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Who Is This Person?
• VP of Product Engineering @Tuplejump  

• Big Data, Analytics, Cloud Engineering, Cyber Security 

• Committer / Contributor to FiloDB, Spark Cassandra 

Connector, Akka, Spring Integration
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• @helenaedelson 

• github.com/helena 

• linkedin.com/in/helenaedelson  

• slideshare.net/helenaedelson

https://twitter.com/helenaedelson
https://twitter.com/tuplejump
https://twitter.com/helenaedelson
http://github.com/helena
https://www.linkedin.com/in/helenaedelson
http://www.slideshare.net/helenaedelson


@helenaedelson

https://twitter.com/helenaedelson


@helenaedelson

Tuplejump - Open Source
github.com/tuplejump 

 • FiloDB - part of this talk 
 • Calliope - the first Spark-Cassandra integration 
 • Stargate - an open source Lucene indexer for Cassandra 
 • SnackFS - open source HDFS for Cassandra
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What Will We Talk About
• The Problem Domain 
• Example Context 
• Rethinking Architecture 

• We don't have to look far to look back 
• Streaming & Data Science 
• Challenging Assumptions 
• Revisiting the goal and the stack 

• Integration 
• Simplification

5

https://twitter.com/helenaedelson


@helenaedelson

THE PROBLEM DOMAIN
Delivering Meaning From A Flood Of Data
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The Problem Domain
Need to build scalable, fault tolerant, distributed data 
processing systems that can handle massive amounts of 
data from disparate sources, with different data structures.
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Translation
How to build adaptable, elegant systems 
for complex analytics and learning tasks 
to run as large-scale clustered dataflows
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How Much Data

Yottabyte = quadrillion gigabytes or septillion bytes

We all have a lot of data 
• Terabytes 
• Petabytes...        

http://en.wikipedia.org/wiki/Yottabyte
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100 trillion $ in DC fees
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Delivering Meaning
• Deliver meaning in sec/sub-sec latency 
• Disparate data sources & schemas 
• Billions of events per second 
• High-latency batch processing 
• Low-latency stream processing 
• Aggregation of historical from the stream
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While We Monitor, Predict & Proactively 
Handle

• Massive event spikes & bursty traffic 
• Fast producers / slow consumers 
• Network partitioning & out of sync systems 
• DC down  
• Wait, we've DDOS'd ourselves from fast streams? 
• Autoscale issues 

– When we scale down VMs how do we not lose data?
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And stay within our  
AWS / Rackspace budget 
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EXAMPLE CONTEXT: 
CYBER SECURITY

Hunting The Hunter
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• Track activities of international threat actor groups, 
nation-state, criminal or hactivist 
• Intrusion attempts  
• Actual breaches  

• Profile adversary activity 
• Analysis to understand their motives, anticipate actions 

and prevent damage

Adversary Profiling & Hunting: 
Online & Offline
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• Machine events  
• Endpoint intrusion detection 
• Anomalies/indicators of attack or compromise 

• Machine learning  
• Training models based on patterns from historical data 
• Predict potential threats 
• profiling for adversary Identification

Stream Processing
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Data Requirements & Description
• Streaming event data  

• Log messages  
• User activity records 
• System ops & metrics data  

• Disparate data sources 
• Wildly differing data structures
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Massive Amounts Of Data
• One machine can generate 2+ TB per day  
• Tracking millions of devices 
• 1 million writes per second - bursty 
• High % writes, lower % reads
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RETHINKING 
ARCHITECTURE
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few years

in Silicon Valley

Cloud Engineering team

@helenaedelson

https://twitter.com/helenaedelson
https://twitter.com/helenaedelson


@helenaedelson
20

Batch analytics data flow from several years ago looked like...
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Batch analytics data flow from several years ago looked like...
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Transforming data multiple times, multiple ways
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Sweet, let's triple the code we have to update and regression test  
every time our analytics logic changes
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STREAMING &  
DATA SCIENCE

Enter Streaming for Big Data

24

https://twitter.com/helenaedelson


@helenaedelson

Streaming: 
Big Data, Fast Data, Fast Timeseries Data
• Reactive processing of data as it comes in to derive 

instant insights 
• Is this enough? 

