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The Overview
1. Chain Replication for High Throughput and Availability 

2. Object Storage on CRAQ 

3. FAWN: A Fast Array of Wimpy Nodes 

4. Chain Replication in Theory and in Practice


5. HyperDex: A Distributed, Searchable Key-Value Store 

6. ChainReaction: a Causal+ Consistent Datastore based on Chain 
Replication 

7. Leveraging Sharding in the Design of Scalable Replication Protocols
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Chain Replication

for High Throughput and 
Availability
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Storage Service API

• V <- read(objId)  
Read the value for an object in the 
system 

• write(objId, V)  
Write an object to the system
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Primary-Backup 

Replication

• Primary-Backup  
Primary sequences all write operations 
and forwards them to a non-faulty 
replica 

• Centralized Configuration Manager 
Promotes a backup replica to a primary 
replica in the event of a failure 
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Quorum Intersection 
Replication

• Quorum Intersection 
Read and write quorums used to perform 
requests against a replica set, ensure 
overlapping quorums 

• Increased performance 
Increased performance when you do not perform 
operations against every replica in the replica set 

• Centralized Configuration Manager 
Establishes replicas, replica sets and quorums
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Chain Replication 
Contributions

• High-throughput  
Nodes process updates in serial, responsibility of 
“primary” divided between the head and the tail 
nodes 

• High-availability 
Objects are tolerant to f failures with only f + 1 
nodes 

• Linearizability  
Total order over all read and write operations
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Chain Replication Algorithm
• Head applies update and ships state change 

Head performs the write operation and send the result 
down the chain where it is stored in replicas history 

• Tail “acknowledges” the request 
Tail node “acknowledges” the user and services write 
operations 

• “Update Propagation Invariant” 
Reliable FIFO links for delivering messages, we can 
say that servers in a chain will have potentially greater 
histories than their successors
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Failures?

11

Reconfigure Chains



Chain Replication 

Failure Detection

• Centralized Configuration Manager 
Responsible for managing the “chain” 
and performing failure detection 

• “Fail-stop” failure model 
Processors fail by halting, do not 
perform an erroneous state transition, 
and can be reliably detected
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Chain Replication 
Reconfiguration

• Failure of the head node  
Remove H replace with successor to H 

• Failure of the tail node 
Remove T replace with predecessor to T
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Chain Replication 
Reconfiguration

• Failure of a “middle” node 
Introduce acknowledgements, and track 
“in-flight” updates between members of 
a chain 

• “Inprocess Request Invariant”  
History of a given node is the history of 
its successor with “in-flight” updates
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Object Storage on 
CRAQ
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CRAQ Motivation
• CRAQ 

“Chain Replication with Apportioned 
Queries” 

• Motivation 
Read operations can only be serviced 
by the tail 
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CRAQ Contributions
• Read Operations 

Any node can service read operations for the 
cluster, removing hotspots 

• Partitioning  
During network partitions: “eventually consistent” 
reads 

• Multi-Datacenter Load Balancing  
Provide a mechanism for performing multi-
datacenter load balancing
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CRAQ Consistency Models
• Strong Consistency 

Per-key linearizability 

• Eventual Consistency 
For committed writes, monotonic read 
consistency 

• Restricted Eventual Consistency 
Restricted with maximal bounded inconsistency 
based on versioning or physical time
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CRAQ Algorithm
• Replicas store multiple versions for each object 

Each object copy contains version number and a dirty/clean 
status 

• Tail nodes mark objects “clean”  
Through acknowledgements, tail nodes mark an object “clean” 
and remove other versions 

• Read operations only serve “clean” values 
Any replica can accept write and “query” the tail for the identifier 
of a “clean” version 

• “Interesting Observation” 
No longer can we provide a total order over reads, only writes 
and reads or writes and writes.
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CRAQ Single-Key API
• Prepend or append to a given object 

Apply a transformation for a given object in 
the data store 

• Increment/decrement 
Increment or decrement a value for an 
object in the data store 

• Test-and-set 
Compare and swap a value in the data store
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CRAQ Multi-Key API
• Single-Chain 

Single-chain atomicity for objects 
located in the same chain 

• Multi-Chain 
Multi-Chain update use a 2PC protocol 
to ensure objects are committed across 
chains
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CRAQ Chain Placement
• Multiple Chain Placement Strategies  

• “Implicit Datacenters and Global Chain Size” 
Specify number of DC’s and chain size during creation


• “Explicit Datacenters and Global Chain Size” 
Specify datacenters and chain size per datacenter


