
Crossroads of asynchrony
and graceful degradation

Nitesh Kant,!
Software Engineer, !

Netflix Edge Engineering.!
!

@NiteshKant

Nitesh Kant

Who Am I?

❖ Engineer, Edge Engineering, Netflix.!
❖ Core contributor, RxNetty*!
❖ Contributor, Zuul**

* https://github.com/ReactiveX/RxNetty

** https://github.com/Netflix/zuul

@NiteshKant

https://github.com/ReactiveX/RxNetty
https://github.com/Netflix/zuul

How do systems fail?

A simple example. Showing a movie on Netflix.

Video Metadata

Video Bookmark

Video Rating

!
public Movie getMovie(String movieId) {!
 Metadata metadata = getMovieMetadata(movieId);!
 Bookmark bookmark = getBookmark(movieId, userId);!
 Rating rating = getRatings(movieId);!
 return new Movie(metadata, bookmark, rating);!
}!

Disclaimer: This is an example and not an exact representation of the processing

Synchronicity

!
public Movie getMovie(String movieId) {!
 Metadata metadata = getMovieMetadata(movieId);!
 Bookmark bookmark = getBookmark(movieId, userId);!
 Rating rating = getRatings(movieId);!
 return new Movie(metadata, bookmark, rating);!
}!

Disclaimer: This is an example and not an exact representation of the processing

The bigger picture Price of being synchronous?

!

public Movie getMovie(String movieId) {!
 Metadata metadata = getMovieMetadata(movieId);!
 Bookmark bookmark = getBookmark(movieId, userId);!
 Rating rating = getRatings(movieId);!
 return new Movie(metadata, bookmark, rating);!
}!

Disclaimer: This is an example and not an exact representation of the processing

In a microservices world

Edge Service

Ratings ServiceVideo Metadata Service

Bookmarks Service

Disclaimer: This is an example and not an exact representation of the processing

In a microservices world

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getMovieMetadata(movieId)

Disclaimer: This is an example and not an exact representation of the processing

In a microservices world

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getMovieMetadata(movieId)

getBookmark(movieId, userId)

Disclaimer: This is an example and not an exact representation of the processing

In a microservices world

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getMovieMetadata(movieId)

getBookmark(movieId, userId)

getRatings(movieId)

Disclaimer: This is an example and not an exact representation of the processing

Busy thread time
 =

Sum of the time taken to
make all 3 service calls

How do systems fail?

1. Latency Latency is your worst enemy in a
synchronous world.

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getRatings(movieId)

Disclaimer: This is an example and not an exact representation of the processing

Disclaimer: This is an example and not an exact representation of the processing

Ratings Service

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getRatings(movieId)

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

getRatings(movieId)

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

getRatings(movieId)

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Disclaimer: This is an example and not an exact representation of the processing

Client Threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getRatings(movieId)

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Disclaimer: This is an example and not an exact representation of the processing

Client Threadpool
Th

re
ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getRatings(movieId)

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Disclaimer: This is an example and not an exact representation of the processing

Client Threadpool
Th

re
ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getRatings(movieId)

Managing client thread pools

Disclaimer: This is an example and not an exact representation of the processing

Client Threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Managing client thread pools

Managing client thread pools

Managing client thread pools

Managing client thread pools

Clients have become our babies

Clients have become our babies

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getMovieMetadata(movieId)

Disclaimer: This is an example and not an exact representation of the processing

Client Threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Client Threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Client Threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getBookmark(movieId, userId)

getRatings(movieId)

Clients have become our babies

Untuned/Wrongly tuned
clients cause many outages.

Have we exchanged a bigger problem with a
smaller one?

How do systems fail?

2. Overload Abusive clients, recovery spikes, special
events ….

We did a load test… https://github.com/Netflix-Skunkworks/
WSPerfLab

Hello Netflix!

https://github.com/Netflix-Skunkworks/WSPerfLab

Detailed analysis available online:
https://github.com/Netflix-Skunkworks/WSPerfLab/blob/master/test-results/RxNetty_vs_Tomcat_April2015.pdf

https://github.com/Netflix-Skunkworks/WSPerfLab/blob/master/test-results/RxNetty_vs_Tomcat_April2015.pdf

! Graceful

This isn’t graceful degradation!

This happens at high CPU usage.

