RETHINKING STREAMING ANALYTICS FOR SCALE

Helena Edelson

@helenaedelson

Who Is This Person?

- VP of Product Engineering @Tuplejump
- Big Data, Analytics, Cloud Engineering, Cyber Security
- Committer / Contributor to FiloDB, Spark Cassandra Connector, Akka, Spring Integration
- @helenaedelson
- github.com/helena

- Iinkedin.com/in/helenaedelson
- slideshare.net/helenaedelson

Unify

Blender empowers line-of-business analysts to connect to disparate data sources and unify the data into a single normalized view ready for consumption.

Enrich

Transform, clean, enrich and curate your data easily using familiar tools and process. Blender will automagically build the storage model and ingestion pipeline.

Analyze

With Blender you can easily uncover hidden patterns, unknown correlations and other useful information to reach business decisions faster than ever.

Learn

Blender's predictive analytics framework and bundled learning algorithms along with an intuitive workflow enable you to harness this power with a few clicks.

tuplejump

Data Blender

www.tuplejump.com info@tuplejump.com

Tuplejump - Open Source

github.com/tuplejump

- FiloDB part of this talk
- Calliope the first Spark-Cassandra integration
- Stargate an open source Lucene indexer for Cassandra
- SnackFS open source HDFS for Cassandra

What Will We Talk About

- The Problem Domain
- Example Context
- Rethinking Architecture
 - We don't have to look far to look back
 - Streaming & Data Science
 - Challenging Assumptions
 - Revisiting the goal and the stack
- Integration
- Simplification

Delivering Meaning From A Flood Of Data THE PROBLEM DOMAIN

The Problem Domain

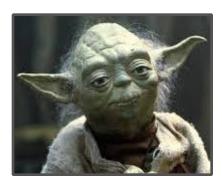
Need to build scalable, fault tolerant, distributed data processing systems that can handle massive amounts of data from disparate sources, with different data structures.

Translation

How to build adaptable, elegant systems for complex analytics and learning tasks to run as large-scale clustered dataflows

How Much Data

- We all have a lot of data
- Terabytes
- Petabytes...



Yottabyte = *quadrillion gigabytes or septillion bytes*

100 trillion \$ in DC fees

http://en.wikipedia.org/wiki/Yottabyte

Delivering Meaning

- Deliver meaning in sec/sub-sec latency
- Disparate data sources & schemas
- Billions of events per second
- High-latency batch processing
- Low-latency stream processing
- Aggregation of historical from the stream

While We Monitor, Predict & Proactively Handle

- Massive event spikes & bursty traffic
- Fast producers / slow consumers
- Network partitioning & out of sync systems
- DC down
- Wait, we've DDOS'd ourselves from fast streams?
- Autoscale issues
 - When we scale down VMs how do we not lose data?

And stay within our AWS / Rackspace budget

Hunting The Hunter EXAMPLE CONTEXT: CYBER SECURITY

Adversary Profiling & Hunting: Online & Offline

- Track activities of international threat actor groups, nation-state, criminal or hactivist
 - Intrusion attempts
 - Actual breaches
- Profile adversary activity
 - Analysis to understand their motives, anticipate actions and prevent damage

Stream Processing

- Machine events
 - Endpoint intrusion detection
 - Anomalies/indicators of attack or compromise
- Machine learning
 - Training models based on patterns from historical data
 - Predict potential threats
 - profiling for adversary Identification

Data Requirements & Description

- Streaming event data
 - Log messages
 - User activity records
 - System ops & metrics data
- Disparate data sources
- Wildly differing data structures

Massive Amounts Of Data

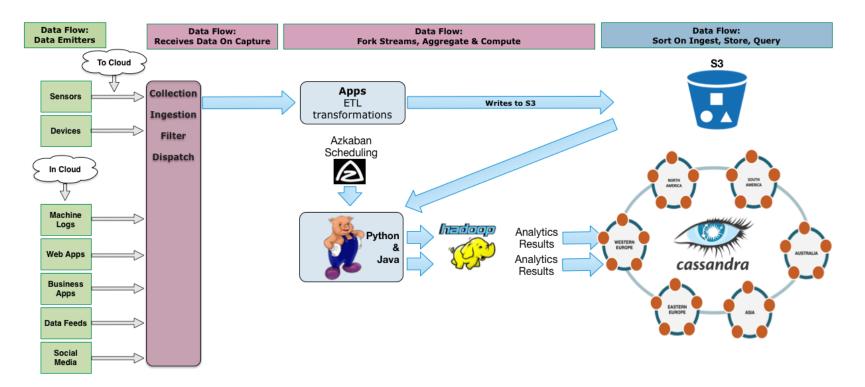
- One machine can generate 2+ TB per day
- Tracking millions of devices
- 1 million writes per second bursty
- High % writes, lower % reads

