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TWITTER IS REAL TIME

G

Emerging break out 
trends in Twitter (in the 

form #hashtags)

Ü

Real time sports 
conversations related 

with a topic (recent goal 
or touchdown)

"

Real time product 
recommendations based 

on your behavior & 
profile

real time searchreal time trends real time conversations real time recommendations

Real time search of 
tweets

s

ANALYZING BILLIONS OF EVENTS IN REAL TIME IS A CHALLENGE!



GUARANTEED  
MESSAGE 

PROCESSING

HORIZONTAL 
SCALABILITY

ROBUST 
FAULT 

TOLERANCE

CONCISE 
CODE- FOCUS 

ON LOGIC
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TWITTER STORM

Streaming platform for analyzing realtime data as they arrive,  
so you can react to data as it happens.



STORM TERMINOLOGY
TOPOLOGY 

Directed acyclic graph 

Vertices=computation, and edges=streams of data tuples

SPOUTS 

Sources of data tuples for the topology 

Examples - Event Bus/Kafka/Kestrel/MySQL/Postgres

BOLTS 

Process incoming tuples and emit outgoing tuples 

Examples - filtering/aggregation/join/arbitrary function

,
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STORM TOPOLOGY
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SPOUT 1

SPOUT 2

BOLT 1

BOLT 2

BOLT 3

BOLT 4

BOLT 5



WORD COUNT TOPOLOGY

% %
TWEET SPOUT PARSE TWEET BOLT WORD COUNT BOLT

Live stream of Tweets

LOGICAL PLAN



WORD COUNT TOPOLOGY

% %
TWEET SPOUT 

TASKS
PARSE TWEET BOLT 

TASKS
WORD COUNT BOLT 

TASKS

%%%% %%%%

When a parse tweet bolt task emits a tuple 
which word count bolt task should it send to?



STREAM GROUPINGS

Random distribution 
of tuples

Group tuples by a 
field or multiple 

fields

Replicates tuples to 
all tasks

SHUFFLE GROUPING FIELDS GROUPING ALL GROUPING

Sends the entire 
stream to one task

GLOBAL GROUPING

/ - ,.



WORD COUNT TOPOLOGY

% %
TWEET SPOUT 

TASKS
PARSE TWEET BOLT 

TASKS
WORD COUNT BOLT 

TASKS

%%%% %%%%

SHUFFLE GROUPING FIELDS GROUPING
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STORM ARCHITECTURE

Nimbus

ZK 
CLUSTER

SUPERVISOR

W1 W2 W3 W4

SUPERVISOR

W1 W2 W3 W4

TOPOLOGY 
SUBMISSION ASSIGNMENT 

MAPS

SLAVE NODE SLAVE NODE

MASTER NODE

Multiple Functionality 
Scheduling/Monitoring Single point of failure

Storage Contention

No resource reservation  
and isolation



STORM WORKER

TASK4

TASK5

EXECUTOR2

TASK2

TASK3

TASK1

EXECUTOR1
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M
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Complex hierarchy

Difficult to tune

Hard to debug



DATA FLOW IN STORM WORKERS

In QueueIn QueueIn QueueIn QueueIn Queue

TCP Receive Buffer

In QueueIn QueueIn QueueIn QueueOut Queue

Outgoing 
Message Buffer

User Logic 
Thread

User Logic 
Thread

User Logic 
Thread

User Logic 
Thread

User Logic 
Thread

User Logic 
Thread

User Logic 
Thread

User Logic 
Thread

User Logic 
ThreadSend Thread

Global Send 
Thread

TCP Send Buffer

Global Receive 
Thread

Kernel

Queue Contention

Multiple Languages



OVERLOADED ZOOKEEPER

zk

S1

S2

S3

Scaled up

W

W

W
STORM

zk

Handled unto to 1200 workers per cluster



67%

33%

OVERLOADED ZOOKEEPER

KAFKA SPOUT 

Offset/partition is written every 2 secs  

STORM RUNTIME 

Workers write heart beats every 3 secs

Analyzing zookeeper traffic



OVERLOADED ZOOKEEPER

zk

S1

S2

S3

Heart beat daemons

W

W

W
STORM

zk

5000 workers per cluster

HHH

KVKVKV



shared pool

storm  
cluster

STORM - DEPLOYMENT



shared pool

storm  
cluster

joe’s topology

isolated pools

STORM - DEPLOYMENT



STORM - DEPLOYMENT

shared pool

storm  
cluster

joe’s topology

isolated pools

jane’s topology



STORM - DEPLOYMENT

shared pool

storm  
cluster

joe’s topology

isolated pools

jane’s topology

dave’s topology
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STORM ISSUES