• Need to combine with existing big data, historical 
processing, ad hoc queries
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New Requirements, Common Use Case

I need fast access to historical data on the fly for 
predictive modeling with real time data from the stream 
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It's Not A Stream It's A Flood
• Netflix 

• 50 - 100 billion events per day 
• 1 - 2 million events per second at peak 

• LinkedIn 
• 500 billion write events per day 
• 2.5 trillion read events per day 
• 4.5 million events per second at peak with Kafka 
• 1 PB of stream data
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Which Translates To
• Do it fast  
• Do it cheap 
• Do it at scale
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Oh, and don't loose data
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AND THEN WE GREEKED OUT
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Lambda Architecture
A data-processing architecture designed to handle 
massive quantities of data by taking advantage of both 
batch and stream processing methods. 
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• Or, "How to beat the CAP theorum"  
• An approach coined by Nathan Mars 
• This was a huge stride forward
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• Doing complex asynchronous transformations 
• That need to run with low latency (say, a few seconds to a few 

hours)  
• Examples 

• Weather analytics and prediction system 
• News recommendation system
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Applications Using Lambda Architecture
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Implementing Is Hard
• Real-time pipeline backed by KV store for updates 
• Many moving parts - KV store, real time, batch 
• Running similar code in two places 
• Still ingesting data to Parquet/HDFS 
• Reconcile queries against two different places
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Performance Tuning & Monitoring  
on so many disparate systems
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Also Hard
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λ: Streaming & Batch Flows

Evolution Or Just Addition?
Or Just Technical Debt?
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Lambda Architecture
Ingest an immutable sequence of records is captured 
and fed into 
• a batch system  
• and a stream processing system  
in parallel
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WAIT, DUAL SYSTEMS?
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Challenge Assumptions
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Which Translates To
• Performing analytical computations & queries in dual 

systems 
• Duplicate Code 
• Untyped Code - Strings 
• Spaghetti Architecture for Data Flows 
• One Busy Network
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Why?
• Why support code, machines and running services of 

two analytics systems? 
• Is a separate batch system needed? 
• Can we do everything in a streaming system?
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YES
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• A unified system for streaming and batch 
• Real-time processing and reprocessing 

• Code changes 
• Fault tolerance

http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html  - Jay Kreps
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ANOTHER ASSUMPTION: 
ETL
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Challenge Assumptions
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Extract, Transform, Load (ETL)
• Extraction of data from one system into another 
• Transforming it 
• Loading it into another system 

43

https://twitter.com/helenaedelson


@helenaedelson

ETL
• Each step can introduce errors and risk 
• Writing intermediary files 
• Parsing and re-parsing plain text 
• Tools can cost millions of dollars 
• Decreases throughput 
• Increased complexity  
• Can duplicate data after failover
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Extract, Transform, Load (ETL)
"Designing and maintaining the ETL process is often 

considered one of the most difficult and resource-
intensive portions of a data warehouse project." 

http://docs.oracle.com/cd/B19306_01/server.102/b14223/ettover.htm 
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Also unnecessarily redundant and often typeless 
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And let's duplicate the pattern over  
all our DataCenters
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These are not the solutions you're looking for
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REVISITING THE GOAL
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Removing The 'E' in ETL
Thanks to technologies like Avro and Protobuf we don’t need the 
“E” in ETL. Instead of text dumps that you need to parse over 
multiple systems: 

E.g Scala and Avro

• A return to strong typing in the big data ecosystem 

• Can work with binary data that remains strongly typed
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Removing The 'L' in ETL
If data collection is backed by a distributed messaging 
system (e.g. Kafka) you can do real-time fanout of the 
ingested data to all consumers. No need to batch "load". 

