
RETHINKING STREAMING ANALYTICS
FOR SCALE
Helena Edelson

1
@helenaedelson

https://twitter.com/helenaedelson

@helenaedelson

Who Is This Person?
• VP of Product Engineering @Tuplejump

• Big Data, Analytics, Cloud Engineering, Cyber Security

• Committer / Contributor to FiloDB, Spark Cassandra

Connector, Akka, Spring Integration

2

• @helenaedelson

• github.com/helena

• linkedin.com/in/helenaedelson

• slideshare.net/helenaedelson

https://twitter.com/helenaedelson
https://twitter.com/tuplejump
https://twitter.com/helenaedelson
http://github.com/helena
https://www.linkedin.com/in/helenaedelson
http://www.slideshare.net/helenaedelson

@helenaedelson

https://twitter.com/helenaedelson

@helenaedelson

Tuplejump - Open Source
github.com/tuplejump

 • FiloDB - part of this talk
 • Calliope - the first Spark-Cassandra integration
 • Stargate - an open source Lucene indexer for Cassandra
 • SnackFS - open source HDFS for Cassandra

4

https://twitter.com/helenaedelson
http://github.com/tuplejump
http://github.com/tuplejump/FiloDB
http://tuplejump.github.io/calliope/
http://tuplejump.github.io/stargate/
https://github.com/tuplejump/snackfs

@helenaedelson

What Will We Talk About
• The Problem Domain
• Example Context
• Rethinking Architecture

• We don't have to look far to look back
• Streaming & Data Science
• Challenging Assumptions
• Revisiting the goal and the stack

• Integration
• Simplification

5

https://twitter.com/helenaedelson

@helenaedelson

THE PROBLEM DOMAIN
Delivering Meaning From A Flood Of Data

6
@helenaedelson

https://twitter.com/helenaedelson
https://twitter.com/helenaedelson

@helenaedelson

The Problem Domain
Need to build scalable, fault tolerant, distributed data
processing systems that can handle massive amounts of
data from disparate sources, with different data structures.

7

https://twitter.com/helenaedelson

@helenaedelson

Translation
How to build adaptable, elegant systems
for complex analytics and learning tasks
to run as large-scale clustered dataflows

8

https://twitter.com/helenaedelson

@helenaedelson

How Much Data

Yottabyte = quadrillion gigabytes or septillion bytes

We all have a lot of data
• Terabytes
• Petabytes...

http://en.wikipedia.org/wiki/Yottabyte

9

100 trillion $ in DC fees

https://twitter.com/helenaedelson
http://en.wikipedia.org/wiki/Yottabyte

@helenaedelson

Delivering Meaning
• Deliver meaning in sec/sub-sec latency
• Disparate data sources & schemas
• Billions of events per second
• High-latency batch processing
• Low-latency stream processing
• Aggregation of historical from the stream

10

https://twitter.com/helenaedelson

@helenaedelson

While We Monitor, Predict & Proactively
Handle

• Massive event spikes & bursty traffic
• Fast producers / slow consumers
• Network partitioning & out of sync systems
• DC down
• Wait, we've DDOS'd ourselves from fast streams?
• Autoscale issues

– When we scale down VMs how do we not lose data?

11

https://twitter.com/helenaedelson

@helenaedelson

And stay within our
AWS / Rackspace budget

12

https://twitter.com/helenaedelson

@helenaedelson

EXAMPLE CONTEXT:
CYBER SECURITY

Hunting The Hunter

13

https://twitter.com/helenaedelson

@helenaedelson

• Track activities of international threat actor groups,
nation-state, criminal or hactivist
• Intrusion attempts
• Actual breaches

• Profile adversary activity
• Analysis to understand their motives, anticipate actions

and prevent damage

Adversary Profiling & Hunting:
Online & Offline

14

https://twitter.com/helenaedelson

@helenaedelson

• Machine events
• Endpoint intrusion detection
• Anomalies/indicators of attack or compromise

• Machine learning
• Training models based on patterns from historical data
• Predict potential threats
• profiling for adversary Identification

