

Profilers Are Lying Hobbitses

Nitsan Wakart (@nitsanw)
Lead Performance Engineer, Azul Systems

Thanks!

I work on Zing!

● Awesome JVM
● Only on Linux/x86
● Aimed at server side systems
● Highly focused on responsiveness

✔ C4 – Fully concurrent GC
✔ ReadyNow! - Persisted profile data

But Also:
● Blog: http://psy-lob-saw.blogspot.com
● Open Source developer/contributor:

– JCTools
– Aeron/Agrona
– Netty/Akka/RxJava/YCSB/HdrHistogram
– Honest-Profiler/perf-map-agent

● Cape Town Java Meetup Organizer

http://psy-lob-saw.blogspot.com/

Why profile?

Also:

https://twitter.com/ITSSADWHEN/status/645557218851557376

https://twitter.com/ITSSADWHEN/status/645557218851557376

Which profiler?

LIVE DEMO TIME!!!!!

Sampling Profilers
● Sample program on interval
● Distribution of samples highlights hotspots
● Assumption: Samples are 'random'
● Assumption: Sample distribution approximates

'Time Spent' distribution

Sampling?

WebServerThread.run()

Controller.doSomething() Controller.next()

Repo.readPerson()

new Person()

View.printHtml()

Sampling Profilers

???

??? ???

Not enough samples
Solution: Switch to tracing profiler

Solution: Shorter sampling interval

Solution: Patience

Sampling interval matching
application life cycle

Solution: Shorter interval

Solution: Randomized interval

Sample taking is expensive
Solution: Switch sampling method

Solution: Accept overhead

Solution: Longer interval

Sample is biased/inaccurate
Solution: Switch sampling method

Solution: Widen your scope

Problems with JVisualVM*?
● Reports all threads (running or not)
● Uses GetStackTrace**:

➢ High overhead
➢ Safepoint** Biased

* And all other JVMTI::GetStackTrace based profilers
** Will be explained shortly…

GetStackTrace: the official API

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#GetStackTrace

● Input: Thread
● Output:

– Error code (failure IS an option)
– List of frames (jmethodId, jlocation)

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html#GetStackTrace

 jlocation, where J-Lo be at?

BCI → Line of Code

Look in hprof for example: <OPENJDK-HOME>/demo/jvmti/hprof

● BCI – Byte Code Index
● Not every BCI has a line of code
● Find the closest...

GetStackTrace samples at a
Safepoint

Safepoint?

Safepoint (noun.)

A JVM thread state

● Waiting/Idle/Blocked → @Safepoint

● Running Java code → !@Safepoint

● Running JNI code → @Safepoint

http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html
http://psy-lob-saw.blogspot.com/2014/03/where-is-my-safepoint.html

http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html
http://psy-lob-saw.blogspot.com/2014/03/where-is-my-safepoint.html

At a Safepoint

“...the thread's representation of it's Java
machine state is well described, and can
be safely manipulated and observed by

other threads in the JVM”

Gil Tene, on “Mechanical Sympathy” mailing list:
https://groups.google.com/d/msg/mechanical-sympathy/GGByLdAzlPw/cF1_XW
1AbpEJ

https://groups.google.com/d/msg/mechanical-sympathy/GGByLdAzlPw/cF1_XW1AbpEJ
https://groups.google.com/d/msg/mechanical-sympathy/GGByLdAzlPw/cF1_XW1AbpEJ

Why bring threads to Safepoint?

● Some GC phases
● Deoptimization
● Stack trace dump (and other JVMTI activities)
● Lock un-biasing
● Class redefinition
● And more!

See excellent talks:
https://www.youtube.com/watch?v=Y39kllzX1P8 : “With GC Solved, What Else Makes a JVM Pause?” by John Cutherson
https://vimeo.com/120533011 : “When Does the JVM JIT & Deoptimize?” by Doug Hawkins

https://www.youtube.com/watch?v=Y39kllzX1P8
https://vimeo.com/120533011

How does a JVM bring a
thread to a 'Safepoint'?

1) Raise Safepoint ‘flag’

2) Wait for thread to poll Safepoint 'flag'

3) Thread transitions to Safepoint state

Where do we see a Safepoint
poll?

● Between every 2 bytecodes (interpreter)
● Backedge of non-'counted' loops (C1/C2)
● Method exit (C1/C2)
● JNI call exit

public void foo(Bar bar) {

 int nogCount = 0;

 for (int i = 0; i < 10; i++) {
 if (bar.getZog(i).isNog()) nogCount++;

 }

 while (nightIsYoung) {

 nogCount += hit(bar);

 }

 if (nogCount > MAX_NOG)

 throw new NogOverflowError();

}

public void foo(Bar bar) {
 int nogCount = 0;

 for (int i = 0; i < 10; i++) {
 if (bar.getZog(i).isNog()) nogCount++;

 }

 while (nightIsYoung) {

 nogCount += hit(bar);

 // Safepoint poll

 }

 if (nogCount > MAX_NOG)

 throw new NogOverflowError();

 // Safepoint poll

}

Safepoint Bias

WebServerThread.run()

Controller.doSomething() Controller.next()

Repo.readPerson()

new Person()

View.printHtml() ???