• From there each consumer can do their own transformations
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#NoMoreGreekLetterArchitectures
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NoETL
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Pick Technologies Wisely
Based on your requirements  
• Latency 

• Real time / Sub-Second: < 100ms 
• Near real time (low): > 100 ms or a few seconds - a few hours 

• Consistency  
• Highly Scalable 
• Topology-Aware & Multi-Datacenter support 
• Partitioning Collaboration - do they play together well
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And Remember
• Flows erode  

• Entropy happens 

• "Everything fails, all the time" - Kyle Kingsbury
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REVISITING THE STACK
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Stream Processing & Frameworks
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+ GearPump
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Strategies
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• Partition For Scale & Data Locality 
• Replicate For Resiliency 
• Share Nothing 
• Fault Tolerance 
• Asynchrony  
• Async Message Passing 
• Memory Management

• Data lineage and reprocessing in 
runtime  
• Parallelism 
• Elastically Scale 
• Isolation 
• Location Transparency
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Fault Tolerance
• Graceful service degradation 
• Data integrity / accuracy under failure 
• Resiliency during traffic spikes 
• Pipeline congestion / bottlenecks 
• Easy to debug and find failure source 
• Easy to deploy 
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Strategy Technologies

Scalable Infrastructure / Elastic Spark, Cassandra, Kafka

Partition For Scale, Network Topology Aware Cassandra, Spark, Kafka, Akka Cluster

Replicate For Resiliency Spark,Cassandra, Akka Cluster all hash the node ring

Share Nothing, Masterless Cassandra, Akka Cluster both Dynamo style

Fault Tolerance / No Single Point of Failure Spark, Cassandra, Kafka

Replay From Any Point Of Failure Spark, Cassandra, Kafka, Akka + Akka Persistence

Failure Detection Cassandra, Spark, Akka, Kafka

Consensus & Gossip Cassandra & Akka Cluster

Parallelism Spark, Cassandra, Kafka, Akka

Asynchronous Data Passing Kafka, Akka, Spark

Fast, Low Latency, Data Locality Cassandra, Spark, Kafka

Location Transparency Akka, Spark, Cassandra, Kafka

My Nerdy Chart
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SMACK
• Scala & Spark Streaming 
• Mesos 
• Akka 
• Cassandra 
• Kafka

60
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Spark Streaming
• One runtime for streaming and batch processing 

• Join streaming and static data sets  
• No code duplication 
• Easy, flexible data ingestion from disparate sources to 

disparate sinks 
• Easy to reconcile queries against multiple sources 
• Easy integration of KV durable storage
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Training 
Data

Feature 
Extraction

Model 
Training

Model 
Testing

Test Data

Your Data Extract Data To Analyze

Train your model to predict
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val context = new StreamingContext(conf, Milliseconds(500)) 
val model = KMeans.train(dataset, ...) // learn offline 
val stream = KafkaUtils 
  .createStream(ssc, zkQuorum, group,..) 
  .map(event => model.predict(event.feature)) 
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High performance concurrency framework for Scala and 
Java  
• Fault Tolerance 
• Asynchronous messaging and data processing  
• Parallelization 
• Location Transparency 
• Local / Remote Routing  
• Akka: Cluster / Persistence / Streams
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Akka Actors

64

A distribution and concurrency abstraction 
• Compute Isolation 
• Behavioral Context Switching 
• No Exposed Internal State 
• Event-based messaging 
• Easy parallelism  
• Configurable fault tolerance
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High Performance Streaming 
Built On Akka

• Apache Flink - uses Akka for  
• Actor model and hierarchy, Deathwatch and distributed 

communication between job and task managers 
• GearPump - models the entire streaming system with 

an actor hierarchy 
• Supervision, Isolation, Concurrency 
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Apache Cassandra
• Extremely Fast 
• Extremely Scalable 
• Multi-Region / Multi-Datacenter 
• Always On 

• No single point of failure 
• Survive regional outages 

• Easy to operate 
• Automatic & configurable replication
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90% of streaming data at Netflix is 
stored in Cassandra
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STREAM INTEGRATION 
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KillrWeather
http://github.com/killrweather/killrweather 