This happens at high CPU usage.

So, don’t let the system reach that limit…

This happens at high CPU usage.

So, don’t let the system reach that limit…

a.k.a Throttling.

Fairness?

One abusive request type can penalize other request
paths.

How do systems fail?

3. Thundering herds The failure after recovery….

Retries

Edge Service

Video Metadata Service

Disclaimer: This is an example and not an exact representation of the processing

Retries

Edge Service

Disclaimer: This is an example and not an exact representation of the processing
Video Metadata Service Cluster

Retries

Edge Service

Disclaimer: This is an example and not an exact representation of the processing
Video Metadata Service Cluster

Retries

Edge Service

Disclaimer: This is an example and not an exact representation of the processing
Video Metadata Service Cluster

Retries are useful in steady state….

…but…

Retries

Edge Service

Disclaimer: This is an example and not an exact representation of the processing
Video Metadata Service Cluster

Our systems are missing empathy.

Because they lack knowledge about the peers.

Knowledge comes from various signals..

Ability to adapt to those signals is important.

This can not adapt…

!
public Movie getMovie(String movieId) {!
 Metadata metadata = getMovieMetadata(movieId);!
 Bookmark bookmark = getBookmark(movieId, userId);!
 Rating rating = getRatings(movieId);!
 return new Movie(metadata, bookmark, rating);!
}!

Disclaimer: This is an example and not an exact representation of the processing

Asynchrony It is the key to success.

What should be async?

What should be async?

Edge Service

Video Metadata Service

What should be async?
Edge Service

Video Metadata Service

getMovieMetadata(movieId)
getBookmark(movieId, userId)

getRatings(movieId)

Application logic

What should be async?
Edge Service

Video Metadata Service

getMovieMetadata(movieId)
getBookmark(movieId, userId)

getRatings(movieId)

I/O

I/O

I/O

Application logic

I/O

What should be async?
Edge Service

Video Metadata Service

getMovieMetadata(movieId)
getBookmark(movieId, userId)

getRatings(movieId)

I/O

I/O

I/O

Application logic

I/O

Network protocol

Key aspects of being async.

Key aspects of being async.

1. Lifecycle control

Lifecycle control

Start processing Stop processing

Key aspects of being async.

2. Flow control

Flow control

When How much

Key aspects of being async.

3. Function composition

Function composition

!
public Movie getMovie(String movieId) {!
 Metadata metadata = getMovieMetadata(movieId);!
 Bookmark bookmark = getBookmark(movieId, userId);!
 Rating rating = getRatings(movieId);!
 return new Movie(metadata, bookmark, rating);!
}!

Function composition

Composing the processing !
of a method into a single control point.

public Observable<Movie> getMovie(String movieId) {!
 return Observable.zip(getMovieMetadata(movieId),!
 getBookmark(movieId, userId),!
 getRatings(movieId),!
 (meta,bmark,rating)->new Movie(meta,bmark,rating));!
}!

Composing the processing !
of a method into a single control point.

Flow & Lifecycle Control

with

What should be async?
Edge Service

Video Metadata Service

getMovieMetadata(movieId)
getBookmark(movieId, userId)

getRatings(movieId)

I/O

I/O

I/O

Application logic

I/O

Network protocol

I/O

Edge Service

Server threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Client Threadpool

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

getRatings(movieId)

I/O

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

Eventloops = f (Number of cores)

I/O

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n Connections multiplexed !

on a !
single eventloop.

I/O

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

I/O

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Clients share the eventloops!
with!

the server.

I/O

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

All clients share !
the!

 same eventloop

Composing the processing !
of a service into a single control point.

Flow & Lifecycle Control

with

What should be async?
Edge Service

Video Metadata Service

getMovieMetadata(movieId)
getBookmark(movieId, userId)

getRatings(movieId)

I/O

I/O

I/O

Application logic

I/O

Network protocol

Network Protocol

HTTP/1.1?

