
Debugging microservices in
production

CTO
bryan@joyent.com

Bryan Cantrill

@bcantrill

mailto:rod@joyent.com
mailto:rod@joyent.com

Debugging in the beginning...

Debugging in the beginning...

— Sir Maurice Wilkes, 1913 - 2010

Debugging in the beginning...

— Sir Maurice Wilkes, 1913 - 2010

Debugging in the beginning...

— Sir Maurice Wilkes, 1913 - 2010

“As soon as we started programming,
we found to our surprise that it wasn't
as easy to get programs right as we
had thought. Debugging had to be
discovered. I can remember the exact
instant when I realized that a large
part of my life from then on was going
to be spent in finding mistakes in my
own programs.”

Debugging

• The first non-trivial program for the EDSAC (a program to
calculate a table of Airy integrals) had 120 lines and 20 errors —
including one not debugged until four decades later!

• This experience remains modern for anyone in software today,
and many spend much of their career debugging

• Yet there is little formalized about debugging: few books on it;
little research; no conferences — and no university courses!

• Is it any surprise that debugging anti-patterns persist?

Debugging anti-patterns

• For too many, debugging is the process of making problems go
away rather than understanding the system!

• The view of bugs-as-nuisance has many knock-on effects:

• Fixes that don’t fix the problem (or introduce new ones!)

• Bug reports closed out as “will not fix” or “works for me”

• Users who are told to “restart” or “reboot” or “log out” or
anything else that amounts to wishful thinking

• And this is only when the process has obviously failed...

Darker debugging anti-patterns

• More insidious effects are felt when the problem appears to have
been resolved, but hasn’t actually been fully understood

• These are the fixes that amount to a fresh coat of paint over a
crack in the foundation — and they are worse than nothing

• Not only do these fixes not actually resolve the problem, they give
the engineer a false sense of confidence that spreads virally

• “Debugging” devolves into an oral tradition: folk tales of problems
that were made to go away

Thinking methodically

• The way we think about debugging is fundamentally wrong; we
need to think methodically about debugging!

• When we think of debugging as the quest for understanding our
(misbehaving) systems, it allows us to consider it more abstractly

• Namely, how do we explain the phenomena that affect our world?

• We have found that the most powerful explanations reflect an
understanding of underlying structure — beyond what to why

• This deeper understanding allows us to not only to explain but
make predictions

Predictive power

• Valuing predictive power allows us to test our explanations: if our
predictions are wrong, our understanding is incomplete

• We can use the understanding from failed predictions to develop
new explanations and new predictions

• We can then test these new predictions to test our understanding

• If all of this is sounding familiar, it’s because it’s science — and
the methodical exploration of it is the scientific method

The scientific method

• The scientific method is to:

• Make observations

• Formulate a question

• Formulate a hypothesis that answers the question

• Formulate predictions that test the hypothesis

• Test the predictions by conducting an experiment

• Refine the hypothesis and repeat as needed

Science, seriously?!

Science, seriously.

• Software debugging is a pure distillation of scientific thinking

• The limitless amount of data from software systems allows
experiments in seconds instead of weeks/months/years

• The systems we’re reasoning about are entirely synthetic,
discrete and mutable — we made it, we can understand it

• Software is mathematical machine; the conclusions of software
debugging are often mathematical in their unequivocal power!

• Software debugging is so pure, it requires us to refine the
scientific method slightly to reflect its capabilities...

The software debugging method

• Make observations

• Based on observations, formulate a question

• If the question can be answered through subsequent observation,
answer the question through observation and refine/iterate

• If the question cannot be answered through observation, make a
hypothesis as to the answer and formulate predictions

• If predictions can be tested through subsequent observation, test
the predictions through observation and refine/iterate

• Otherwise, test predictions through experiment and refine/iterate

Observation is the heart of debugging!

• The essence — and art! — of debugging software is making
observations and asking questions, not formulating hypotheses!

• Observations are facts — they constrain hypotheses in that any
hypothesis contradicted by facts can be summarily rejected

• As facts beget questions which beget observations and more
facts, hypotheses become more tightly constrained — like a
cordon being cinched around the truth

• Or, in the words of Sir Arthur Conan Doyle’s Sherlock Holmes,
“when you have eliminated all which is impossible, then whatever
remains, however improbable, must be the truth”

Making the hypothetical leap

• Once observation has sufficiently narrowed the gap between what
is known and what is wrong, a hypothetical leap should be made

• Debugging is inefficient when this leap is made too early — like
making a specific guess too early in Twenty Questions

• A hypothesis is only as good as its ability to form a prediction

• A prediction should be tested with either subsequent observation
or by conducting an experiment

• If the prediction proves to be incorrect, understanding is
incomplete; the hypothesis must be rejected — or refined

Experiments in software

• A beauty of software is that it is highly amenable to experiment

• Many experiments are programs — and the most satisfying
experiments test predictions about how failure can be induced

• Many “non-reproducible” problems are merely unusual!