LACK OF BACK PRESSURE 

Drops tuples unpredictably 

EFFICIENCY 

Serialization program consumes 75 cores at 30% CPU 

Topology consumes 600 cores at 20-30% CPU

NO BATCHING 

Tuple oriented system - implicit batching by 0MQ !



EVOLUTION OR REVOLUTION?

FUNDAMENTAL ISSUES- REQUIRE EXTENSIVE REWRITING 

Several queues for moving data 

Inflexible and requires longer development cycle

USE EXISTING OPEN SOURCE SOLUTIONS 

Issues working at scale/lacks required performance 

Incompatible API and long migration process

,

fix storm or develop a new system?
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HERON DESIGN GOALS
FULLY API COMPATIBLE WITH STORM 

Directed acyclic graph 

Topologies, spouts and bolts

USE OF MAIN STREAM LANGUAGES 

C++/JAVA/Python

"

d

#
TASK ISOLATION 

Ease of debug ability/resource isolation/profiling



HERON ARCHITECTURE

Topology 1

TOPOLOGY 
SUBMISSION

Scheduler

Topology 2

Topology 3

Topology N



TOPOLOGY ARCHITECTURE

Topology 
Master

ZK 
CLUSTER

Stream  
Manager

I1 I2 I3 I4

Stream  
Manager

I1 I2 I3 I4

Logical Plan,  
Physical Plan and  
Execution State

Sync Physical Plan

CONTAINER CONTAINER

Metrics  
Manager

Metrics  
Manager



TOPOLOGY MASTER

ASSIGNS ROLE MONITORING METRICS

b \ Ñ

Solely responsible for the entire topology



TOPOLOGY MASTER

Topology 
Master

ZK 
CLUSTER

Logical Plan,  
Physical Plan and  
Execution State

PREVENT MULTIPLE TM BECOMING MASTERS!

! ALLOWS OTHER PROCESS TO DISCOVER TM



STREAM MANAGER

ROUTES TUPLES BACK PRESSURE ACK MGMT

Ñ

Routing Engine

/ ,



STREAM MANAGER

% %

S1 B2 B3

%

B4



S1 B2

B3

STREAM MANAGER

Stream  
Manager

Stream  
Manager

Stream  
Manager

Stream  
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

O(n2) O(k2)

B4



S1 B2

B3

STREAM MANAGER

Stream  
Manager

Stream  
Manager

Stream  
Manager

Stream  
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

tcp back pressure

B4

SLOWS UPSTREAM AND DOWNSTREAM INSTANCES



S1 B2

B3

STREAM MANAGER

Stream  
Manager

Stream  
Manager

Stream  
Manager

Stream  
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

spout back pressure

B4

S1 S1

S1S1



S1 B2

B3

STREAM MANAGER

Stream  
Manager

Stream  
Manager

Stream  
Manager

Stream  
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

stage by stage back pressure

B4

S1 S1

S1S1 B2 B2

B2B2



STREAM MANAGER

PREDICTABILITY 

Tuple failures are more deterministic 

SELF ADJUSTS 

Topology goes as fast as the slowest component  

!

!

back pressure advantages



HERON INSTANCE

RUNS ONE TASK EXPOSES API COLLECTS 
METRICS

|

Does the real work!
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HERON INSTANCE

Stream  
Manager

Metrics  
Manager

Gateway 
Thread

Task Execution 
Thread

data-in queue

data-out queue

metrics-out queue
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HERON DEPLOYMENT
Topology 1

Topology 2

Topology 3

Topology N

Heron  
Tracker

Heron  
VIZ

Heron  
Web

ZK 
CLUSTER

Aurora Services

Aurora 
Scheduler

Observability



HERON SAMPLE TOPOLOGIES



SAMPLE TOPOLOGY DASHBOARD



Large amount of data 
produced every day

Large cluster Several topologies 
deployed

Several billion 
messages every day

HERON @TWITTER

1 stage 10 stages

3x reduction in cores and memory

STORM is decommissioned
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HERON PERFORMANCE
Settings