A reference application showing how to easily integrate streaming and 
batch data processing with Apache Spark Streaming, Apache 
Cassandra, Apache Kafka and Akka for fast, streaming computations 
on time series data in asynchronous event-driven environments.

http://github.com/databricks/reference-apps/tree/master/timeseries/scala/timeseries-weather/src/main/scala/com/
databricks/apps/weather

https://twitter.com/helenaedelson
http://github.com/killrweather/killrweather
http://github.com/databricks/reference-apps/tree/master/timeseries/scala/timeseries-weather/src/main/scala/com/databricks/apps/weather
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val context = new StreamingContext(conf, Seconds(1))  

val stream = KafkaUtils.createDirectStream[Array[Byte], 
Array[Byte], DefaultDecoder, DefaultDecoder]( 
        context, kafkaParams, kafkaTopics) 

stream.flatMap(func1).saveToCassandra(ks1,table1)  
stream.map(func2).saveToCassandra(ks1,table1)  

context.start()   

70

Kafka, Spark Streaming and Cassandra
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class KafkaProducerActor[K, V](config: ProducerConfig) extends Actor { 
     
  override val supervisorStrategy =  
    OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1.minute) { 
      case _: ActorInitializationException   => Stop 
      case _: FailedToSendMessageException   => Restart 
      case _: ProducerClosedException        => Restart 
      case _: NoBrokersForPartitionException => Escalate 
      case _: KafkaException                 => Escalate 
      case _: Exception                      => Escalate 
    } 
 
  private val producer = new KafkaProducer[K, V](producerConfig) 
 
  override def postStop(): Unit = producer.close() 
 
  def receive = { 
    case e: KafkaMessageEnvelope[K,V] => producer.send(e) 
  } 
} 71

 Kafka, Spark Streaming, Cassandra & Akka
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Spark Streaming, ML, Kafka & C*
val ssc = new StreamingContext(new SparkConf()…, Seconds(5) 

val testData = ssc.cassandraTable[String](keyspace,table).map(LabeledPoint.parse)  
 
val trainingStream = KafkaUtils.createStream[K, V, KDecoder, VDecoder]( 
                     ssc, kafkaParams, topicMap, StorageLevel.MEMORY_ONLY) 
                    .map(_._2).map(LabeledPoint.parse) 

trainingStream.saveToCassandra("ml_keyspace", "raw_training_data")  
  
val model = new StreamingLinearRegressionWithSGD()  
  .setInitialWeights(Vectors.dense(weights)) 
  .trainOn(trainingStream) 

//Making predictions on testData 
model 
.predictOnValues(testData.map(lp => (lp.label, lp.features))) 
.saveToCassandra("ml_keyspace", "predictions")
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STREAM INTEGRATION: 
DATA LOCALITY & 
TIMESERIES  

73

SMACK
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class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)  
  extends AggregationActor(settings: Settings) { 
  import settings._ 
  
  val stream = KafkaUtils.createStream(  
    ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
    .map(_._2.split(","))  
    .map(RawWeatherData(_)) 
  
  stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
  stream 
    .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
    .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  
  
}

 Kafka, Spark Streaming, Cassandra & Akka
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class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)  
  extends AggregationActor(settings: Settings) { 
  import settings._ 
  
  val stream = KafkaUtils.createStream(  
    ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
    .map(_._2.split(","))  
    .map(RawWeatherData(_)) 
  
  stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
  stream 
    .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
    .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  
  
}
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Now we can replay 
• On failure 
• Reprocessing on code changes 
• Future computation...
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Here we are pre-aggregating to a table for fast querying later -  
in other secondary stream aggregation computations and scheduled computing

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)  
  extends AggregationActor(settings: Settings) { 
  import settings._ 
  
  val stream = KafkaUtils.createStream(  
    ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
    .map(_._2.split(","))  
    .map(RawWeatherData(_)) 
  
  stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
  stream 
    .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
    .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  
  