• Debugging a putatively non-reproducible problem to the point of a
reproducible test case is a joy unique in software engineering

Software debugging in practice

• The specifics of observation depends on the nature of the failure

• Software has different kinds of failure modes:

• Fatal failure (segmentation violation, uncaught exception)

• Non-fatal failure (gives the wrong answer, performs terribly)

• Explicit failure (assertion failure, error message)

• Implicit failure (cheerfully does the wrong thing)

Taxonomizing software failure

Implicit

Explicit

Non-fatal Fatal

Gives the wrong answer
Returns the wrong result

Leaks resources
Stops doing work

Performs pathologically

Emits an error message
Returns an error code

Assertion failure
Process explicitly aborts
Exits with an error code

Segmentation violation
Bus Error
Panic
Type Error
Uncaught Exception

Microservices prehistory

• The late 1990s saw the rise of three-tier architectures consisting
of presentation, application logic and data tiers

• Many names for roughly the same notion: “Service-oriented
architecture”, “Model/View/Controller”, etc.

• The AJAX+REST revolution of the mid-2000s gave rise to true
web applications in which application logic could live on the edge

• Led to some broader architectural questioning...

Post-AJAX questions

• Why should HTTP be restricted to the web?

• Why should REST be restricted to web apps?

• Instead of having one monolithic architecture, why not have a
series of (smaller) services that merely did one thing well?

• In case this sounds vaguely familiar...

The Unix Philosophy

• The Unix philosophy, as articulated by Doug McIlroy:

• Write programs that do one thing and do it well

• Write programs to work together

• Write programs that handle text streams, because that is a
universal interface

• The single most important revolution in software systems thinking!

• Applying it to HTTP-based services...

Microservices

• Microservices do one thing, and strive to do it well

• Replace a small number of monoliths with many services that
have well-documented, small HTTP-based APIs

• Larger systems can be composed of these smaller services

• While the trend it describes is real, the term “microservices” isn’t
without its controversy...

Microservices

Microservices

Debugging microservices

• Veteran nerd rage may be being provoked by proponents of
microservices not fully appreciating the risks…

• Microservices turn a monolithic system into a distributed one

• While resilient to certain classes of force majeure failures,
distributed systems remain vulnerable to software defects

• Distributed systems are infamously nasty to debug — not least
because they often must be debugged in production

Microservices in production

• Microservices are tautologically small — they don’t need their
own dedicated physical hardware, or even dedicated virtual
hardware!

• Microservices are a particularly good fit for containers, virtual OS
instances pioneered by FreeBSD jails and Solaris zones

Containers at Joyent

• Joyent runs OS containers in the cloud via SmartOS — and we
have run containers in multi-tenant production since ~2006

• Adding support for hardware-based virtualization circa 2011
strengthened our resolve with respect to OS-based virtualization

• OS containers are lightweight and efficient — which is especially
important as services become smaller and more numerous:
overhead and latency become increasingly important!

• We emphasized their operational characteristics — performance,
elasticity, tenancy — and for many years, we were a lone voice...

Containers as PaaS foundation?

• Some saw the power of OS containers to facilitate up-stack
platform-as-a-service abstractions

• For example, dotCloud — a platform-as-a-service provider — built
their PaaS on OS containers

• Struggling as a PaaS, dotCloud pivoted — and open sourced
their container-based orchestration layer...

...and Docker was born

Docker revolution

• Docker has used the rapid provisioning + shared underlying
filesystem of containers to allow developers to think operationally

• Developers can encode deployment procedures via an image

• Images can be reliably and reproducibly deployed as a container

• Images can be quickly deployed — and re-deployed

• Docker complements the small-system ethos of microservices!

Docker at Joyent

• We wanted to create a best-of-all-worlds platform: the developer
ease of Docker on the production-grade substrate of SmartOS

• We developed a Linux system call interface for SmartOS,
allowing SmartOS to run Linux binaries at bare-metal speed

• In March 2015, we introduced Triton, our (open source!) stack
that deploys Docker containers directly on the metal

• Triton virtualizes the notion of a Docker host (i.e., “docker ps”
shows all of one’s containers datacenter-wide)

• Brings full debugging (DTrace, MDB) to Docker containers

When microservices fail?

A more apt metaphor...

