
processors

• Low-power embedded CPUs

• Satisfy same latency, same capacity, same
processing requirements

27

FAWN-KV
• Multi-node system named FAWN-KV 

Horizontal partitioning across FAWN-DS
instances: log-structured data stores

• Similar to Riak or Chord 
Consistent hashing across the cluster
with hash-space partitioning

28

FAWN-KV Optimizations
• In-memory lookup by key 

Store an in-memory location to a key in a log-
structured data structure

• Update operations 
Remove reference in the log; garbage collect
dangling references during compaction of the log

• Buffer and log cache 
Front-end nodes that proxy requests cache
requests and results to those requests

30

FAWN-KV Operations
• Join/Leave operations 

Two phase operations: pre-copy and log flush

• Pre-copy 
Ensures that joining nodes get copy of state

• Flush 
Operations ensure that operations
performed after copy snapshot are flushed
to the joining node

31

FAWN-KV Failure Model
• Fail-Stop 

Nodes are assumed to be fail stop, and
failures are detected using front-end to
back-end timeouts

• Naive failure model 
Assumed and acknowledged that
backends become fully partitioned:
assumed backends under partitioning can
not talk to each other

32

Chain Replication in
Theory and in Practice

33
Erlang Workshop 2010

Hibari Overview
• Physical and Logical Bricks 

Logical bricks exist on physical and make up striped chains
across physical bricks

• “Table” Abstraction 
Exposes itself as a SQL-like “table” with rows made up of keys
and values, one table per key

• Consistent Hashing 
Multiple chains; hashed to determine what chain to write values
to in the cluster

• “Smart Clients” 
Clients know where to route requests given metadata information

34

Hibari “Read Priming”
• “Priming” Processes 

In order to prevent blocking in logical
bricks, processes are spawned to pre-read
data from files and fill the OS page cache

• Double Reads 
Results in reading the same data twice, but
is faster than blocking the entire process to
perform a read operation

36

Hibari Rate Control
• Load Shedding 

Processes are tagged with a temporal
time and dropped if events sit too long
in the Erlang mailbox

• Routing Loops 
Monotonic hop counters are used to
ensure that routing loops do not occur
during key migration

37

Hibari Admin Server
• Single configuration agent 

Failure of this only prevents cluster
reconfiguration

• Replicated state 
State is stored in the logical bricks of the
cluster, but replicated using quorum-
style voting operations

38

Hibari “Fail Stop”
• “Send and Pray” 

Erlang message passing can drop
messages and only makes particular
guarantees about ordering, but not delivery

• Routing Loops 
Monotonic hop counters are used to ensure
that routing loops do not occur during key
migration

39

Hibari Partition Detector
• Monitor two physical networks 

Application which sends heartbeat
messages over two physical networks in
attempt increase failure detection
accuracy

• Still problematic 
Bugs in the Erlang runtime system, backed
up distribution ports, VM pauses, etc.

40

Hibari “Fail Stop” Violations

• Fast chain churn 
Incorrect detection of failures result in
frequent chain reconfiguration

• Zero length chains 
This can result in zero length chains if
churn occurs to frequently

41

HyperDex:

A Distributed, Searchable
Key-Value Store

42
SIGCOMM 2011

HyperDex Motivation
• Scalable systems with restricted APIs 

Only mechanism for querying is by
“primary key”

• Secondary attributes and search 
Can we provide efficient secondary
indexes and search functionality in
these systems?

43

HyperDex Contribution

• “Hyperspace Hashing” 
Uses all attributes of an object to map
into multi-dimensional Euclidean space

• “Value-Dependent Chaining” 
Fault-tolerant replication protocol
ensuring linearizability

44

HyperDex  
Consistency and Replication
• “Point leader” 

Determined through hashing, used to
sequence all updates for an object

• Attribute hashing  
Chain for the object is determined by
hashing secondary attributes for the
object

46

HyperDex  
Consistency and Replication
• Updates “relocate” values 

On relocation, chain contains old and
new locations, ensuring they preserve
the ordering

• Acknowledgements purge state  
Once a write is acknowledged back
through the chain, old state is purged
from old locations

