
Flying Faster with
Heron

KARTHIK RAMASAMY
@KARTHIKZ

#TwitterHeron

BEGIN

END

OVERVIEW

!
I

MOTIVATION

(II

HERON
PERFORMANCE

K
V

OPERATIONAL
EXPERIENCES

ZIV

TALK OUTLINE

HERON

b
III

OVERVIEW

!
[

TWITTER IS REAL TIME

G

Emerging break out
trends in Twitter (in the

form #hashtags)

Ü

Real time sports
conversations related

with a topic (recent goal
or touchdown)

"

Real time product
recommendations based

on your behavior &
profile

real time searchreal time trends real time conversations real time recommendations

Real time search of
tweets

s

ANALYZING BILLIONS OF EVENTS IN REAL TIME IS A CHALLENGE!

GUARANTEED
MESSAGE

PROCESSING

HORIZONTAL
SCALABILITY

ROBUST
FAULT

TOLERANCE

CONCISE
CODE- FOCUS

ON LOGIC

/b \ Ñ

TWITTER STORM

Streaming platform for analyzing realtime data as they arrive,
so you can react to data as it happens.

STORM TERMINOLOGY
TOPOLOGY

Directed acyclic graph

Vertices=computation, and edges=streams of data tuples

SPOUTS

Sources of data tuples for the topology

Examples - Event Bus/Kafka/Kestrel/MySQL/Postgres

BOLTS

Process incoming tuples and emit outgoing tuples

Examples - filtering/aggregation/join/arbitrary function

,

%

STORM TOPOLOGY

%

%

%

%

%

SPOUT 1

SPOUT 2

BOLT 1

BOLT 2

BOLT 3

BOLT 4

BOLT 5

WORD COUNT TOPOLOGY

% %
TWEET SPOUT PARSE TWEET BOLT WORD COUNT BOLT

Live stream of Tweets

LOGICAL PLAN

WORD COUNT TOPOLOGY

% %
TWEET SPOUT

TASKS
PARSE TWEET BOLT

TASKS
WORD COUNT BOLT

TASKS

%%%% %%%%

When a parse tweet bolt task emits a tuple
which word count bolt task should it send to?

STREAM GROUPINGS

Random distribution
of tuples

Group tuples by a
field or multiple

fields

Replicates tuples to
all tasks

SHUFFLE GROUPING FIELDS GROUPING ALL GROUPING

Sends the entire
stream to one task

GLOBAL GROUPING

/ - ,.

WORD COUNT TOPOLOGY

% %
TWEET SPOUT

TASKS
PARSE TWEET BOLT

TASKS
WORD COUNT BOLT

TASKS

%%%% %%%%

SHUFFLE GROUPING FIELDS GROUPING

MOTIVATION

(

STORM ARCHITECTURE

Nimbus

ZK
CLUSTER

SUPERVISOR

W1 W2 W3 W4

SUPERVISOR

W1 W2 W3 W4

TOPOLOGY
SUBMISSION ASSIGNMENT

MAPS

SLAVE NODE SLAVE NODE

MASTER NODE

Multiple Functionality
Scheduling/Monitoring Single point of failure

Storage Contention

No resource reservation
and isolation

STORM WORKER

TASK4

TASK5

EXECUTOR2

TASK2

TASK3

TASK1

EXECUTOR1

JV
M

 P
R

O
C

ES
S

Complex hierarchy

Difficult to tune

Hard to debug

DATA FLOW IN STORM WORKERS

In QueueIn QueueIn QueueIn QueueIn Queue

TCP Receive Buffer

In QueueIn QueueIn QueueIn QueueOut Queue

Outgoing
Message Buffer

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
Thread

User Logic
ThreadSend Thread

Global Send
Thread

TCP Send Buffer

Global Receive
Thread

Kernel

Queue Contention

Multiple Languages

OVERLOADED ZOOKEEPER

zk

S1

S2

S3

Scaled up

W

W

W
STORM

zk

Handled unto to 1200 workers per cluster

67%

33%

OVERLOADED ZOOKEEPER

KAFKA SPOUT

Offset/partition is written every 2 secs

STORM RUNTIME

Workers write heart beats every 3 secs

Analyzing zookeeper traffic

OVERLOADED ZOOKEEPER

zk

S1

S2

S3

Heart beat daemons

W

W

W
STORM

zk

5000 workers per cluster

HHH

KVKVKV

shared pool

storm
cluster

STORM - DEPLOYMENT

shared pool

storm
cluster

joe’s topology

isolated pools

STORM - DEPLOYMENT

STORM - DEPLOYMENT

shared pool

storm
cluster

joe’s topology

isolated pools

jane’s topology

STORM - DEPLOYMENT

shared pool

storm
cluster

joe’s topology

isolated pools

jane’s topology

dave’s topology

g

G

STORM ISSUES

LACK OF BACK PRESSURE

Drops tuples unpredictably

EFFICIENCY

Serialization program consumes 75 cores at 30% CPU

Topology consumes 600 cores at 20-30% CPU

NO BATCHING

Tuple oriented system - implicit batching by 0MQ !