Stream Processing

15

https://twitter.com/helenaedelson

@helenaedelson

Data Requirements & Description
• Streaming event data

• Log messages
• User activity records
• System ops & metrics data

• Disparate data sources
• Wildly differing data structures

16

https://twitter.com/helenaedelson

@helenaedelson

Massive Amounts Of Data
• One machine can generate 2+ TB per day
• Tracking millions of devices
• 1 million writes per second - bursty
• High % writes, lower % reads

17

https://twitter.com/helenaedelson

@helenaedelson

RETHINKING
ARCHITECTURE

18

https://twitter.com/helenaedelson

@helenaedelson
19

few years

in Silicon Valley

Cloud Engineering team

@helenaedelson

https://twitter.com/helenaedelson
https://twitter.com/helenaedelson

@helenaedelson
20

Batch analytics data flow from several years ago looked like...

https://twitter.com/helenaedelson

@helenaedelson
21

Batch analytics data flow from several years ago looked like...

https://twitter.com/helenaedelson

@helenaedelson
22

Transforming data multiple times, multiple ways

https://twitter.com/helenaedelson

@helenaedelson
23

Sweet, let's triple the code we have to update and regression test
every time our analytics logic changes

https://twitter.com/helenaedelson

@helenaedelson

STREAMING &
DATA SCIENCE

Enter Streaming for Big Data

24

https://twitter.com/helenaedelson

@helenaedelson

Streaming:
Big Data, Fast Data, Fast Timeseries Data
• Reactive processing of data as it comes in to derive

instant insights
• Is this enough?

• Need to combine with existing big data, historical
processing, ad hoc queries

25

https://twitter.com/helenaedelson

@helenaedelson

New Requirements, Common Use Case

I need fast access to historical data on the fly for
predictive modeling with real time data from the stream

26

https://twitter.com/helenaedelson

@helenaedelson

It's Not A Stream It's A Flood
• Netflix

• 50 - 100 billion events per day
• 1 - 2 million events per second at peak

• LinkedIn
• 500 billion write events per day
• 2.5 trillion read events per day
• 4.5 million events per second at peak with Kafka
• 1 PB of stream data

27

https://twitter.com/helenaedelson

@helenaedelson

Which Translates To
• Do it fast
• Do it cheap
• Do it at scale

28

https://twitter.com/helenaedelson

@helenaedelson

Oh, and don't loose data

29

https://twitter.com/helenaedelson

@helenaedelson

AND THEN WE GREEKED OUT

30

Lambda

https://twitter.com/helenaedelson

@helenaedelson

Lambda Architecture
A data-processing architecture designed to handle
massive quantities of data by taking advantage of both
batch and stream processing methods.

31

• Or, "How to beat the CAP theorum"
• An approach coined by Nathan Mars
• This was a huge stride forward

https://twitter.com/helenaedelson
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

@helenaedelson

• Doing complex asynchronous transformations
• That need to run with low latency (say, a few seconds to a few

hours)
• Examples

• Weather analytics and prediction system
• News recommendation system

32

Applications Using Lambda Architecture

https://twitter.com/helenaedelson

@helenaedelson
https://www.mapr.com/developercentral/lambda-architecture 33

https://twitter.com/helenaedelson
https://www.mapr.com/developercentral/lambda-architecture

@helenaedelson

Implementing Is Hard
• Real-time pipeline backed by KV store for updates
• Many moving parts - KV store, real time, batch
• Running similar code in two places
• Still ingesting data to Parquet/HDFS
• Reconcile queries against two different places

34

https://twitter.com/helenaedelson

@helenaedelson

Performance Tuning & Monitoring
on so many disparate systems

35

Also Hard

https://twitter.com/helenaedelson

@helenaedelson
36

λ: Streaming & Batch Flows

Evolution Or Just Addition?
Or Just Technical Debt?

https://twitter.com/helenaedelson

@helenaedelson

Lambda Architecture
Ingest an immutable sequence of records is captured
and fed into
• a batch system
• and a stream processing system
in parallel

37

https://twitter.com/helenaedelson

@helenaedelson

WAIT, DUAL SYSTEMS?