RETHINKING ARCHITECTURE

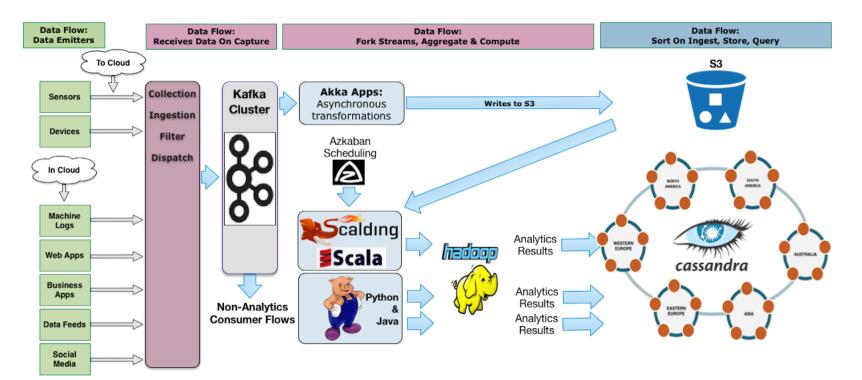
few years in Silicon Valley

@helenaedelson

Batch analytics data flow from several years ago looked like...

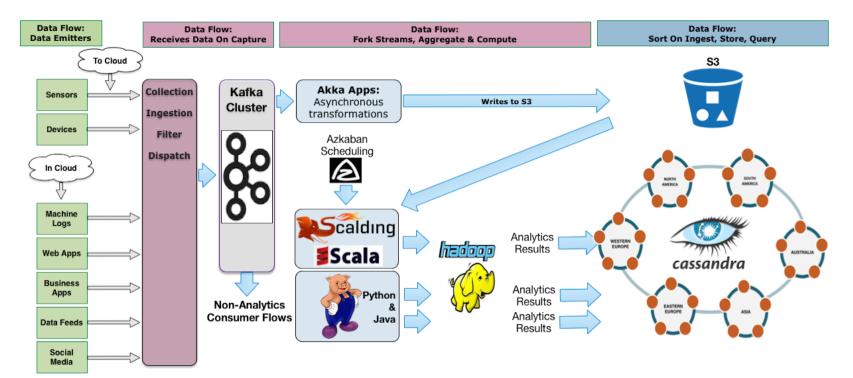


Batch analytics data flow from several years ago looked like...



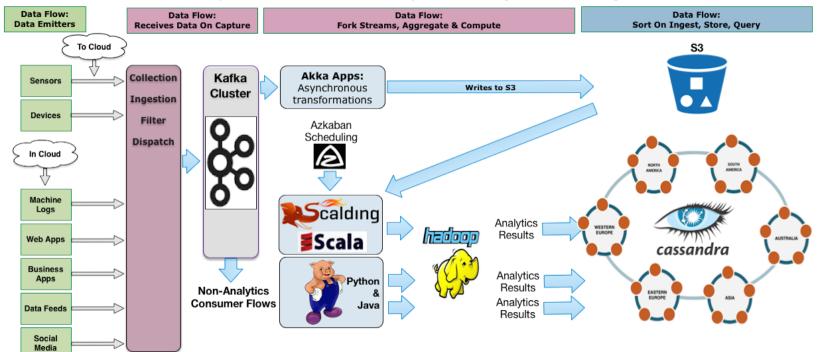
@helenaedelson

Transforming data multiple times, multiple ways



@helenaedelson

Sweet, let's triple the code we have to update and regression test every time our analytics logic changes



Enter Streaming for Big Data STREAMING & DATA SCIENCE

Streaming:

Big Data, Fast Data, Fast Timeseries Data

- Reactive processing of data as it comes in to derive instant insights
- Is this enough?
 - Need to combine with existing big data, historical processing, ad hoc queries