EVOLUTION OR REVOLUTION?

FUNDAMENTAL ISSUES- REQUIRE EXTENSIVE REWRITING

Several queues for moving data

Inflexible and requires longer development cycle

USE EXISTING OPEN SOURCE SOLUTIONS

Issues working at scale/lacks required performance

Incompatible API and long migration process

,

fix storm or develop a new system?

HERON
b

HERON DESIGN GOALS
FULLY API COMPATIBLE WITH STORM

Directed acyclic graph

Topologies, spouts and bolts

USE OF MAIN STREAM LANGUAGES

C++/JAVA/Python

"

d

#
TASK ISOLATION

Ease of debug ability/resource isolation/profiling

HERON ARCHITECTURE

Topology 1

TOPOLOGY
SUBMISSION

Scheduler

Topology 2

Topology 3

Topology N

TOPOLOGY ARCHITECTURE

Topology
Master

ZK
CLUSTER

Stream
Manager

I1 I2 I3 I4

Stream
Manager

I1 I2 I3 I4

Logical Plan,
Physical Plan and
Execution State

Sync Physical Plan

CONTAINER CONTAINER

Metrics
Manager

Metrics
Manager

TOPOLOGY MASTER

ASSIGNS ROLE MONITORING METRICS

b \ Ñ

Solely responsible for the entire topology

TOPOLOGY MASTER

Topology
Master

ZK
CLUSTER

Logical Plan,
Physical Plan and
Execution State

PREVENT MULTIPLE TM BECOMING MASTERS!

! ALLOWS OTHER PROCESS TO DISCOVER TM

STREAM MANAGER

ROUTES TUPLES BACK PRESSURE ACK MGMT

Ñ

Routing Engine

/ ,

STREAM MANAGER

% %

S1 B2 B3

%

B4

S1 B2

B3

STREAM MANAGER

Stream
Manager

Stream
Manager

Stream
Manager

Stream
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

O(n2) O(k2)

B4

S1 B2

B3

STREAM MANAGER

Stream
Manager

Stream
Manager

Stream
Manager

Stream
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

tcp back pressure

B4

SLOWS UPSTREAM AND DOWNSTREAM INSTANCES

S1 B2

B3

STREAM MANAGER

Stream
Manager

Stream
Manager

Stream
Manager

Stream
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

spout back pressure

B4

S1 S1

S1S1

S1 B2

B3

STREAM MANAGER

Stream
Manager

Stream
Manager

Stream
Manager

Stream
Manager

S1 B2

B3 B4

S1 B2

B3

S1 B2

B3 B4

stage by stage back pressure

B4

S1 S1

S1S1 B2 B2

B2B2

STREAM MANAGER

PREDICTABILITY

Tuple failures are more deterministic

SELF ADJUSTS

Topology goes as fast as the slowest component

!

!

back pressure advantages

HERON INSTANCE

RUNS ONE TASK EXPOSES API COLLECTS
METRICS

|

Does the real work!

p

>>

>

HERON INSTANCE

Stream
Manager

Metrics
Manager

Gateway
Thread

Task Execution
Thread

data-in queue

data-out queue

metrics-out queue

OPERATIONAL
EXPERIENCES

K
$

HERON DEPLOYMENT
Topology 1

Topology 2

Topology 3

Topology N

Heron
Tracker

Heron
VIZ

Heron
Web

ZK
CLUSTER

Aurora Services

Aurora
Scheduler

Observability

HERON SAMPLE TOPOLOGIES

SAMPLE TOPOLOGY DASHBOARD

Large amount of data
produced every day

Large cluster Several topologies
deployed

Several billion
messages every day

HERON @TWITTER

1 stage 10 stages

3x reduction in cores and memory

STORM is decommissioned

HERON
PERFORMANCE

x

9

HERON PERFORMANCE
Settings

COMPONENTS EXPT #1 EXPT #2 EXPT #3 EXPT #4

Spout 25 100 200 300

Bolt 25 100 200 300

Heron containers 25 100 200 300

Storm workers 25 100 200 300

HERON PERFORMANCE
m

illi
on

 tu
pl

es
/m

in

0

350

700

1050

1400

Spout Parallelism
25 100 200 500

Storm Heron

Word count topology - Acknowledgements enabled

la
te

nc
y

(m
s)