• “Explicit Datacenters Chain Size” 
Specify datacenters and chains size per datacenter


• “Lower Latency” 
Ability to read from local nodes reduces read latency under 
geo-distribution
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CRAQ TCP Multicast
• Can be used for disseminating updates 

Chain used only for signaling messages 
about how to sequence update 
messages 

• Acknowledgements 
Can be multicast as well, as long as we 
ensure a downward closed set on 
message identifiers
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FAWN: 

A Fast Array of Wimpy 
Nodes
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FAWN-KV & FAWN-DS
• “Low-power, data-intensive computing” 

Massively powerful, low-power, mostly random-
access computing  

• Solution: FAWN architecture 
Close the IO/CPU gap, optimize for low-power 
processors 

• Low-power embedded CPUs 

• Satisfy same latency, same capacity, same 
processing requirements
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FAWN-KV
• Multi-node system named FAWN-KV 

Horizontal partitioning across FAWN-DS 
instances: log-structured data stores  

• Similar to Riak or Chord 
Consistent hashing across the cluster 
with hash-space partitioning
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FAWN-KV Optimizations
• In-memory lookup by key 

Store an in-memory location to a key in a log-
structured data structure 

• Update operations 
Remove reference in the log; garbage collect 
dangling references during compaction of the log 

• Buffer and log cache 
Front-end nodes that proxy requests cache 
requests and results to those requests
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FAWN-KV Operations
• Join/Leave operations 

Two phase operations: pre-copy and log flush 

• Pre-copy 
Ensures that joining nodes get copy of state 

• Flush 
Operations ensure that operations 
performed after copy snapshot are flushed 
to the joining node

31



FAWN-KV Failure Model
• Fail-Stop 

Nodes are assumed to be fail stop, and 
failures are detected using front-end to 
back-end timeouts


• Naive failure model 
Assumed and acknowledged that 
backends become fully partitioned: 
assumed backends under partitioning can 
not talk to each other
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Chain Replication in 
Theory and in Practice
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Hibari Overview
• Physical and Logical Bricks 

Logical bricks exist on physical and make up striped chains 
across physical bricks  

• “Table” Abstraction 
Exposes itself as a SQL-like “table” with rows made up of keys 
and values, one table per key 

• Consistent Hashing 
Multiple chains; hashed to determine what chain to write values 
to in the cluster 

• “Smart Clients” 
Clients know where to route requests given metadata information
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Hibari “Read Priming”
• “Priming” Processes 

In order to prevent blocking in logical 
bricks, processes are spawned to pre-read 
data from files and fill the OS page cache 

• Double Reads 
Results in reading the same data twice, but 
is faster than blocking the entire process to 
perform a read operation
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Hibari Rate Control
• Load Shedding 

Processes are tagged with a temporal 
time and dropped if events sit too long 
in the Erlang mailbox 

• Routing Loops 
Monotonic hop counters are used to 
ensure that routing loops do not occur 
during key migration
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Hibari Admin Server
• Single configuration agent 

Failure of this only prevents cluster 
reconfiguration 

• Replicated state 
State is stored in the logical bricks of the 
cluster, but replicated using quorum-
style voting operations
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Hibari “Fail Stop”
• “Send and Pray” 

Erlang message passing can drop 
messages and only makes particular 
guarantees about ordering, but not delivery 

• Routing Loops 
Monotonic hop counters are used to ensure 
that routing loops do not occur during key 
migration
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Hibari Partition Detector
• Monitor two physical networks 

Application which sends heartbeat 
messages over two physical networks in 
attempt increase failure detection 
accuracy 

• Still problematic 
Bugs in the Erlang runtime system, backed 
up distribution ports, VM pauses, etc.
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Hibari “Fail Stop” Violations

• Fast chain churn 
Incorrect detection of failures result in 
frequent chain reconfiguration 

• Zero length chains 
This can result in zero length chains if 
churn occurs to frequently
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HyperDex: 

A Distributed, Searchable 
Key-Value Store
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HyperDex Motivation
• Scalable systems with restricted APIs 

Only mechanism for querying is by 
“primary key” 

• Secondary attributes and search 
Can we provide efficient secondary 
indexes and search functionality in 
these systems?
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HyperDex Contribution

• “Hyperspace Hashing” 
Uses all attributes of an object to map 
into multi-dimensional Euclidean space 

• “Value-Dependent Chaining” 
Fault-tolerant replication protocol 
ensuring linearizability
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HyperDex  
Consistency and Replication
• “Point leader” 