HTTP/1.1

GET /movie?id=1 HTTP/1.1

HTTP/1.1

GET /movie?id=2 HTTP/1.1

GET /movie?id=1 HTTP/1.1

HTTP/1.1

GET /movie?id=3 HTTP/1.1

GET /movie?id=2 HTTP/1.1

GET /movie?id=1 HTTP/1.1

HTTP/1.1

GET /movie?id=3 HTTP/1.1

GET /movie?id=2 HTTP/1.1

GET /movie?id=1 HTTP/1.1

HTTP/1.1 200 OK!
ID: 1!
…

HTTP/1.1

GET /movie?id=3 HTTP/1.1

GET /movie?id=2 HTTP/1.1

GET /movie?id=1 HTTP/1.1

HTTP/1.1 200 OK!
ID: 1!
… HTTP/1.1 200 OK!

ID: 2!
…

HTTP/1.1

GET /movie?id=3 HTTP/1.1

GET /movie?id=2 HTTP/1.1

GET /movie?id=1 HTTP/1.1

HTTP/1.1 200 OK!
ID: 1!
… HTTP/1.1 200 OK!

ID: 2!
…

HTTP/1.1 200 OK!
ID: 3!
…

HTTP/1.1

GET /movie?id=3

GET /movie?id=2

GET /movie?id=1

HTTP/1.1 200
ID: 1!
… HTTP/1.1 200

ID: 2!
…

HTTP/1.1 200
ID: 3!
…

Head Of Line Blocking => Synchronous

Network Protocol

HTTP/1.1?

Network Protocol

We need a multiplexed bi-directional
protocol

Multiplexed

GET /movie?id=1 HTTP/1.1

GET /movie?id=2 HTTP/1.1

GET /movie?id=3 HTTP/1.1

Bi-directional

GET /movie?id=1 HTTP/1.1

GET /movie?id=2 HTTP/1.1

GET /movie?id=3 HTTP/1.1

CANCEL

Composing the processing !
of the entire application into a single control point.

Flow & Lifecycle Control

with

Edge Service

Video Metadata Service

Rating service C* store

C* store

/movie?id=123

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Video Metadata Service

Rating service C* store

C* store

/movie?id=123

Disclaimer: This is an example and not an exact representation of the processing

Observable<Movie>

Observable<Movie>

Composing the processing !
of the entire application into a single control point.

Revisiting the failure modes

Latency

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Latency

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

nImpact is localized to the
connection.

Latency

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Impact is localized to the
connection.

An outstanding request has
little cost.

An outstanding request has little cost.

GET /movie?id=1 HTTP/1.1

HTTP/1.1 200 OK!
…

} Any stored state between!
 request - response!

is costly.

Outstanding requests have low cost

so

Latency is a lesser evil in asynchronous systems.

Overload & Thundering Herds

Edge Service

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Disclaimer: This is an example and not an exact representation of the processing

Reduce work done !
when overloaded

Overload & Thundering Herds

Edge Service

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Disclaimer: This is an example and not an exact representation of the processing

Reduce work done !
when overloaded

Stop accepting!
 new requests.

Stop accepting new requests

Non-blocking I/O gives better control

Stop accepting new requests

But … we are still “throttling”

Stop accepting new requests

Are we being empathetic?

Request-leasing

http://reactivesocket.io/

Request-leasing

Peer 1Peer 2

Network connection

Request-leasing

Peer 1Peer 2

“Lease” 5 requests for 1 minute.

Network connection

Request-leasing

Peer 1Peer 2

“Lease” 5 requests for 1 minute.

GET /movie?id=1 HTTP/1.1

GET /movie?id=2 HTTP/1.1

Network connection

Server

Client 1 Client 2 Client 8

ServerCapacity: 100 RPM

Client 1 Client 2 Client 8

“Lease” 10 requests for 1 minute.

ServerCapacity: 100 RPM

Client 1 Client 2 Client 8

“Lease” 10 requests for 1 minute.

“Lease” 10 requests for 1 minute.

“Lease” 10 requests for 1 minute.

ServerCapacity: 100 RPM

Client 1 Client 2 Client 8

“Lease” 10 requests for 1 minute.

“Lease” 10 requests for 1 minute.

“Lease” 10 requests for 1 minute.

Reserve Capacity: !
20 RPM

Time bound lease.

“Lease” 10 requests for 1 minute.

Time bound lease.

No extra work for cancelling leases.

“Lease” 10 requests for 1 minute.

Time bound lease.

No extra work for cancelling leases.

Receiver controls the flow of requests

“Lease” 10 requests for 1 minute.