New Requirements, Common Use Case

I need fast access to historical data on the fly for predictive modeling with real time data from the stream

It's Not A Stream It's A Flood

- Netflix
 - 50 100 billion events per day
 - 1 2 million events per second at peak
- LinkedIn
 - 500 billion write events per day
 - 2.5 trillion read events per day
 - 4.5 million events per second at peak with Kafka
 - 1 PB of stream data

Which Translates To

- Do it fast
- Do it cheap
- Do it at scale

Oh, and don't loose data

Lambda AND THEN WE <u>GREEKED</u> OUT

Lambda Architecture

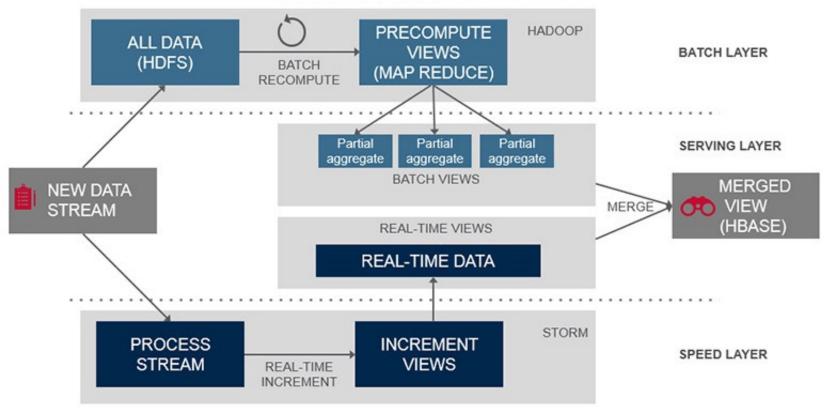
A data-processing architecture designed to handle *massive quantities* of data by taking advantage of both batch and stream processing methods.

- Or, "How to beat the CAP theorum"
- An approach coined by Nathan Mars
- This was a huge stride forward

Applications Using Lambda Architecture

- Doing complex asynchronous transformations
- That need to run with low latency (say, a few seconds to a few hours)
- Examples
 - Weather analytics and prediction system
 - News recommendation system

Lambda Architecture



https://www.mapr.com/developercentral/lambda-architecture

@helenaedelson

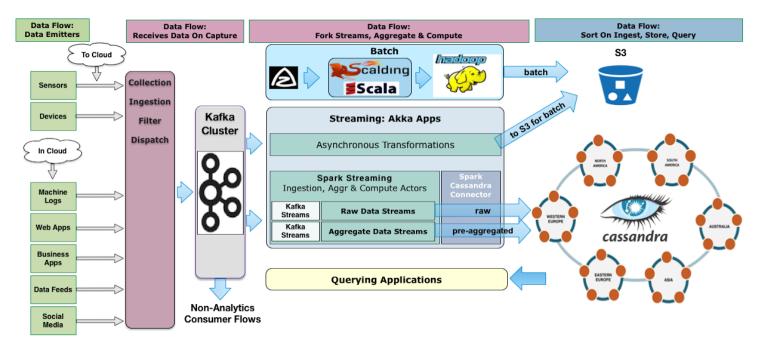
Implementing Is Hard

- Real-time pipeline backed by KV store for updates
- Many moving parts KV store, real time, batch
- Running similar code in two places
- Still ingesting data to Parquet/HDFS
- Reconcile queries against two different places

Performance Tuning & Monitoring on so many disparate systems

Also Hard

λ: Streaming & Batch Flows



Evolution Or Just Addition?

Or Just Technical Debt?

Lambda Architecture

Ingest an immutable sequence of records is captured and fed into

- a batch system
- and a stream processing system
 in parallel

Challenge Assumptions WAIT, DUAL SYSTEMS?

Which Translates To

- Performing analytical computations & queries in dual systems
- Duplicate Code
- Untyped Code Strings
- Spaghetti Architecture for Data Flows
- One Busy Network

Why?

- Why support code, machines and running services of two analytics systems?
- Is a separate batch system needed?
- Can we do everything in a streaming system?