Determined through hashing, used to 
sequence all updates for an object 

• Attribute hashing  
Chain for the object is determined by 
hashing secondary attributes for the 
object
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HyperDex  
Consistency and Replication
• Updates “relocate” values 

On relocation, chain contains old and 
new locations, ensuring they preserve 
the ordering 

• Acknowledgements purge state  
Once a write is acknowledged back 
through the chain, old state is purged 
from old locations

48





HyperDex  
Consistency and Replication
• “Point leader” includes sequencing 

information 
To resolve out of order delivery for different 
length chains, sequencing information is 
included in the messages 

• Each “node” can be a chain itself 
Fault-tolerance achieved by having each 
hyperspace mapping an instance of chain 
replication
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HyperDex  
Consistency and Replication
• Per-key Linearizability 

Linearizable for all operations, all clients 
see the same order of events 

• Search Consistency 
Search results are guaranteed to return 
all committed objects at the time of 
request
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ChainReaction:

a Causal+ Consistent Datastore 
based on Chain Replication
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ChainReaction: 

Motivation and Contributions
• Per-Key Linearizability 

Too expensive in the geo-replicated scenario 

• Causal+ Consistency  
Causal consistency with guaranteed convergence 

• Low Metadata Overhead 
Ensure metadata does not cause explosive growth 

• Geo-Replication 
Define an optimal strategy for geo-replication of 
data

54



ChainReaction: 

Conflict Resolution

• “Last Writer Wins” 
Convergent given a “synchronized” 
physical clock, based 

• Antidote, etc. 
Show that CRDTs can be used in 
practice to make this more deterministic
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ChainReaction: 

Single Datacenter Operation
• Causal Reads from K Nodes 

Given UPI, assume reads from K-1 nodes 
observe causal consistency for keys 

• Explicit Causality (not Potential) 
Explicitly transmit list of operations that are 
causally related to submitted update  

• “Datacenter Stability” 
Update is stable within a particular datacenter 
and no previous update will ever be observed
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ChainReaction: 

Multi Datacenter Operation

• Tracking with DC-based “version vector”  
“Remote proxy” used to establish a DC-based 
version vector 

• Explicit Causality (not Potential) 
Apply only updates where causal dependencies are 
satisfied within the DC based on a local version 
vector  

• “Global Stability” 
Update is stable within all datacenters and no 
previous update will ever be observed
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Leveraging Sharding

in the Design of Scalable 
Replication Protocols
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Elastic Replication: 

Motivation and Contributions
• Customizable Consistency  

Decrease latency for weaker guarantees 
regarding consistency 

• Robust Consistency 
Consistency does not require accurate failure 
detection 

• Smooth Reconfiguration 
Reconfiguration can occur without a central 
configuration service
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Fail-Stop: Challenges
• Primary-Backup 

False suspicion can lead to promotion of 
a backup while concurrent writes on the 
non-failed primary can be read


• Quorum Intersection 
Under reconfiguration, quorums may not 
intersect for all clients
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Elastic Replication: 
Algorithm

• Replicas contain a history of commands 
Commands are sequenced by the head of the 
chain


• Stable prefix 
As commands are acknowledged, each replica 
reports the length of it’s stable prefix 

• Greatest common prefix is “learned” 
Sequencer promotes the greatest common 
prefix between replicas
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Elastic Replication: 
Algorithm

• Safety 
When nodes suspect a failure in the network, 
nodes “wedge” where no operations can be app 

• Only updates in the history may become stable


• Liveness 
Replicas and chains are reconfigured to ensure 
progress 

• History is inherited from replicas and 
reconfigured to preserve UPI

62



Elastic Replication: Elastic 
Bands

• Horizontal partitioning 
Requests are sharded across elastic bands for 
scalability


• Shards configure neighboring shards 
Shards are responsible for sequencing 
configurations of neighboring shards 

• Requires external configuration 
Even with this, band configuration must be 
managed by an external configuration service 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Elastic Replication:  
Read Operations

• Read requests must be sent down chain 
Read operations must be sequenced for 
the system to properly determine if a 
configuration has been wedged


• Reads can be serviced by other nodes 
Read out of the stabilized reads for a 
weaker form of consistency.
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In Summary
• “Fail-Stop” Assumption 

In practice, fail-stop can be a difficult model to 
provide given the imperfections in VMs, networks, 
and programming abstractions 

• Consensus 
Consensus still required for configuration, as much 
as we attempt to remove it from the system 

• Chain Replication 
Strong technique for providing linearizability, which 
requires only f + 1 nodes for failure tolerance
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Thanks!
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