Microservice failure modes

Implicit

Explicit

Non-fatal Fatal

Gives the wrong answer
Returns the wrong result

Leaks resources
Stops doing work

Performs pathologically

Emits an error message
Returns an error code

Assertion failure
Process explicitly aborts
Exits with an error code

Segmentation violation
Bus Error
Panic
Type Error
Uncaught Exception

Cascading microservice failure modes

Implicit

Explicit

Non-fatal Fatal

Gives the wrong answer
Returns the wrong result

Leaks resources
Stops doing work

Performs pathologically

Emits an error message
Returns an error code

Assertion failure
Process explicitly aborts
Exits with an error code

Segmentation violation
Bus Error
Panic
Type Error
Uncaught Exception

Debugging fatal failure

• When software fails fatally, we know that the software itself is
broken — its state has become inconsistent

• By saving in-memory state to stable storage, the software can be
debugged postmortem

• To debug, one starts with the invalid state and reasons backwards
to discover a transition from a valid state to an invalid one

• This technique is so old, that the terms for this saved state dates
back to the dawn of the computing age: a core dump

• Not as low-level as the name implies! Modern high-level
languages (e.g., node.js and Go) allow postmortem debugging!

Debugging fatal failure: microservices

• Postmortem analysis lends itself very well to microservices:

• There is no run-time overhead; overhead (such as it is) is only
at the time of death

• The microservice/container can be safely (automatically!)
restarted; the core dump can be analyzed asynchronously

• Tooling need not be in container, can be made arbitrarily rich

• In Triton, all core dumps are automatically stored and then
uploaded into a system that allows for analysis, tagging, etc.

• This has been invaluable for debugging our own services!

Debugging non-fatal failure

• There is a solace in fatal failure: it always represents a software
defect at some level — and the inconsistent state is static

• Non-fatal failure can be more challenging: the state is valid and
dynamic — it’s difficult to separate symptom from cause

• Non-fatal failure must still be understood empirically!

• Debugging in vivo requires that data be extracted from the system
— either of its own volition (e.g., via logs) or by coercion (e.g., via
instrumentation)

Debugging explicit, non-fatal failure

• When failure is explicit (e.g., an error or warning message), it
provides a very important data point

• If failure is non-reproducible or otherwise transient, analysis of
explicit software activity becomes essential

• Action in one container will often need to be associated with
failures in another

• Especially for distributed systems, this becomes log analysis, and
is an essential forensic tool for understanding explicit failure

• Essential observation: a time line of events!

Debugging implicit, non-fatal failure

• Problems that are both implicit and non-fatal represent the most
time-consuming, most difficult problems to debug because the
system must be understood against its will

• Wherever possible make software explicit about failure!

• Where errors are programmatic (and not operational), they
should always induce fatal failure!

• Microservices break at the boundaries: two services each think
that they are operating correctly, but together they’re broken

• Data must be coerced from the system via instrumentation

Instrumenting production systems

• Traditionally, software instrumentation was hard-coded and static
(necessitating software restart or — worse — recompile)

• Dynamic system instrumentation was historically limited to system
call table (strace/truss) or packet capture (tcpdump/snoop)

• Effective for some problems, but a poor fit for ad hoc analysis

• In 2003, Sun developed DTrace, a facility for arbitrary, dynamic
instrumentation of production systems that has since been ported
to Mac OS X, FreeBSD, NetBSD and (to a degree) Linux

• DTrace has inspired dynamic instrumentation in other systems
(see @brendangregg’s talk!)

Instrumenting Docker containers

• In Docker, instrumentation is a challenge as containers may not
include the tooling necessary to understand the system

• Docker host-based techniques for instrumentation may be
tempting, but they should be considered an anti-pattern!

• DTrace has a privilege model that allows it to be safely (and
usefully) used from within a container

• In Triton, DTrace is available from within every container — one
can “docker exec -it bash” and then debug interactively

Instrumenting node.js-based microservices

• We have invested heavily in node.js-based infrastructure to allow
us to meaningfully instrument microservices in production:

• We developed Bunyan, a logging facility for node.js that
includes DTrace support

• Added DTrace support for node.js profiling

• An essential vector for iterative observation: turning up the
logging level on a running microservice!

Debugging microservices in production

• Debugging methodically requires us to shift our thinking — and
learn how to carefully observe the systems we build

• Different types of failures necessitate different techniques:

• Fatal failure is best debugged via postmortem analysis —
which is particular appropriate in an all-container world

• Non-fatal failure necessitates log analysis and dynamic
instrumentation

• The ability to debug problems in production is essential to
successfully deploy and scale microservices!