YES

- A unified system for streaming and batch
- Real-time processing and reprocessing
 - Code changes
 - Fault tolerance

http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html - Jay Kreps

Challenge Assumptions

ANOTHER ASSUMPTION: ETL

Extract, Transform, Load (ETL)

- Extraction of data from one system into another
- Transforming it
- Loading it into another system

ETL

- Each step can introduce errors and risk
- Writing intermediary files
- Parsing and re-parsing plain text
- Tools can cost millions of dollars
- Decreases throughput
- Increased complexity
- Can duplicate data after failover

Extract, Transform, Load (ETL)

"Designing and maintaining the ETL process is often considered one of the most difficult and resourceintensive portions of a data warehouse project."

http://docs.oracle.com/cd/B19306_01/server.102/b14223/ettover.htm

And let's duplicate the pattern over all our DataCenters

These are not the solutions you're looking for

@helenaedelson

REVISITING THE GOAL

Removing The 'E' in ETL

Thanks to technologies like Avro and Protobuf we don't need the "E" in ETL. Instead of text dumps that you need to parse over multiple systems:

E.g Scala and Avro

- A return to strong typing in the big data ecosystem
- Can work with binary data that remains strongly typed

Removing The 'L' in ETL

If data collection is backed by a distributed messaging system (e.g. Kafka) you can do real-time fanout of the ingested data to all consumers. No need to batch "load".

• From there each consumer can do their own transformations

#NoMoreGreekLetterArchitectures

NoETL

Pick Technologies Wisely

Based on your requirements

- Latency
 - Real time / Sub-Second: < 100ms
 - Near real time (low): > 100 ms or a few seconds a few hours
- Consistency

elenaedelson

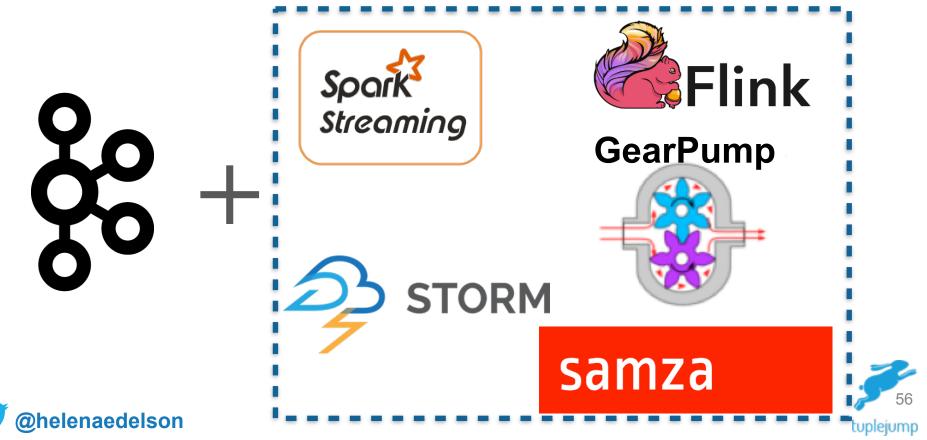
- Highly Scalable
- Topology-Aware & Multi-Datacenter support
- Partitioning Collaboration do they play together well

And Remember

- Flows erode
- Entropy happens
- "Everything fails, all the time" Kyle Kingsbury

REVISITING THE STACK

Stream Processing & Frameworks



Strategies

- Partition For Scale & Data Locality
- Replicate For Resiliency
- Share Nothing
- Fault Tolerance
- Asynchrony
- Async Message Passing
- Memory Management

- Data lineage and reprocessing in runtime
- Parallelism
- Elastically Scale
- Isolation
- Location Transparency

Fault Tolerance

- Graceful service degradation
- Data integrity / accuracy under failure
- Resiliency during traffic spikes
- Pipeline congestion / bottlenecks
- Easy to debug and find failure source
- Easy to deploy