48

HyperDex  
Consistency and Replication
• “Point leader” includes sequencing

information 
To resolve out of order delivery for different
length chains, sequencing information is
included in the messages

• Each “node” can be a chain itself 
Fault-tolerance achieved by having each
hyperspace mapping an instance of chain
replication

50

HyperDex  
Consistency and Replication
• Per-key Linearizability 

Linearizable for all operations, all clients
see the same order of events

• Search Consistency 
Search results are guaranteed to return
all committed objects at the time of
request

52

ChainReaction:

a Causal+ Consistent Datastore
based on Chain Replication

53
Eurosys 2013

ChainReaction:

Motivation and Contributions
• Per-Key Linearizability 

Too expensive in the geo-replicated scenario

• Causal+ Consistency  
Causal consistency with guaranteed convergence

• Low Metadata Overhead 
Ensure metadata does not cause explosive growth

• Geo-Replication 
Define an optimal strategy for geo-replication of
data

54

ChainReaction:

Conflict Resolution

• “Last Writer Wins” 
Convergent given a “synchronized”
physical clock, based

• Antidote, etc. 
Show that CRDTs can be used in
practice to make this more deterministic

55

ChainReaction:

Single Datacenter Operation
• Causal Reads from K Nodes 

Given UPI, assume reads from K-1 nodes
observe causal consistency for keys

• Explicit Causality (not Potential) 
Explicitly transmit list of operations that are
causally related to submitted update

• “Datacenter Stability” 
Update is stable within a particular datacenter
and no previous update will ever be observed

56

ChainReaction:

Multi Datacenter Operation

• Tracking with DC-based “version vector”  
“Remote proxy” used to establish a DC-based
version vector

• Explicit Causality (not Potential) 
Apply only updates where causal dependencies are
satisfied within the DC based on a local version
vector

• “Global Stability” 
Update is stable within all datacenters and no
previous update will ever be observed

57

Leveraging Sharding

in the Design of Scalable
Replication Protocols

58

SOSP 2011 Poster Session

SoCC 2013

Elastic Replication:

Motivation and Contributions
• Customizable Consistency  

Decrease latency for weaker guarantees
regarding consistency

• Robust Consistency 
Consistency does not require accurate failure
detection

• Smooth Reconfiguration 
Reconfiguration can occur without a central
configuration service

59

Fail-Stop: Challenges
• Primary-Backup 

False suspicion can lead to promotion of
a backup while concurrent writes on the
non-failed primary can be read

• Quorum Intersection 
Under reconfiguration, quorums may not
intersect for all clients

60

Elastic Replication:
Algorithm

• Replicas contain a history of commands 
Commands are sequenced by the head of the
chain

• Stable prefix 
As commands are acknowledged, each replica
reports the length of it’s stable prefix

• Greatest common prefix is “learned” 
Sequencer promotes the greatest common
prefix between replicas

61

Elastic Replication:
Algorithm

• Safety 
When nodes suspect a failure in the network,
nodes “wedge” where no operations can be app

• Only updates in the history may become stable

• Liveness 
Replicas and chains are reconfigured to ensure
progress

• History is inherited from replicas and
reconfigured to preserve UPI

62

Elastic Replication: Elastic
Bands

• Horizontal partitioning 
Requests are sharded across elastic bands for
scalability

• Shards configure neighboring shards 
Shards are responsible for sequencing
configurations of neighboring shards

• Requires external configuration 
Even with this, band configuration must be
managed by an external configuration service 

63

Elastic Replication:  
Read Operations

• Read requests must be sent down chain 
Read operations must be sequenced for
the system to properly determine if a
configuration has been wedged

• Reads can be serviced by other nodes 
Read out of the stabilized reads for a
weaker form of consistency.

65

In Summary
• “Fail-Stop” Assumption 

In practice, fail-stop can be a difficult model to
provide given the imperfections in VMs, networks,
and programming abstractions

• Consensus 
Consensus still required for configuration, as much
as we attempt to remove it from the system

• Chain Replication 
Strong technique for providing linearizability, which
requires only f + 1 nodes for failure tolerance

66

Thanks!

67

Christopher Meiklejohn
@cmeik