38

Challenge Assumptions

https://twitter.com/helenaedelson

@helenaedelson

Which Translates To
• Performing analytical computations & queries in dual

systems
• Duplicate Code
• Untyped Code - Strings
• Spaghetti Architecture for Data Flows
• One Busy Network

39

https://twitter.com/helenaedelson

@helenaedelson
40

Why?
• Why support code, machines and running services of

two analytics systems?
• Is a separate batch system needed?
• Can we do everything in a streaming system?

https://twitter.com/helenaedelson

@helenaedelson

YES

41

• A unified system for streaming and batch
• Real-time processing and reprocessing

• Code changes
• Fault tolerance

http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html - Jay Kreps

https://twitter.com/helenaedelson
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html

@helenaedelson

ANOTHER ASSUMPTION:
ETL

42

Challenge Assumptions

https://twitter.com/helenaedelson

@helenaedelson

Extract, Transform, Load (ETL)
• Extraction of data from one system into another
• Transforming it
• Loading it into another system

43

https://twitter.com/helenaedelson

@helenaedelson

ETL
• Each step can introduce errors and risk
• Writing intermediary files
• Parsing and re-parsing plain text
• Tools can cost millions of dollars
• Decreases throughput
• Increased complexity
• Can duplicate data after failover

44

https://twitter.com/helenaedelson

@helenaedelson

Extract, Transform, Load (ETL)
"Designing and maintaining the ETL process is often

considered one of the most difficult and resource-
intensive portions of a data warehouse project."

http://docs.oracle.com/cd/B19306_01/server.102/b14223/ettover.htm

45

Also unnecessarily redundant and often typeless

https://twitter.com/helenaedelson
http://docs.oracle.com/cd/B19306_01/server.102/b14223/ettover.htm

@helenaedelson

And let's duplicate the pattern over
all our DataCenters

46

https://twitter.com/helenaedelson

@helenaedelson
47

These are not the solutions you're looking for

https://twitter.com/helenaedelson

@helenaedelson

REVISITING THE GOAL

48

https://twitter.com/helenaedelson

@helenaedelson

Removing The 'E' in ETL
Thanks to technologies like Avro and Protobuf we don’t need the
“E” in ETL. Instead of text dumps that you need to parse over
multiple systems:

E.g Scala and Avro

• A return to strong typing in the big data ecosystem

• Can work with binary data that remains strongly typed

49

https://twitter.com/helenaedelson

@helenaedelson

Removing The 'L' in ETL
If data collection is backed by a distributed messaging
system (e.g. Kafka) you can do real-time fanout of the
ingested data to all consumers. No need to batch "load".

• From there each consumer can do their own transformations

50

https://twitter.com/helenaedelson

@helenaedelson
51

#NoMoreGreekLetterArchitectures

https://twitter.com/helenaedelson

@helenaedelson

NoETL

52

https://twitter.com/helenaedelson

@helenaedelson

Pick Technologies Wisely
Based on your requirements
• Latency

• Real time / Sub-Second: < 100ms
• Near real time (low): > 100 ms or a few seconds - a few hours

• Consistency
• Highly Scalable
• Topology-Aware & Multi-Datacenter support
• Partitioning Collaboration - do they play together well

53

https://twitter.com/helenaedelson

@helenaedelson

And Remember
• Flows erode

• Entropy happens

• "Everything fails, all the time" - Kyle Kingsbury

54

https://twitter.com/helenaedelson

@helenaedelson

REVISITING THE STACK

55

https://twitter.com/helenaedelson

@helenaedelson

Stream Processing & Frameworks

56

+ GearPump

https://twitter.com/helenaedelson

@helenaedelson

Strategies

57

• Partition For Scale & Data Locality
• Replicate For Resiliency
• Share Nothing
• Fault Tolerance
• Asynchrony
• Async Message Passing
• Memory Management

• Data lineage and reprocessing in
runtime
• Parallelism
• Elastically Scale
• Isolation
• Location Transparency

https://twitter.com/helenaedelson

@helenaedelson

Fault Tolerance
• Graceful service degradation
• Data integrity / accuracy under failure
• Resiliency during traffic spikes
• Pipeline congestion / bottlenecks
• Easy to debug and find failure source
• Easy to deploy