My Nerdy Chart

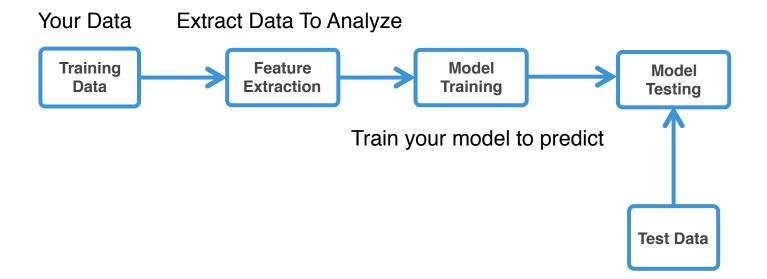
Strategy	Technologies
Scalable Infrastructure / Elastic	Spark, Cassandra, Kafka
Partition For Scale, Network Topology Aware	Cassandra, Spark, Kafka, Akka Cluster
Replicate For Resiliency	Spark, Cassandra, Akka Cluster all hash the node ring
Share Nothing, Masterless	Cassandra, Akka Cluster both Dynamo style
Fault Tolerance / No Single Point of Failure	Spark, Cassandra, Kafka
Replay From Any Point Of Failure	Spark, Cassandra, Kafka, Akka + Akka Persistence
Failure Detection	Cassandra, Spark, Akka, Kafka
Consensus & Gossip	Cassandra & Akka Cluster
Parallelism	Spark, Cassandra, Kafka, Akka
Asynchronous Data Passing	Kafka, Akka, Spark
Fast, Low Latency, Data Locality	Cassandra, Spark, Kafka
Location Transparency	Akka, Spark, Cassandra, Kafka 59
🥑 @helenaedelson	tuplejump

SMACK

- Scala & Spark Streaming
- Mesos
- Akka
- Cassandra
- Kafka

Spark Streaming

- One runtime for streaming and batch processing
 - Join streaming and static data sets
- No code duplication
- Easy, flexible data ingestion from disparate sources to disparate sinks
- Easy to reconcile queries against multiple sources
- Easy integration of KV durable storage



```
val context = new StreamingContext(conf, Milliseconds(500))
val model = KMeans.train(dataset, ...) // learn offline
val stream = KafkaUtils
.createStream(ssc, zkQuorum, group,..)
.map(event => model.predict(event.feature))
```

elenaedelson

High performance concurrency framework for Scala and Java

- Fault Tolerance
- Asynchronous messaging and data processing
- Parallelization
- Location Transparency
- Local / Remote Routing
- Akka: Cluster / Persistence / Streams

Akka Actors

A distribution and concurrency abstraction

- Compute Isolation
- Behavioral Context Switching
- No Exposed Internal State
- Event-based messaging
- Easy parallelism
- Configurable fault tolerance

High Performance Streaming Built On Akka

- Apache Flink uses Akka for
 - Actor model and hierarchy, Deathwatch and distributed communication between job and task managers
- GearPump models the entire streaming system with an actor hierarchy
 - Supervision, Isolation, Concurrency

Apache Cassandra

- Extremely Fast
- Extremely Scalable
- Multi-Region / Multi-Datacenter
- Always On

helenaedelson

- No single point of failure
- Survive regional outages
- Easy to operate
- Automatic & configurable replication

90% of streaming data at Netflix is stored in Cassandra

STREAM INTEGRATION

KillrWeather

http://github.com/killrweather/killrweather

A reference application showing how to easily integrate streaming and batch data processing with Apache Spark Streaming, Apache Cassandra, Apache Kafka and Akka for fast, streaming computations on time series data in asynchronous event-driven environments.

http://github.com/databricks/reference-apps/tree/master/timeseries/scala/timeseries-weather/src/main/scala/com/ databricks/apps/weather

Kafka, Spark Streaming and Cassandra

val context = new StreamingContext(conf, Seconds(1))

stream.flatMap(func1).saveToCassandra(ks1,table1)
stream.map(func2).saveToCassandra(ks1,table1)

context.start()

Kafka, Spark Streaming, Cassandra & Akka

class KafkaProducerActor[K, V](config: ProducerConfig) extends Actor {

```
override val supervisorStrategy =
    OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1.minute) {
    case _: ActorInitializationException => Stop
    case _: FailedToSendMessageException => Restart
    case _: ProducerClosedException => Restart
    case _: NoBrokersForPartitionException => Escalate
    case _: KafkaException => Escalate
    case _: Exception => Escalate
    }
}
```

private val producer = new KafkaProducer[K, V](producerConfig)

```
override def postStop(): Unit = producer.close()

def receive = {
   case e: KafkaMessageEnvelope[K,V] => producer.send(e)
}
```


Spark Streaming, ML, Kafka & C*

val ssc = new StreamingContext(new SparkConf()..., Seconds(5)

val testData = ssc.cassandraTable[String](keyspace,table).map(LabeledPoint.parse)

trainingStream.saveToCassandra("ml_keyspace", "raw_training_data")

```
val model = new StreamingLinearRegressionWithSGD()
   .setInitialWeights(Vectors.dense(weights))
   .trainOn(trainingStream)
```

elenaedelson

```
//Making predictions on testData
model
.predictOnValues(testData.map(lp => (lp.label, lp.features)))
.saveToCassandra("ml_keyspace", "predictions")
```