When things go south

ServerCapacity: 20 RPM

Client 1 Client 2 Client 8

“Lease” 5 requests for 1 minute.

“Lease” 2 requests for 1 minute.
X No more “Lease”

ServerCapacity: 20 RPM

Client 1 Client 2 Client 8

“Lease” 5 requests for 1 minute.

“Lease” 2 requests for 1 minute.
X No more “Lease”

Prioritization

Managing client configs?

Threadpools?

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

I/O!
is!

 non-blocking.

Threadpools?

Edge Service

Disclaimer: This is an example and not an exact representation of the processing

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Application code !
is!

 non-blocking.

Threadpools?

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

No blocking/Waiting => Only CPU work

Threadpools?

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Eventloop (Inbound)

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

C
on

ne
ct

io
n

getMovieMetadata(movieId)

Eventloop (Outbound)

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

Co
nn

ec
tio

n

No blocking/Waiting => Only CPU work

So,

Eventloops = # of cores

Tuning parameters?

Tuning parameters?
X

Tuning parameters?
X
X

Tuning parameters?
X
X?
?

Case for timeouts?

Case for timeouts?

Read Timeouts Thread Timeouts

✤ Useful in unblocking threads  
on socket reads.

✤ Business level SLA.

✤ Unblock the calling thread.

Case for timeouts?

Read Timeouts Thread Timeouts

✤ Useful in unblocking threads  
on socket reads.

✤ Business level SLA.

✤ Unblock the calling thread.X X

As there are no blocking calls.X

Case for timeouts?

Read Timeouts Thread Timeouts

✤ Useful in unblocking threads  
on socket reads.

✤ Business level SLA.

✤ Unblock the calling thread.

Business level SLA

Edge Service

Video Metadata Service

Disclaimer: This is an example and not an exact representation of the processing

Business level SLA

Edge Service

Video Metadata Service

Disclaimer: This is an example and not an exact representation of the processing

Rating service C* store

C* store

Business level SLA

Edge Service

Video Metadata Service

Disclaimer: This is an example and not an exact representation of the processing

Rating service C* store

C* store

Business level SLA

Edge Service

Video Metadata Service

Disclaimer: This is an example and not an exact representation of the processing

Rating service C* store

C* store

Thread timeouts are pretty invasive at every level

Business level SLA

Edge Service

Video Metadata Service

Disclaimer: This is an example and not an exact representation of the processing

Rating service C* store

C* store

Thread timeouts are pretty invasive at every level

Do we need them at every step?

Edge Service

Video Metadata Service

Rating service C* store

C* store

/movie?id=123

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Video Metadata Service

Rating service C* store

C* store

/movie?id=123

Business timeouts are !
for !

a client request.

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Video Metadata Service

Rating service C* store

C* store

/movie?id=123

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Video Metadata Service

Rating service C* store

C* store

/movie?id=123X

Disclaimer: This is an example and not an exact representation of the processing

Edge Service

Video Metadata Service

Rating service C* store

C* store

/movie?id=123X

X

X
X

X

Disclaimer: This is an example and not an exact representation of the processing

Tuning parameters?

X
XX
X

Less tuning

Edge Service

Video Metadata Service

Rating service C* store

C* store
Disclaimer: This is an example and not an exact representation of the processing

Request Leases
Cancellations

Observable<Movie>

Edge Service

Video Metadata Service

Rating service C* store

C* store
Disclaimer: This is an example and not an exact representation of the processing

Request Leases
Cancellations

Observable<Movie>

!
public Movie getMovie(String movieId) {!
 Metadata metadata = getMovieMetadata(movieId);!
 Bookmark bookmark = getBookmark(movieId, userId);!
 Rating rating = getRatings(movieId);!
 return new Movie(metadata, bookmark, rating);!
}!

public Observable<Movie> getMovie(String movieId) {!
 return Observable.zip(getMovieMetadata(movieId),!
 getBookmark(movieId, userId),!
 getRatings(movieId),!
 (meta,bmark,rating)->new
Movie(meta,bmark,rating));!
}!

Resources

Asynchronous Function composition :

I/O :

Network Protocol :

https://github.com/ReactiveX/RxJava

https://github.com/ReactiveX/RxNetty

http://reactivesocket.io/

Nitesh Kant, Engineer, Netflix Edge Gateway @NiteshKant