}
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CREATE TABLE weather.raw_data ( 
   wsid text, year int, month int, day int, hour int,              
   temperature double, dewpoint double, pressure double, 
   wind_direction int, wind_speed double, one_hour_precip   
   PRIMARY KEY ((wsid), year, month, day, hour) 
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

CREATE TABLE daily_aggregate_precip ( 
   wsid text, 
   year int, 
   month int, 
   day int, 
   precipitation counter, 
   PRIMARY KEY ((wsid), year, month, day)  
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC);

Data Model (simplified)
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class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)  
  extends AggregationActor(settings: Settings) { 
  import settings._ 
  
  val stream = KafkaUtils.createStream(  
    ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
    .map(_._2.split(","))  
    .map(RawWeatherData(_)) 
  
  stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
  stream 
    .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
    .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  
  
}

Gets the partition key: Data Locality 
Spark C* Connector feeds this to Spark

Cassandra Counter column in our schema,
no expensive `reduceByKey` needed. Simply 
let C* do it: not expensive and fast.
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The Thing About S3
"Amazon S3 is a simple key-value store" -  
docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html 

• Keys 2015/05/01 and 2015/05/02 do not live in the “same 
place”  

• You can roll your own with AmazonS3Client and do the heavy 
lifting yourself and throw that data into Spark 

80
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CREATE TABLE weather.raw_data ( 
   wsid text, year int, month int, day int, hour int,              
   temperature double, dewpoint double, pressure double, 
   wind_direction int, wind_speed double, one_hour_precip   
   PRIMARY KEY ((wsid), year, month, day, hour) 
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

C* Clustering Columns Writes by most recent
Reads return most recent first

Timeseries Data

81

Cassandra will automatically sort by most recent for both write and read
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val multipleStreams = for (i <- numstreams) { 
  streamingContext.receiverStream[HttpRequest](new HttpReceiver(port)) 
} 

streamingContext.union(multipleStreams) 
                .map { httpRequest => TimelineRequestEvent(httpRequest)} 
                .saveToCassandra("requests_ks", "timeline")

CREATE TABLE IF NOT EXISTS requests_ks.timeline ( 
  timesegment bigint, url text, t_uuid timeuuid, method text, headers map <text, text>, body text, 
  PRIMARY KEY ((url, timesegment) , t_uuid) 
);

Record Every Event In The Order In 
Which It Happened, Per URL

timesegment protects from writing 
unbounded partitions.

timeuuid protects from simultaneous  
events over-writing one another. 
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val stream = KafkaUtils.createDirectStream(...) 
  .map(_._2.split(",")) 
  .map(RawWeatherData(_)) 

 
stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw) 

stream 
    .map(hour => (hour.id, hour.year, hour.month, hour.day, hour.oneHourPrecip)) 
    .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  

83

Replay and Reprocess - Any Time 
Data is on the nodes doing the querying 
- Spark C* Connector - Partitions

• Timeseries data with Data Locality  
• Co-located Spark + Cassandra nodes 
• S3 does not give you

Cassandra & Spark Streaming: 
Data Locality For Free®
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class PrecipitationActor(ssc: StreamingContext, settings: Settings) extends AggregationActor { 
  import akka.pattern.pipe 
 
  def receive : Actor.Receive = {  
    case GetTopKPrecipitation(wsid, year, k) => topK(wsid, year, k, sender) 
  } 
   
  /** Returns the 10 highest temps for any station in the `year`. */ 
  def topK(wsid: String, year: Int, k: Int, requester: ActorRef): Unit = { 
    val toTopK = (aggregate: Seq[Double]) => TopKPrecipitation(wsid, year, 
      ssc.sparkContext.parallelize(aggregate).top(k).toSeq) 
 
    ssc.cassandraTable[Double](keyspace, dailytable)  
      .select("precipitation")  
      .where("wsid = ? AND year = ?", wsid, year) 
      .collectAsync().map(toTopK) pipeTo requester 
  } 
}