SMACK STREAM INTEGRATION: DATA LOCALITY & TIMESERIES

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) {
 import settings._

```
val stream = KafkaUtils.createStream(
    ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)
    .map(_._2.split(","))
    .map(RawWeatherData(_))
```

stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)

stream

}

.map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))
.saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)

Kafka, Spark Streaming, Cassandra & Akka


```
class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) {
  import settings.
```

```
val stream = KafkaUtils.createStream(
  ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)
  .map( . 2.split(","))
  .map(RawWeatherData( ))
```

stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)

```
stream
```

edelson

}

 $map(hour \models)$ (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip)) .saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)

Now we can replay • On failure

- Reprocessing on code changesFuture computation...

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) {
 import settings._

```
val stream = KafkaUtils.createStream(
    ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)
    .map(_._2.split(","))
    .map(RawWeatherData(_))
```

stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)

stream

}

```
.map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))
.saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)
```

Here we are **pre-aggregating** to a table **for fast querying later** in other secondary stream aggregation computations and scheduled computing

Data Model (simplified)

CREATE TABLE weather.raw_data (
 wsid text, year int, month int, day int, hour int,
 temperature double, dewpoint double, pressure double,
 wind_direction int, wind_speed double, one_hour_precip
 PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

CREATE TABLE daily_aggregate_precip (wsid text, year int, month int, day int, precipitation counter, PRIMARY KEY ((wsid), year, month, day)) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC);

elenaedelson

class KafkaStreamingActor(params: Map[String, String], ssc: StreamingContext)
 extends AggregationActor(settings: Settings) {
 import settings._

```
val stream = KafkaUtils.createStream(
    ssc, params, Map(KafkaTopicRaw -> 1), StorageLevel.DISK_ONLY_2)
    .map(_._2.split(","))
    .map(RawWeatherData(_))
```

stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)

stream

.map(hour => (hour.wsid, hour.year, hour.month, hour.day, hour.oneHourPrecip))
.saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)

Gets the partition key: Data Locality Spark C* Connector feeds this to Spark

Cassandra Counter column in our schema, no expensive `reduceByKey` needed. Simply let C* do it: not expensive and fast.

The Thing About S3

"Amazon S3 is a simple key-value store" -

docs.aws.amazon.com/AmazonS3/latest/dev/UsingObjects.html

- Keys 2015/05/01 and 2015/05/02 do not live in the "same place"
- You can roll your own with AmazonS3Client and do the heavy lifting yourself and throw that data into Spark

Timeseries Data

CREATE TABLE weather.raw_data (
 wsid text, year int, month int, day int, hour int,
 temperature double, dewpoint double, pressure double,
 wind_direction int, wind_speed double, one_hour_precip
 PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

C* Clustering Columns

Writes by most recent Reads return most recent first

Cassandra will automatically sort by most recent for both write and read

Record Every Event In The Order In Which It Happened, Per URL



tupleiump

Cassandra & Spark Streaming: Data Locality For Free®

val stream = KafkaUtils.createDirectStream(...)
.map(_._2.split(","))
.map(RawWeatherData())

Replay and Reprocess - Any Time Data is on the nodes doing the querying - Spark C* Connector - Partitions

stream.saveToCassandra(CassandraKeyspace, CassandraTableRaw)

stream

.map(hour => (hour.id, hour.year, hour.month, hour.day, hour.oneHourPrecip))
.saveToCassandra(CassandraKeyspace, CassandraTableDailyPrecip)

- Timeseries data with Data Locality
- Co-located Spark + Cassandra nodes
- S3 does not give you

Compute Isolation: Actor

class PrecipitationActor(ssc: StreamingContext, settings: Settings) **extends** AggregationActor { import akka.pattern.pipe

```
def receive : Actor.Receive = {
  case GetTopKPrecipitation(wsid, year, k) => topK(wsid, year, k, sender)
}
```

```
/** Returns the 10 highest temps for any station in the `year`. */
def topK(wsid: String, year: Int, k: Int, requester: ActorRef): Unit = {
 val toTopK = (aggregate: Seg[Double]) => TopKPrecipitation(wsid, year,
    ssc.sparkContext.parallelize(aggregate).top(k).toSeg)
                                                             Queries pre-aggregated
 ssc.cassandraTable[Double](keyspace, dailytable)
```

