
Improving Cloud Security
with Attacker Profiling

Bryan D. Payne Engineering Manager, Platform Security

Who is out to get me?

What do they want?

Why are we losing?

Platform Security
at Netflix

Platform
Security
Overview

Microservices in the Cloud

Device or
Browser

Netflix Open
Connect Appliance

1

2

- AWS Mgmt

- Security Tools

- Code Review

- Forensics / IR

- IT Security
- Content Protection

- Device Security

Platform Security
- Foundational Security Services

- Security in Common Platform

- Security by Default in base AMI

Classic
Security
via
AWS

CloudHSM
Instance

Metadata
Signature

Identity &
Access

Management

Trusted Services
(AWS)

Great Unknown
Hypervisor

Hardware Platform
Physical Security

Malicious Insider

Key Management

Supply Chain

Firmware

Side Channel Leaks

Trusted Services
(Netflix)

Secret Deployment
Service

Self-Service CA

Crypto / Key
Management Service

Ubiquitous
Security
• Partner with other teams
• Make security transparent (or easy)
• Focus on common components
• Also focus on strategic risks

Platform Security

Review

Im
p

lem
en

t
Im

plem
ent

Deplo
y

Report

Service Creation

Service Maintenance

Security Audit

IR / Forensics

Plan Security
Improvements

Security Services

Security Defaults

Who is out to get me?

BBC Newsnight, 11 February 2010
https://www.youtube.com/watch?v=1pMuV2o4Lrw

https://www.youtube.com/watch?v=1pMuV2o4Lrw

Murdoch et al, Chip and PIN is Broken,
IEEE Symposium on Security and Privacy, 2010

Greenberg, X-Ray Scans Expose and Ingenious
Chip-and-PIN Card Hack, Wired, 19 October 2015

Attacker Motivations
• financial / business
• political / idealogical
• revenge
• demonstration
• fun

Attacker Skill &
Exploitation Likelihood

Likelihood of Attack

Intelligence
Services

Serious Organized Crime

Highly Capable Groups

Motivated Individuals

Script Kiddies

OpenStack Security Guide (CC BY 3.0)
http://docs.openstack.org/sec/

Political & Industrial Espionage

Financial

Financial & Idealogical

Financial, Revenge, Fun

Fun, Demonstration

• Little trust in authorities

• Desire control

• Hacker life kept secret

• “Don’t foul your own nest”

Attacker Characteristics
• creative and brilliant
• curious
• motivated
• shy in real life
• comfortable with computers

“Yes, I am a criminal. My crime is that of curiosity.”

The Hacker Manifesto

Attack Characteristics
• access (nmap, exploit, configuration error, etc)
• file cleaners
• backdoor
• password cracking
• monitor system admin
• proceed with goals (files, network sniffing, etc)

Photo Credit: Google
http://www.google.com/about/datacenters/gallery/

What do they want?

"Diamonds" by Swamibu - http://flickr.com/photos/swamibu/1182138940/.
Licensed under CC BY 2.0 via Commons

http://flickr.com/photos/swamibu/1182138940/

"Antwerpen Hoveniersstraat" by Thorsten1997 - Own work. Licensed under Public Domain via Commons

19 February 2003
BBC News
http://news.bbc.co.uk/2/hi/europe/2782305.stm

http://news.bbc.co.uk/2/hi/europe/2782305.stm

Joshua Davis. The Untold Story of the World’s Biggest Diamond Heist.
Wired, http://archive.wired.com/politics/law/magazine/17-04/ff_diamonds

1. Combination dial

2. Keyed lock

3. Seismic sensor

4. Locked steel grate

5. Magnetic sensor

6. External security camera

7. Keypad to disarm sensors

8. Light sensor

9. Internal security camera

10. Heat / motion sensor

• USG employee
background checks
& fingerprints

• Credit cards

• User data

• PPI: SSN, driver’s
license, phone,
address, DoB, etc

• Passwords

Photo Credit: Tom Varco (CC BY-SA 3.0)
https://en.wikipedia.org/wiki/Safe#/media/File:Safe.jpg