0

625

1250

1875

2500

Spout Parallelism
25 100 200 500

Storm Heron

10-14x

Throughput Latency

5-15x

HERON PERFORMANCE

co
re

s
us

ed

0

625

1250

1875

2500

Spout Parallelism
25 100 200 500

Storm Heron

Word count topology - CPU usage

2-3x

HERON PERFORMANCE
Throughput and CPU usage with no acknowledgements - Word count topology

m
illi

on
 tu

pl
es

/m
in

0

1250

2500

3750

5000

Spout Parallelism
25 100 200 500

Storm Heron

co

re
s

us
ed

0

625

1250

1875

2500

Spout Parallelism
25 100 200 500

Storm Heron

HERON EXPERIMENT
RTAC topology

% %
CLIENT EVENT

SPOUT
DISTRIBUTOR

BOLT
USER COUNT

BOLT

%
AGGREGATOR

BOLT

SHUFFLE
GROUPING

FIELDS
GROUPING

FIELDS
GROUPING

HERON PERFORMANCE

Acknowledgements enabled

co

re
s

us
ed

0

100

200

300

400

Storm Heron

CPU usage - RTAC Topology

No acknowledgements

co

re
s

us
ed

0

100

200

300

400

Storm Heron

HERON PERFORMANCE
la

te
nc

y
(m

s)

0

17.5

35

52.5

70

Storm Heron

Latency with acknowledgements enabled - RTAC Topology

CURIOUS TO LEARN MORE…

 1

Twitter Heron: Stream Processing at Scale

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,

Sailesh Mittal, Jignesh M. Patel
*,1

, Karthik Ramasamy, Siddarth Taneja

@sanjeevrk, @challenger_nik, @Louis_Fumaosong, @vikkyrk, @cckellogg,

@saileshmittal, @pateljm, @karthikz, @staneja

Twitter, Inc., *University of Wisconsin – Madison

ABSTRACT
Storm has long served as the main platform for real-time analytics
at Twitter. However, as the scale of data being processed in real-
time at Twitter has increased, along with an increase in the
diversity and the number of use cases, many limitations of Storm
have become apparent. We need a system that scales better, has
better debug-ability, has better performance, and is easier to
manage – all while working in a shared cluster infrastructure. We
considered various alternatives to meet these needs, and in the end
concluded that we needed to build a new real-time stream data
processing system. This paper presents the design and
implementation of this new system, called Heron. Heron is now
the de facto stream data processing engine inside Twitter, and in
this paper we also share our experiences from running Heron in
production. In this paper, we also provide empirical evidence
demonstrating the efficiency and scalability of Heron.
ACM Classification
H.2.4 [Information Systems]: Database Management—systems

Keywords
Stream data processing systems; real-time data processing.

1. INTRODUCTION
Twitter, like many other organizations, relies heavily on real-time
streaming. For example, real-time streaming is used to compute
the real-time active user counts (RTAC), and to measure the real-
time engagement of users to tweets and advertisements. For many
years, Storm [16, 20] was used as the real-time streaming engine
inside Twitter. But, using Storm at our current scale was
becoming increasingly challenging due to issues related to
scalability, debug-ability, manageability, and efficient sharing of
cluster resources with other data services.

A big challenge when working with Storm in production is the issue
of debug-ability. When a topology misbehaves – which could be for
a variety of reasons including load changes, misbehaving user code,
or failing hardware – it is important to quickly determine the root-
causes for the performance degradation. In Storm, work from
multiple components of a topology is bundled into one operating

system process, which makes debugging very challenging. Thus, we
needed a cleaner mapping from the logical units of computation to
each physical process. The importance of such clean mapping for
debug-ability is really crucial when responding to pager alerts for a
failing topology, especially if it is a topology that is critical to the
underlying business model.

In addition, Storm needs dedicated cluster resources, which requires
special hardware allocation to run Storm topologies. This approach
leads to inefficiencies in using precious cluster resources, and also
limits the ability to scale on demand. We needed the ability to work
in a more flexible way with popular cluster scheduling software that
allows sharing the cluster resources across different types of data
processing systems (and not just a stream processing system).
Internally at Twitter, this meant working with Aurora [1], as that is
the dominant cluster management system in use.

With Storm, provisioning a new production topology requires
manual isolation of machines, and conversely, when a topology is
no longer needed, the machines allocated to serve that topology
now have to be decommissioned. Managing machine provisioning
in this way is cumbersome. Furthermore, we also wanted to be far
more efficient than the Storm system in production, simply
because at Twitter’s scale, any improvement in performance
translates into significant reduction in infrastructure costs and also
significant improvements in the productivity of our end users.