COMPONENTS EXPT #1 EXPT #2 EXPT #3 EXPT #4

Spout 25 100 200 300

Bolt 25 100 200 300

# Heron containers 25 100 200 300

# Storm workers 25 100 200 300



HERON PERFORMANCE
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Spout Parallelism
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Storm Heron

Word count topology - Acknowledgements enabled
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Spout Parallelism
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Storm Heron

10-14x

Throughput Latency

5-15x



HERON PERFORMANCE
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Spout Parallelism
25 100 200 500

Storm Heron

Word count topology - CPU usage

2-3x



HERON PERFORMANCE
Throughput and CPU usage with no acknowledgements - Word count topology
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HERON EXPERIMENT
RTAC topology

% %
CLIENT EVENT 

SPOUT
DISTRIBUTOR 

BOLT
USER COUNT  

BOLT

%
AGGREGATOR 

BOLT

SHUFFLE 
GROUPING

FIELDS 
GROUPING

FIELDS 
GROUPING



HERON PERFORMANCE

Acknowledgements enabled
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Storm Heron

CPU usage - RTAC Topology
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HERON PERFORMANCE
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Storm Heron

Latency with acknowledgements enabled - RTAC Topology
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ABSTRACT 
Storm has long served as the main platform for real-time analytics 
at Twitter. However, as the scale of data being processed in real-
time at Twitter has increased, along with an increase in the 
diversity and the number of use cases, many limitations of Storm 
have become apparent. We need a system that scales better, has 
better debug-ability, has better performance, and is easier to 
manage – all while working in a shared cluster infrastructure. We 
considered various alternatives to meet these needs, and in the end 
concluded that we needed to build a new real-time stream data 
processing system. This paper presents the design and 
implementation of this new system, called Heron. Heron is now 
the de facto stream data processing engine inside Twitter, and in 
this paper we also share our experiences from running Heron in 
production. In this paper, we also provide empirical evidence 
demonstrating the efficiency and scalability of Heron. 
ACM Classification 
H.2.4 [Information Systems]: Database Management—systems 

Keywords 
Stream data processing systems; real-time data processing. 
 

1. INTRODUCTION 
Twitter, like many other organizations, relies heavily on real-time 
streaming. For example, real-time streaming is used to compute 
the real-time active user counts (RTAC), and to measure the real-
time engagement of users to tweets and advertisements. For many 
years, Storm [16, 20] was used as the real-time streaming engine 
inside Twitter. But, using Storm at our current scale was 
becoming increasingly challenging due to issues related to 
scalability, debug-ability, manageability, and efficient sharing of 
cluster resources with other data services.  

A big challenge when working with Storm in production is the issue 
of debug-ability. When a topology misbehaves – which could be for 
a variety of reasons including load changes, misbehaving user code, 
or failing hardware – it is important to quickly determine the root-
causes for the performance degradation. In Storm, work from 
multiple components of a topology is bundled into one operating 

system process, which makes debugging very challenging. Thus, we 
needed a cleaner mapping from the logical units of computation to 
each physical process. The importance of such clean mapping for 
debug-ability is really crucial when responding to pager alerts for a 
failing topology, especially if it is a topology that is critical to the 
underlying business model.  

In addition, Storm needs dedicated cluster resources, which requires 
special hardware allocation to run Storm topologies. This approach 
leads to inefficiencies in using precious cluster resources, and also 
limits the ability to scale on demand. We needed the ability to work 
in a more flexible way with popular cluster scheduling software that 
allows sharing the cluster resources across different types of data 
processing systems (and not just a stream processing system). 
Internally at Twitter, this meant working with Aurora [1], as that is 
the dominant cluster management system in use.  

With Storm, provisioning a new production topology requires 
manual isolation of machines, and conversely, when a topology is 
no longer needed, the machines allocated to serve that topology 
now have to be decommissioned. Managing machine provisioning 
in this way is cumbersome. Furthermore, we also wanted to be far 
more efficient than the Storm system in production, simply 
because at Twitter’s scale, any improvement in performance 
translates into significant reduction in infrastructure costs and also 
significant improvements in the productivity of our end users.  