Photo Credit: Jonathunder (CC BY-SA 3.0)
https://en.wikipedia.org/wiki/Bank_vault#/media/File:WinonaSavingsBankVault.JPG

risk threat vulnerability consequence● ●

risk threat vulnerability consequence● ●

asset attack vectors controls

http://lockheedmartin.com/content/dam/lockheed/data/isgs/documents/Threat-Driven%20Approach%20whitepaper.pdf

http://lockheedmartin.com/content/dam/lockheed/data/isgs/documents/Threat-Driven%20Approach%20whitepaper.pdf

Cloud Attack Graphs
• Cloud account credentials
• Instance account credentials
• Your employees, supply chains, code
• Provider’s employees, supply chains, code
• Corporate network
• Build pipeline

Why are we losing?
… and how can we improve?

Tipping Point

Increasing Security Investment

Increasing Security Engineering Efficiencies

from cryptography.fernet import Fernet

key = Fernet.generate_key()
f = Fernet(key)
ciphertext = f.encrypt(b”A message.")
plaintext = f.decrypt(ciphertext)

Simple Libraries
(e.g., python-cryptography)

Traditional Libraries
(e.g., openssl)

#include <openssl/conf.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <string.h>

int main(int arc, char *argv[])
{
 /* Set up the key and iv. Do I need to say to not hard code these in a
 * real application? :-)
 */

 /* A 256 bit key */
 unsigned char *key = "01234567890123456789012345678901";

 /* A 128 bit IV */
 unsigned char *iv = "01234567890123456";

 /* Message to be encrypted */
 unsigned char *plaintext =
 "The quick brown fox jumps over the lazy dog";

 /* Buffer for ciphertext. Ensure the buffer is long enough for the
 * ciphertext which may be longer than the plaintext, dependant on the
 * algorithm and mode
 */
 unsigned char ciphertext[128];

 /* Buffer for the decrypted text */
 unsigned char decryptedtext[128];

 int decryptedtext_len, ciphertext_len;

 /* Initialise the library */
 ERR_load_crypto_strings();
 OpenSSL_add_all_algorithms();
 OPENSSL_config(NULL);

 /* Encrypt the plaintext */
 ciphertext_len = encrypt(plaintext, strlen(plaintext), key, iv,
 ciphertext);

 /* Do something useful with the ciphertext here */
 printf("Ciphertext is:\n");
 BIO_dump_fp(stdout, ciphertext, ciphertext_len);

 /* Decrypt the ciphertext */
 decryptedtext_len = decrypt(ciphertext, ciphertext_len, key, iv,
 decryptedtext);

 /* Add a NULL terminator. We are expecting printable text */
 decryptedtext[decryptedtext_len] = '\0';

 /* Show the decrypted text */
 printf("Decrypted text is:\n");
 printf("%s\n", decryptedtext);

 /* Clean up */
 EVP_cleanup();
 ERR_free_strings();

 return 0;
}

int encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key,
 unsigned char *iv, unsigned char *ciphertext)
{
 EVP_CIPHER_CTX *ctx;

 int len;

 int ciphertext_len;

 /* Create and initialise the context */
 if(!(ctx = EVP_CIPHER_CTX_new())) handleErrors();

/* Initialise the encryption operation. IMPORTANT - ensure you use a key
 * and IV size appropriate for your cipher
 * In this example we are using 256 bit AES (i.e. a 256 bit key). The
 * IV size for *most* modes is the same as the block size. For AES this
 * is 128 bits */
 if(1 != EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv))
 handleErrors();

 /* Provide the message to be encrypted, and obtain the encrypted output.
 * EVP_EncryptUpdate can be called multiple times if necessary
 */
 if(1 != EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext, plaintext_len))
 handleErrors();
 ciphertext_len = len;

 /* Finalise the encryption. Further ciphertext bytes may be written at
 * this stage.
 */
 if(1 != EVP_EncryptFinal_ex(ctx, ciphertext + len, &len)) handleErrors();
 ciphertext_len += len;

 /* Clean up */
 EVP_CIPHER_CTX_free(ctx);

 return ciphertext_len;
}

int decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned char *key,
 unsigned char *iv, unsigned char *plaintext)
{
 EVP_CIPHER_CTX *ctx;

 int len;

 int plaintext_len;

 /* Create and initialise the context */
 if(!(ctx = EVP_CIPHER_CTX_new())) handleErrors();