We wanted to meet all the goals outlined above without forcing a
rewrite of the large number of applications that have already been
written for Storm; i.e. compatibility with the Storm and
Summingbird APIs was essential. (Summingbird [8], which
provides a Scala-idiomatic way for programmers to express their
computation and constraints, generates many of the Storm
topologies that are run in production.)1

After examining various options, we concluded that we needed to
design a new stream processing system to meet the design goals
outlined above. This new system is called Heron. Heron is API-
compatible with Storm, which makes it easy for Storm users to
migrate to Heron. All production topologies inside Twitter now
run on Heron. Besides providing us significant performance
improvements and lower resource consumption over Storm,
Heron also has big advantages in terms of debug-ability,
scalability, and manageability.

In this paper, we present the design of Heron, and also present
results from an empirical evaluation of Heron. We begin by
briefly describing related work in the next section. Then, in
Section 3, we describe Storm and motivate the need for Heron.

1 Work done while consulting for Twitter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2723374

239

Storm @Twitter

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel*, Sanjeev Kulkarni,
Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, Dmitriy Ryaboy

@ankitoshniwal, @staneja, @amits, @karthikz, @pateljm, @sanjeevrk,
@jason_j, @krishnagade, @Louis_Fumaosong, @jakedonham, @challenger_nik, @saileshmittal, @squarecog

Twitter, Inc., *University of Wisconsin – Madison

ABSTRACT
This paper describes the use of Storm at Twitter. Storm is a real-
time fault-tolerant and distributed stream data processing system.
Storm is currently being used to run various critical computations
in Twitter at scale, and in real-time. This paper describes the
architecture of Storm and its methods for distributed scale-out and
fault-tolerance. This paper also describes how queries (aka.
topologies) are executed in Storm, and presents some operational
stories based on running Storm at Twitter. We also present results
from an empirical evaluation demonstrating the resilience of
Storm in dealing with machine failures. Storm is under active
development at Twitter and we also present some potential
directions for future work.

1. INTRODUCTION
Many modern data processing environments require processing
complex computation on streaming data in real-time. This is
particularly true at Twitter where each interaction with a user
requires making a number of complex decisions, often based on
data that has just been created.

Storm is a real-time distributed stream data processing engine at
Twitter that powers the real-time stream data management tasks
that are crucial to provide Twitter services. Storm is designed to
be:

1. Scalable: The operations team needs to easily add or remove

nodes from the Storm cluster without disrupting existing data
flows through Storm topologies (aka. standing queries).

2. Resilient: Fault-tolerance is crucial to Storm as it is often
deployed on large clusters, and hardware components can fail.
The Storm cluster must continue processing existing topologies
with a minimal performance impact.

3. Extensible: Storm topologies may call arbitrary external
functions (e.g. looking up a MySQL service for the social
graph), and thus needs a framework that allows extensibility.

4. Efficient: Since Storm is used in real-time applications; it must
have good performance characteristics. Storm uses a number of
techniques, including keeping all its storage and computational
data structures in memory.

5. Easy to Administer: Since Storm is at that heart of user
interactions on Twitter, end-users immediately notice if there
are (failure or performance) issues associated with Storm. The
operational team needs early warning tools and must be able to
quickly point out the source of problems as they arise. Thus,
easy-to-use administration tools are not a “nice to have
feature,” but a critical part of the requirement.

We note that Storm traces its lineage to the rich body of work on
stream data processing (e.g. [1, 2, 3, 4]), and borrows heavily
from that line of thinking. However a key difference is in bringing
all the aspects listed above together in a single system. We also
note that while Storm was one of the early stream processing
systems, there have been other notable systems including S4 [5],
and more recent systems such as MillWheel [6], Samza [7], Spark
Streaming [8], and Photon [19]. Stream data processing
technology has also been integrated as part of traditional database
product pipelines (e.g. [9, 10, 11]).

Many earlier stream data processing systems have led the way in
terms of introducing various concepts (e.g. extensibility,
scalability, resilience), and we do not claim that these concepts
were invented in Storm, but rather recognize that stream
processing is quickly becoming a crucial component of a
comprehensive data processing solution for enterprises, and Storm

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2376-5/14/06…$15.00.
http://dx.doi.org/10.1145/2588555.2595641

147

CONCLUSION
SIMPLIFIED ARCHITECTURE

Easy to debug, profile and support

HIGH PERFORMANCE

7-10x increase in throughput

5-10x improvement in latency

"

%

#
EFFICIENCY

3-5x decrease in resource usage

&

#ThankYou
FOR LISTENING

QUESTIONS

 and

ANSWERS

R
' Go ahead. Ask away.