58

https://twitter.com/helenaedelson

@helenaedelson

Strategy Technologies

Scalable Infrastructure / Elastic Spark, Cassandra, Kafka

Partition For Scale, Network Topology Aware Cassandra, Spark, Kafka, Akka Cluster

Replicate For Resiliency Spark,Cassandra, Akka Cluster all hash the node ring

Share Nothing, Masterless Cassandra, Akka Cluster both Dynamo style

Fault Tolerance / No Single Point of Failure Spark, Cassandra, Kafka

Replay From Any Point Of Failure Spark, Cassandra, Kafka, Akka + Akka Persistence

Failure Detection Cassandra, Spark, Akka, Kafka

Consensus & Gossip Cassandra & Akka Cluster

Parallelism Spark, Cassandra, Kafka, Akka

Asynchronous Data Passing Kafka, Akka, Spark

Fast, Low Latency, Data Locality Cassandra, Spark, Kafka

Location Transparency Akka, Spark, Cassandra, Kafka

My Nerdy Chart

59

https://twitter.com/helenaedelson

@helenaedelson

SMACK
• Scala & Spark Streaming
• Mesos
• Akka
• Cassandra
• Kafka

60

https://twitter.com/helenaedelson

@helenaedelson

Spark Streaming
• One runtime for streaming and batch processing

• Join streaming and static data sets
• No code duplication
• Easy, flexible data ingestion from disparate sources to

disparate sinks
• Easy to reconcile queries against multiple sources
• Easy integration of KV durable storage

61

https://twitter.com/helenaedelson

@helenaedelson

Training
Data

Feature
Extraction

Model
Training

Model
Testing

Test Data

Your Data Extract Data To Analyze

Train your model to predict

62

val context = new StreamingContext(conf, Milliseconds(500))
val model = KMeans.train(dataset, ...) // learn offline
val stream = KafkaUtils
 .createStream(ssc, zkQuorum, group,..)
 .map(event => model.predict(event.feature))

https://twitter.com/helenaedelson

@helenaedelson
63

High performance concurrency framework for Scala and
Java
• Fault Tolerance
• Asynchronous messaging and data processing
• Parallelization
• Location Transparency
• Local / Remote Routing
• Akka: Cluster / Persistence / Streams

https://twitter.com/helenaedelson

@helenaedelson

Akka Actors

64

A distribution and concurrency abstraction
• Compute Isolation
• Behavioral Context Switching
• No Exposed Internal State
• Event-based messaging
• Easy parallelism
• Configurable fault tolerance

https://twitter.com/helenaedelson

@helenaedelson

High Performance Streaming
Built On Akka

• Apache Flink - uses Akka for
• Actor model and hierarchy, Deathwatch and distributed

communication between job and task managers
• GearPump - models the entire streaming system with

an actor hierarchy
• Supervision, Isolation, Concurrency

65

https://twitter.com/helenaedelson

@helenaedelson

Apache Cassandra
• Extremely Fast
• Extremely Scalable
• Multi-Region / Multi-Datacenter
• Always On

• No single point of failure
• Survive regional outages

• Easy to operate
• Automatic & configurable replication

66

https://twitter.com/helenaedelson

@helenaedelson

90% of streaming data at Netflix is
stored in Cassandra

67

https://twitter.com/helenaedelson

@helenaedelson

STREAM INTEGRATION

68

https://twitter.com/helenaedelson

@helenaedelson
69

KillrWeather
http://github.com/killrweather/killrweather

A reference application showing how to easily integrate streaming and
batch data processing with Apache Spark Streaming, Apache
Cassandra, Apache Kafka and Akka for fast, streaming computations
on time series data in asynchronous event-driven environments.

http://github.com/databricks/reference-apps/tree/master/timeseries/scala/timeseries-weather/src/main/scala/com/
databricks/apps/weather

https://twitter.com/helenaedelson
http://github.com/killrweather/killrweather
http://github.com/databricks/reference-apps/tree/master/timeseries/scala/timeseries-weather/src/main/scala/com/databricks/apps/weather

@helenaedelson

val context = new StreamingContext(conf, Seconds(1))

val stream = KafkaUtils.createDirectStream[Array[Byte],
Array[Byte], DefaultDecoder, DefaultDecoder](
 context, kafkaParams, kafkaTopics)

stream.flatMap(func1).saveToCassandra(ks1,table1)
stream.map(func2).saveToCassandra(ks1,table1)

context.start()