It's just a harmless lil' safepoint they said

GetStackTrace Overheads

setSafepoint(true)

@Safepoint
Actual GetStackTrace work

resumeAll()

PROF J1@J J4@JNIJ2@J J3@J J5@JNI

GetStackTrace overhead
(OpenJDK)

● Stop ALL Java threads
● Collect single/all thread call traces
● Resume ALL stopped threads

Use -XX:+PrintGCApplicationStoppedTime to log pause times

GetStackTrace overhead (Zing)

● Stop sampled Java thread
● Collect single thread call trace
● Resume stopped thread

LIVE DEMO TIME!!!!!

GetStackTrace demo points

● Use -XX:+PrintGCApplicationStoppedTime
● Safepoint location is 'arbitrary'
● Overhead scales with number of threads
● Widen scope up the call tree?

I will not buy this RECORD, it is
SCRATCHED!!!!

AsyncGetCallTrace: unofficial API

● Input: signal context and JNI env
– Context will provide PC/FP/SP

● Output:
– Error code (failure IS an option)
– List of frames (jmethodId, lineno)
– lineno == BCI

Why Use AsyncGetCallTrace?

● Built for sampling in signal handler
● Does not require a safepoint
● Samples the interrupted thread
● Interrupted thread need not be at safepoint

http://jeremymanson.blogspot.co.za/2007/05/profiling-with-jvmtijvmpi-sigprof-and.html
http://jeremymanson.blogspot.co.za/2013/07/lightweight-asynchronous-sampling.html

http://jeremymanson.blogspot.co.za/2007/05/profiling-with-jvmtijvmpi-sigprof-and.html
http://jeremymanson.blogspot.co.za/2013/07/lightweight-asynchronous-sampling.html

AsyncGetCallTrace sequence

signal()
OS interrupt

Interrupt Handler
AsyncGetStackTrace

Serialize

TIMER J1@J J4@JNIJ2@J J5@JNI

signal() OS interrupt
Interrupt Handler

AsyncGetStackTrace
Serialize

Who Uses AsyncGetCallTrace?

● Solaris Studio (but not only AGCT...)
● Java Flight Recorder
● Lightweight-Java-Profiler
● Honest-Profiler

LIVE DEMO TIME!!!!!

AGCT demo points
● Use: -XX:+UnlockDiagnosticVMOptions -XX:+DebugNonSafepoints

● Only Java stack is covered
● Only on CPU is sampled
● Lookout for failed samples

Oh?
You want the truth?

Reality is complex...
● There is no Line Of Code
● There's no BCI
● Only instructions
● And more than just Java

Stack Frame → Call Trace Frame
● Stack frame:

– PC – program counter
– FP – frame pointer (optional)
– SP – stack pointer

● Call trace frame:
– jmethodid
– BCI

PC → BCI
● PC points to the 'current' instruction
● Not every instruction has a BCI
● Find the closest...

Funny Thing About PCs...

“> I think Andi mentioned this to me last year --
 > that instruction profiling was no longer reliable.

 It never was.”

http://permalink.gmane.org/gmane.linux.kernel.perf.user/1948
Exchange between Brenden Gregg and Andi Kleen

Skid
● Super Scalar CPU
● Speculative execution
● Signal latency

The blamed instruction is often shortly after
where the big cost lies

PC → BCI → Line of Code
● This is as good as it gets
● Mostly it's good enough
● Look for other suspects

nearby

Nearby? Nearby where?

LIVE DEMO TIME!!!!!

Perf-map-agent demo points
● Use: -XX:+UnlockDiagnosticVMOptions -XX:+DebugNonSafepoints

● No LOC info (fixable)
● Only on CPU is sampled
● Opportunity to differentiate virtual/real frames

WebServerThread.run()

Controller.doSomething() Controller.next()

Repo.readPerson()

new Person()

View.printHtml()

Inlining JIT Compilation

f()

g() h()

???

???

?
?
?

z()

Take Aways
● Know your profiler
● There's no perfect profiler
● Try an 'unbiased' profiler, give honest-

profiler/perf-map-agent a go!

	Slide 1
	Thanks!
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Sampling Profilers
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Safepoint (noun.)
	Slide 25
	Why Stop The World?
	To ‘Stop The World’ the JVM brings all threads to a SAFEPOINT
	Where do we see a Safepoint poll?
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