84

Queries pre-aggregated  
tables from the stream

Compute Isolation: Actor
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class TemperatureActor(sc: SparkContext, settings: Settings) extends AggregationActor { 
  import akka.pattern.pipe 
 
  def receive: Actor.Receive = { 
    case e: GetMonthlyHiLowTemperature => highLow(e, sender) 
  } 
  
  def highLow(e: GetMonthlyHiLowTemperature, requester: ActorRef): Unit = 
    sc.cassandraTable[DailyTemperature](keyspace, daily_temperature_aggr)  
      .where("wsid = ? AND year = ? AND month = ?", e.wsid, e.year, e.month) 
      .collectAsync() 
      .map(MonthlyTemperature(_, e.wsid, e.year, e.month)) pipeTo requester 
   
}

C* data is automatically sorted by most recent - due to our data model. 
Additional Spark or collection sort not needed.

Efficient Batch Analysis
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A NEW APPROACH
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Simplification
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Everything On The Streaming Platform
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Reprocessing
• Start a new stream job to re-process from the 

beginning 
• Save re-processed data as a version table 
• Application should then read from new version table  
• Stop old version of the job, and delete the old table 
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One Pipeline For Fast & Big Data
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• How do I make the SMACK stack work for ML, Ad-Hoc + Fast Data? 

• How do I combine Spark Streaming + Ad Hoc and have good 

performance?

https://twitter.com/helenaedelson


@helenaedelson

FiloDB
Designed to ingest streaming data, including machine, 
event, and time-series data, and run very fast analytical 
queries over them. 

90

• Distributed, versioned, columnar analytics database 
• Built for fast streaming analytics & OLAP 
• Currently based on Apache Cassandra & Spark 
• github.com/tuplejump/FiloDB

https://twitter.com/helenaedelson
http://github.com/tuplejump/FiloDB
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Breakthrough Performance For 
Analytical Queries

• Queries run in parallel in Spark for scale-out ad-hoc analysis 
• Fast for interactive data science and ad hoc queries 
• Up to 200x Faster Queries for Spark on Cassandra 2.x 
• Parquet Performance with Cassandra Flexibility 
• Increased performance ceiling coming
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Versioning & Why It Matters
• Immutability 
• Databases: let's mutate one giant piece of state in place 

• Basically hasn't changed since 1970's! 
• With Big Data and streaming, incremental processing is 

increasingly important
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FiloDB Versioning
FiloDB is built on functional principles and lets you version and 
layer changes 
• Incrementally add a column or a few rows as a new version 
• Add changes as new versions, don't mutate! 
•  Writes are idempotent - exactly once ingestion  
• Easily control what versions to query 
• Roll back changes inexpensively 
• Stream out new versions as continuous queries :)
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No Cassandra? Keep All In Memory
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• Unlike RDDs and DataFrames, FiloDB can ingest new data, 
and still be fast 

• Unlike RDDs, FiloDB can filter in multiple ways, no need for 
entire table scan
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Spark Streaming to FiloDB
val ratingsStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder( 
ssc, kafkaParams, topics) 
 
ratingsStream.foreachRDD { (message: RDD[(String, String)], batchTime: Time) => 
  val df = message 
    .map(_._2.split(",")) 
    .map(rating => Rating(trim(rating)) 
      .toDF("fromuserid", "touserid", "rating")  
 
  // add the batch time to the DataFrame 
  val dfWithBatchTime = df.withColumn( 
    "batch_time", org.apache.spark.sql.functions.lit(batchTime.milliseconds)) 
 
  // save the DataFrame to FiloDB 
  dfWithBatchTime.write.format("filodb.spark")  
    .option("dataset", "ratings")  
    .save() 
}

95
.dfWithBatchTime.write.format("org.apache.spark.sql.cassandra")
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Architectyr?

"This is a giant mess" 
- Going Real-time - Data Collection and Stream Processing with Apache Kafka, Jay Kreps 96
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     @helenaedelson 
     github.com/helena 
      helena@tuplejump.com 
      slideshare.net/helenaedelson

THANKS!
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