70

Kafka, Spark Streaming and Cassandra

https://twitter.com/helenaedelson

@helenaedelson

class KafkaProducerActor[K, V](config: ProducerConfig) extends Actor { 
  
 override val supervisorStrategy =  
 OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1.minute) { 
 case _: ActorInitializationException => Stop 
 case _: FailedToSendMessageException => Restart
 case _: ProducerClosedException => Restart
 case _: NoBrokersForPartitionException => Escalate
 case _: KafkaException => Escalate 
 case _: Exception => Escalate 
 }
 
 private val producer = new KafkaProducer[K, V](producerConfig) 
 
 override def postStop(): Unit = producer.close()
 
 def receive = { 
 case e: KafkaMessageEnvelope[K,V] => producer.send(e) 
 } 
} 71

 Kafka, Spark Streaming, Cassandra & Akka

https://twitter.com/helenaedelson

@helenaedelson

Spark Streaming, ML, Kafka & C*
val ssc = new StreamingContext(new SparkConf()…, Seconds(5) 

val testData = ssc.cassandraTable[String](keyspace,table).map(LabeledPoint.parse)  
 
val trainingStream = KafkaUtils.createStream[K, V, KDecoder, VDecoder]( 
 ssc, kafkaParams, topicMap, StorageLevel.MEMORY_ONLY)
 .map(_._2).map(LabeledPoint.parse)

trainingStream.saveToCassandra("ml_keyspace", "raw_training_data")  
  
val model = new StreamingLinearRegressionWithSGD()  
 .setInitialWeights(Vectors.dense(weights)) 
 .trainOn(trainingStream)

//Making predictions on testData
model
.predictOnValues(testData.map(lp => (lp.label, lp.features)))
.saveToCassandra("ml_keyspace", "predictions")

72

https://twitter.com/helenaedelson

@helenaedelson

STREAM INTEGRATION:
DATA LOCALITY &
TIMESERIES

73

SMACK

https://twitter.com/helenaedelson

@helenaedelson
74

https://twitter.com/helenaedelson

@helenaedelson
75

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) { 
 import settings._
  
 val stream = KafkaUtils.createStream( 
 ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
 .map(_._2.split(","))  
 .map(RawWeatherData(_))
  
 stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
 stream
 .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
 .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  

}

 Kafka, Spark Streaming, Cassandra & Akka

https://twitter.com/helenaedelson

@helenaedelson

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) { 
 import settings._
  
 val stream = KafkaUtils.createStream( 
 ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
 .map(_._2.split(","))  
 .map(RawWeatherData(_))
  
 stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
 stream
 .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
 .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  

}

76

Now we can replay
• On failure
• Reprocessing on code changes
• Future computation...

https://twitter.com/helenaedelson

@helenaedelson
77

Here we are pre-aggregating to a table for fast querying later -
in other secondary stream aggregation computations and scheduled computing

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) { 
 import settings._
  
 val stream = KafkaUtils.createStream( 
 ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
 .map(_._2.split(","))  
 .map(RawWeatherData(_))
  
 stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
 stream
 .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
 .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  

}

https://twitter.com/helenaedelson

@helenaedelson

CREATE TABLE weather.raw_data ( 
 wsid text, year int, month int, day int, hour int,  
 temperature double, dewpoint double, pressure double,
 wind_direction int, wind_speed double, one_hour_precip
 PRIMARY KEY ((wsid), year, month, day, hour) 
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

CREATE TABLE daily_aggregate_precip ( 
 wsid text, 
 year int, 
 month int, 
 day int, 
 precipitation counter, 
 PRIMARY KEY ((wsid), year, month, day)  
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC);

Data Model (simplified)

78

https://twitter.com/helenaedelson

@helenaedelson
79

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) { 
 import settings._
  
 val stream = KafkaUtils.createStream( 
 ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)  
 .map(_._2.split(","))  
 .map(RawWeatherData(_))
  
 stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)  
 
 stream
 .map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))  
 .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  