We wanted to meet all the goals outlined above without forcing a 
rewrite of the large number of applications that have already been 
written for Storm; i.e. compatibility with the Storm and 
Summingbird APIs was essential. (Summingbird [8], which 
provides a Scala-idiomatic way for programmers to express their 
computation and constraints, generates many of the Storm 
topologies that are run in production.)1 

After examining various options, we concluded that we needed to 
design a new stream processing system to meet the design goals 
outlined above. This new system is called Heron. Heron is API-
compatible with Storm, which makes it easy for Storm users to 
migrate to Heron. All production topologies inside Twitter now 
run on Heron. Besides providing us significant performance 
improvements and lower resource consumption over Storm, 
Heron also has big advantages in terms of debug-ability, 
scalability, and manageability. 

In this paper, we present the design of Heron, and also present 
results from an empirical evaluation of Heron. We begin by 
briefly describing related work in the next section. Then, in 
Section 3, we describe Storm and motivate the need for Heron. 

                                                                 
1 Work done while consulting for Twitter. 
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ABSTRACT 
This paper describes the use of Storm at Twitter. Storm is a real-
time fault-tolerant and distributed stream data processing system. 
Storm is currently being used to run various critical computations 
in Twitter at scale, and in real-time. This paper describes the 
architecture of Storm and its methods for distributed scale-out and 
fault-tolerance. This paper also describes how queries (aka. 
topologies) are executed in Storm, and presents some operational 
stories based on running Storm at Twitter. We also present results 
from an empirical evaluation demonstrating the resilience of 
Storm in dealing with machine failures. Storm is under active 
development at Twitter and we also present some potential 
directions for future work.  

1. INTRODUCTION 
Many modern data processing environments require processing 
complex computation on streaming data in real-time. This is 
particularly true at Twitter where each interaction with a user 
requires making a number of complex decisions, often based on 
data that has just been created.  

Storm is a real-time distributed stream data processing engine at 
Twitter that powers the real-time stream data management tasks 
that are crucial to provide Twitter services. Storm is designed to 
be: 

1. Scalable: The operations team needs to easily add or remove 

nodes from the Storm cluster without disrupting existing data 
flows through Storm topologies (aka. standing queries).  

2. Resilient: Fault-tolerance is crucial to Storm as it is often 
deployed on large clusters, and hardware components can fail. 
The Storm cluster must continue processing existing topologies 
with a minimal performance impact.  

3. Extensible: Storm topologies may call arbitrary external 
functions (e.g. looking up a MySQL service for the social 
graph), and thus needs a framework that allows extensibility.  

4. Efficient: Since Storm is used in real-time applications; it must 
have good performance characteristics. Storm uses a number of 
techniques, including keeping all its storage and computational 
data structures in memory. 

5. Easy to Administer: Since Storm is at that heart of user 
interactions on Twitter, end-users immediately notice if there 
are (failure or performance) issues associated with Storm. The 
operational team needs early warning tools and must be able to 
quickly point out the source of problems as they arise. Thus, 
easy-to-use administration tools are not a “nice to have 
feature,” but a critical part of the requirement.  

We note that Storm traces its lineage to the rich body of work on 
stream data processing (e.g. [1, 2, 3, 4]), and borrows heavily 
from that line of thinking. However a key difference is in bringing 
all the aspects listed above together in a single system. We also 
note that while Storm was one of the early stream processing 
systems, there have been other notable systems including S4 [5], 
and more recent systems such as MillWheel [6], Samza [7], Spark 
Streaming [8], and Photon [19]. Stream data processing 
technology has also been integrated as part of traditional database 
product pipelines (e.g. [9, 10, 11]).  

Many earlier stream data processing systems have led the way in 
terms of introducing various concepts (e.g. extensibility, 
scalability, resilience), and we do not claim that these concepts 
were invented in Storm, but rather recognize that stream 
processing is quickly becoming a crucial component of a 
comprehensive data processing solution for enterprises, and Storm 
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CONCLUSION
SIMPLIFIED ARCHITECTURE 

Easy to debug, profile and support

HIGH PERFORMANCE 

7-10x increase in throughput 

5-10x improvement in latency

"

%

#
EFFICIENCY 

3-5x decrease in resource usage
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