
STREAM
PROCESSING @
UBER
DANNY YUAN @ UBER

What is Uber

Transportation at your fingertips

Stream Data Allows Us To Feel The Pulse Of Cities

Marketplace Health

What’s Going on Now

What’s Happened?

Status Tracking

A Little Background

Uber’s Platform Is a Distributed State Machine

Rider States

Uber’s Platform Is a Distributed State Machine

Rider States Driver States

Applications can’t do everything

Instead, Applications Emit Events

Events Should Be Available In Seconds

Events Should Rarely Get Lost

Events Should Be Cheap And Scalable

Where are the challenges?

Many Dimensions

Dozens of fields per event

Granular Data

Granular Data

Granular Data

Over 10,000 hexagons in the city

Granular Data

7 vehicle types

Granular Data

1440 minutes in a day

Granular Data

13 driver states

Granular Data

300 cities

Granular Data

1 day of data: 300 x 10,000 x 7 x 1440 x 13 = 393 billion
possible combinations

Unknown Query Patterns

Any combination of dimensions

Variety of Aggregations
 - Heatmap

 - Top N

 - Histogram

 - count(), avg(), sum(), percent(), geo

Different Geo Aggregation

Large Data Volume

• Hundreds of thousands of events per
second, or billions of events per day 

• At least dozens of fields in each event

Tight Schedule

Key: Generalization

Data Type
• Dimensional Temporal Spatial Data

Dimension Value

state driver_arrived

vehicle type uber X

timestamp 13244323342

lattitude 12.23

longitude 30.00

Data Query
• OLAP on single-table temporal-spatial data

 
SELECT	 <agg	 functions>,	 <dimensions>	  
FROM	 <data_source> 
WHERE	 <boolean	 filter> 
GROUP	 BY	 <dimensions> 
HAVING	 <boolean	 filter> 
ORDER	 BY	 <sorting	 criterial> 
LIMIT	 <n> 
DO	 <post	 aggregation>

Finding the Right Storage System

Minimum Requirements
• OLAP with geospatial and time series support 

• Support large amount of data 

• Sub-second response time 

• Query of raw data
 

It can’t be a KV store

Challenges to KV Store

Pre-computing all keys is O(2n)	 for both space
and time  

It can’t be a relational database

Challenges to Relational DB

• Managing multiple indices is painful 

• Scanning is not fast enough
 

A System That Supports
• Fast scan 

• Arbitrary boolean queries 

• Raw data 

• Wide range of aggregations
 

Elasticsearch

Highly Efficient Inverted-Index For Boolean Query

Built-in Distributed Query

Fast Scan with Flexible Aggregations

Storage

Are We Done?

Transformation
e.g. (Lat, Long) -> (zipcode, hexagon)

Dynamic Pricing

Trend Prediction

Supply and Demand Distribution

Technically Speaking: Clustering & Pr(D, S, E)

New Use Cases —> New Requirements

Pre-aggregation

Joining Multiple Streams

Sessionization

Multi-Staged Processing

State Management

Apache Samza

Why Apache Samza?

DAG on Kafka

Excellent Integration with Kafka

Excellent Integration with Kafka

Built-in Checkpointing

Built-in State Management

Processing Storage

What If Storage Is Down?

What If Processing Takes Long?

Processing Storage

Are We Done?

Post Processing

Results Transformation and Smoothing

Scale of Post Processing

10,000 hexagons in a city

Scale of Post Processing

331 neighboring hexagons to look at

Scale of Post Processing

331 x 10,000 = 3.1 Million Hexagons to
Process for a Single Query

Scale of Post Processing

99%-ile Processing Time: 70ms

Post Processing
• Each processor is a pure function 

• Processors can be composed by combinators

Post Processing

• Highly parallelized execution 

• Pipelining

Post Processing
• Each processor is a pure function 

• Processors can be composed by combinators 

• Highly parallelized execution

Practical Considerations

Data Discovery

Elasticsearch Query Can Be Complex

/driverAcceptanceRate?	
geo_dist(10,	 [37,	 22])&	
time_range(2015-‐02-‐04,2015-‐03-‐06)&	
aggregate(timeseries(7d))&	
eq(msg.driverId,1)	

Elasticsearch Query Can Be Optimized

• Pipelining 

• Validation 

• Throttling

T
im

e in seconds

Elasticsearch Can Be Replaced

Storage QueryProcessing

There’s one more thing

There are always patterns in streams

There is always need for quick exploration

How many drivers cancel a request 10 times in a
row within a 5-minute window?

Which riders request a pickup from 100 miles
apart within a half hour window?

Complex Event Processing

FROM	 driver_canceled#window.time(10	 min)	 	
SELECT	 clientUUID,	 count(clientUUID)	 as	 cancelCount	
GROUP	 BY	 clientUUID	 HAVING	 cancelCount	 >	 10	 	
INSERT	 INTO	 hipchat(room);

Implementation Becomes Easy

Thank You!