}

Gets the partition key: Data Locality
Spark C* Connector feeds this to Spark

Cassandra Counter column in our schema,
no expensive `reduceByKey` needed. Simply
let C* do it: not expensive and fast.

https://twitter.com/helenaedelson

@helenaedelson

The Thing About S3
"Amazon S3 is a simple key-value store" -
docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html

• Keys 2015/05/01 and 2015/05/02 do not live in the “same
place”

• You can roll your own with AmazonS3Client and do the heavy
lifting yourself and throw that data into Spark

80

https://twitter.com/helenaedelson
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html

@helenaedelson

CREATE TABLE weather.raw_data ( 
 wsid text, year int, month int, day int, hour int,  
 temperature double, dewpoint double, pressure double,
 wind_direction int, wind_speed double, one_hour_precip
 PRIMARY KEY ((wsid), year, month, day, hour) 
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

C* Clustering Columns Writes by most recent
Reads return most recent first

Timeseries Data

81

Cassandra will automatically sort by most recent for both write and read

https://twitter.com/helenaedelson

@helenaedelson
82

val multipleStreams = for (i <- numstreams) {
 streamingContext.receiverStream[HttpRequest](new HttpReceiver(port))
}

streamingContext.union(multipleStreams)
 .map { httpRequest => TimelineRequestEvent(httpRequest)}
 .saveToCassandra("requests_ks", "timeline")

CREATE TABLE IF NOT EXISTS requests_ks.timeline (
 timesegment bigint, url text, t_uuid timeuuid, method text, headers map <text, text>, body text,
 PRIMARY KEY ((url, timesegment) , t_uuid)
);

Record Every Event In The Order In
Which It Happened, Per URL

timesegment protects from writing
unbounded partitions.

timeuuid protects from simultaneous
events over-writing one another.

https://twitter.com/helenaedelson

@helenaedelson

val stream = KafkaUtils.createDirectStream(...) 
 .map(_._2.split(",")) 
 .map(RawWeatherData(_))

 
stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)

stream
 .map(hour => (hour.id, hour.year, hour.month, hour.day, hour.oneHourPrecip)) 
 .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)  

83

Replay and Reprocess - Any Time
Data is on the nodes doing the querying
- Spark C* Connector - Partitions

• Timeseries data with Data Locality
• Co-located Spark + Cassandra nodes
• S3 does not give you

Cassandra & Spark Streaming:
Data Locality For Free®

https://twitter.com/helenaedelson

@helenaedelson

class PrecipitationActor(ssc: StreamingContext, settings: Settings) extends AggregationActor { 
 import akka.pattern.pipe
 
 def receive : Actor.Receive = {  
 case GetTopKPrecipitation(wsid, year, k) => topK(wsid, year, k, sender) 
 } 
  
 /** Returns the 10 highest temps for any station in the `year`. */ 
 def topK(wsid: String, year: Int, k: Int, requester: ActorRef): Unit = { 
 val toTopK = (aggregate: Seq[Double]) => TopKPrecipitation(wsid, year, 
 ssc.sparkContext.parallelize(aggregate).top(k).toSeq) 
 
 ssc.cassandraTable[Double](keyspace, dailytable)  
 .select("precipitation")  
 .where("wsid = ? AND year = ?", wsid, year) 
 .collectAsync().map(toTopK) pipeTo requester 
 } 
}

84

Queries pre-aggregated
tables from the stream

Compute Isolation: Actor

https://twitter.com/helenaedelson

@helenaedelson
85

class TemperatureActor(sc: SparkContext, settings: Settings) extends AggregationActor { 
 import akka.pattern.pipe
 
 def receive: Actor.Receive = { 
 case e: GetMonthlyHiLowTemperature => highLow(e, sender) 
 } 
  
 def highLow(e: GetMonthlyHiLowTemperature, requester: ActorRef): Unit = 
 sc.cassandraTable[DailyTemperature](keyspace, daily_temperature_aggr)  
 .where("wsid = ? AND year = ? AND month = ?", e.wsid, e.year, e.month) 
 .collectAsync() 
 .map(MonthlyTemperature(_, e.wsid, e.year, e.month)) pipeTo requester

}

C* data is automatically sorted by most recent - due to our data model.
Additional Spark or collection sort not needed.