 /* Initialise the decryption operation. IMPORTANT - ensure you use a key
 * and IV size appropriate for your cipher
 * In this example we are using 256 bit AES (i.e. a 256 bit key). The
 * IV size for *most* modes is the same as the block size. For AES this
 * is 128 bits */
 if(1 != EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv))
 handleErrors();

 /* Provide the message to be decrypted, and obtain the plaintext output.
 * EVP_DecryptUpdate can be called multiple times if necessary
 */
 if(1 != EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext, ciphertext_len))
 handleErrors();
 plaintext_len = len;

 /* Finalise the decryption. Further plaintext bytes may be written at
 * this stage.
 */
 if(1 != EVP_DecryptFinal_ex(ctx, plaintext + len, &len)) handleErrors();
 plaintext_len += len;

 /* Clean up */
 EVP_CIPHER_CTX_free(ctx);

 return plaintext_len;
}
[edit]

Sidebar: Key Management @Netflix

Simple Framework for Key Handling

Throughput Protection It’s Exposed! It lives…

Low Sensitivity High Low No biggie In lots of VMs

Medium Sensitivity Medium Medium It’ll be a long
week. In very few VMs

High Sensitivity Low High No. Just. No. In Special
Hardware

Use Case of a Key Implies Handling Requirements

TLS Session Key - Fast, Handled in Dynamic Environment 
• But easy to have a reasonable policy if we lose it

Certificate Authority Private Key - Maybe not used so much

• Probably way more important that you just don’t lose it

Cryptex - Our Framework for Key Handling

Eureka
Server(s)Eureka

Server(s)Cryptex
Server(s)

Web Server Logic

Netflix Business Application

Cryptex Client Library

Netflix IPC Components (Ribbon/Hystrix/etc)

Many of these

Not Many of these
Cloud HSMs - Dedicated Hardware

“Low” Key Handling

Cryptex Client Library
Netflix Business Application

Cryptex Server
GetKey(ID=123)

Resp(Value=iXKQ…)

Client Auth TLS
Encrypt/Decrypt

Key Exported Out to Every Client
• Extremely High Throughput
• Client Library Attempts to be Mindful of Key Handling

“Medium” Key Handling

Every Operation is a REST Call
• Luckily we don’t have many bulk encrypt use cases for these
• Cryptex servers not publicly facing; ostensibly harder to get onto

Cryptex Client Library

Netflix Business Application Cryptex Server

GetKey(ID=456)

Resp(Value=null)

Client Auth TLS

Encrypt(ID=456,PT=…)

Resp(CT=5pI6…)

“High” Key Handling

Cryptex
ServerCryptex Client Library

Netflix Business Application
GetKey(ID=789)

Resp(Value=null)

Client Auth TLS

Encrypt(ID=789,PT=…)

Resp(CT=JGVqF…)

HSM API

Encrypt(ID=789,PT=…)

Resp(CT=JGVqF…)

Every Operation is a call to specialized hardware
• HSM API challenging relative to REST calls (only Cryptex does it)
• Very constrained throughput;VM side channel attacks negated

“Asymmetric” Key Handling

Cryptex Client Library
Netflix Business Application

Cryptex Server

GetKey(ID=111)

Resp(PubValue=iXKQ…)

Client Auth TLS
Verify

We support the basics: AES, HMAC-SHA, RSA
• Optimize RSA verify/encrypt by pushing public key to edge
• At scale computational intensity of RSA quite apparent

Photo Credit: Kayamon (CC BY-SA 3.0)
https://en.wikipedia.org/wiki/File:Penny_Harvest_Field_2007.jpg

Managing Security at Scale

what you deploy deployment pipeline runtime consistency

• 802.11a/b/g/n/ac

• Bluetooth

• Gigabit Ethernet

• Out-of-band SSH access over
4G/GSM cell networks

https://www.pwnieexpress.com/product/pwn-plug-r3penetration-testing-device/

Attackers Are Creative

A team participating in a CTF competition at DEFCON 17
Photo Credit: Nate Grigg (CC BY 2.0)

http://www.flickr.com/photos/nateone/3792232737/

Questions?

bryanp@netflix.com
http://bryanpayne.org

[PS… I’m hiring!]