Efficient Batch Analysis

https://twitter.com/helenaedelson

@helenaedelson

A NEW APPROACH

86

Simplification

https://twitter.com/helenaedelson

@helenaedelson

Everything On The Streaming Platform

87

https://twitter.com/helenaedelson

@helenaedelson

Reprocessing
• Start a new stream job to re-process from the

beginning
• Save re-processed data as a version table
• Application should then read from new version table
• Stop old version of the job, and delete the old table

88

https://twitter.com/helenaedelson

@helenaedelson

One Pipeline For Fast & Big Data

89

• How do I make the SMACK stack work for ML, Ad-Hoc + Fast Data?

• How do I combine Spark Streaming + Ad Hoc and have good

performance?

https://twitter.com/helenaedelson

@helenaedelson

FiloDB
Designed to ingest streaming data, including machine,
event, and time-series data, and run very fast analytical
queries over them.

90

• Distributed, versioned, columnar analytics database
• Built for fast streaming analytics & OLAP
• Currently based on Apache Cassandra & Spark
• github.com/tuplejump/FiloDB

https://twitter.com/helenaedelson
http://github.com/tuplejump/FiloDB

@helenaedelson

Breakthrough Performance For
Analytical Queries

• Queries run in parallel in Spark for scale-out ad-hoc analysis
• Fast for interactive data science and ad hoc queries
• Up to 200x Faster Queries for Spark on Cassandra 2.x
• Parquet Performance with Cassandra Flexibility
• Increased performance ceiling coming

91

https://twitter.com/helenaedelson

@helenaedelson

Versioning & Why It Matters
• Immutability
• Databases: let's mutate one giant piece of state in place

• Basically hasn't changed since 1970's!
• With Big Data and streaming, incremental processing is

increasingly important

92

https://twitter.com/helenaedelson

@helenaedelson

FiloDB Versioning
FiloDB is built on functional principles and lets you version and
layer changes
• Incrementally add a column or a few rows as a new version
• Add changes as new versions, don't mutate!
• Writes are idempotent - exactly once ingestion
• Easily control what versions to query
• Roll back changes inexpensively
• Stream out new versions as continuous queries :)

93

https://twitter.com/helenaedelson

@helenaedelson

No Cassandra? Keep All In Memory

94

• Unlike RDDs and DataFrames, FiloDB can ingest new data,
and still be fast

• Unlike RDDs, FiloDB can filter in multiple ways, no need for
entire table scan

https://twitter.com/helenaedelson

@helenaedelson

Spark Streaming to FiloDB
val ratingsStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder( 
ssc, kafkaParams, topics) 
 
ratingsStream.foreachRDD { (message: RDD[(String, String)], batchTime: Time) => 
 val df = message 
 .map(_._2.split(",")) 
 .map(rating => Rating(trim(rating)) 
 .toDF("fromuserid", "touserid", "rating")  
 
 // add the batch time to the DataFrame 
 val dfWithBatchTime = df.withColumn( 
 "batch_time", org.apache.spark.sql.functions.lit(batchTime.milliseconds)) 
 
 // save the DataFrame to FiloDB 
 dfWithBatchTime.write.format("filodb.spark")  
 .option("dataset", "ratings")  
 .save() 
}

95
.dfWithBatchTime.write.format("org.apache.spark.sql.cassandra")

https://twitter.com/helenaedelson

@helenaedelson

Architectyr?

"This is a giant mess"
- Going Real-time - Data Collection and Stream Processing with Apache Kafka, Jay Kreps 96

https://twitter.com/helenaedelson

@helenaedelson
97

https://twitter.com/helenaedelson

@helenaedelson
98

https://twitter.com/helenaedelson

@helenaedelson
99

 @helenaedelson
 github.com/helena
 helena@tuplejump.com
 slideshare.net/helenaedelson

THANKS!

https://twitter.com/helenaedelson
https://twitter.com/helenaedelson
http://github.com/helena
mailto:helena@tuplejump.com?subject=
http://www.slideshare.net/helenaedelson

@helenaedelson

https://twitter.com/helenaedelson