.select("precipitation") .where("wsid = ? AND year = ?", wsid, year) .collectAsync().map(toTopK) pipeTo requester

} }

lenaedelson

tables from the stream

Efficient Batch Analysis

class TemperatureActor(sc: SparkContext, settings: Settings) extends AggregationActor {
 import akka.pattern.pipe

```
def receive: Actor.Receive = {
   case e: GetMonthlyHiLowTemperature => highLow(e, sender)
}
```

}

elenaedelson

```
def highLow(e: GetMonthlyHiLowTemperature, requester: ActorRef): Unit =
    sc.cassandraTable[DailyTemperature](keyspace, daily_temperature_aggr)
    .where("wsid = ? AND year = ? AND month = ?", e.wsid, e.year, e.month)
    .collectAsync()
    .map(MonthlyTemperature(_, e.wsid, e.year, e.month)) pipeTo requester
```

C* data is automatically sorted by most recent - due to our data model.

Additional Spark or collection sort not needed.

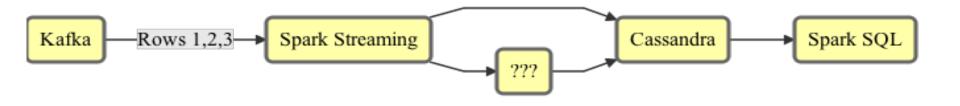
Simplification ANEW APPROACH

Everything On The Streaming Platform

Reprocessing

- Start a new stream job to re-process from the beginning
- Save re-processed data as a version table
- Application should then read from new version table
- Stop old version of the job, and delete the old table

One Pipeline For Fast & Big Data



- How do I make the SMACK stack work for ML, Ad-Hoc + Fast Data?
- How do I combine Spark Streaming + Ad Hoc and have good performance?

FiloDB

Designed to ingest streaming data, including machine, event, and time-series data, and run very fast analytical queries over them.

- Distributed, versioned, columnar analytics database
- Built for fast **streaming analytics** & OLAP
- Currently based on Apache Cassandra & Spark
- github.com/tuplejump/FiloDB

Breakthrough Performance For Analytical Queries

- Queries run in parallel in Spark for scale-out ad-hoc analysis
- Fast for interactive data science and ad hoc queries
- Up to 200x Faster Queries for Spark on Cassandra 2.x
- Parquet Performance with Cassandra Flexibility
- Increased performance ceiling coming

Versioning & Why It Matters

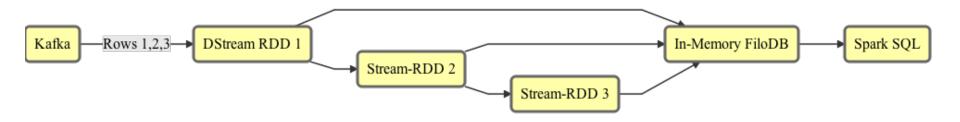
- Immutability
- Databases: let's mutate one giant piece of state in place
 - Basically hasn't changed since 1970's!
- With Big Data and streaming, incremental processing is increasingly important

FiloDB Versioning

FiloDB is built on functional principles and lets you version and layer changes

- Incrementally add a column or a few rows as a new version
- Add changes as new versions, don't mutate!
- Writes are *idempotent* exactly once ingestion
- Easily control what versions to query
- Roll back changes inexpensively
- Stream out new versions as continuous queries :)

No Cassandra? Keep All In Memory



- Unlike RDDs and DataFrames, FiloDB can ingest new data, and still be fast
- Unlike RDDs, FiloDB can filter in multiple ways, no need for entire table scan

Spark Streaming to FiloDB

val ratingsStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder(
ssc, kafkaParams, topics)

```
ratingsStream.foreachRDD { (message: RDD[(String, String)], batchTime: Time) =>
  val df = message
   .map(_._2.split(","))
   .map(rating => Rating(trim(rating))
   .toDF("fromuserid", "touserid", "rating")
```

```
// add the batch time to the DataFrame
val dfWithBatchTime = df.withColumn(
    "batch_time", org.apache.spark.sql.functions.lit(batchTime.milliseconds))
```

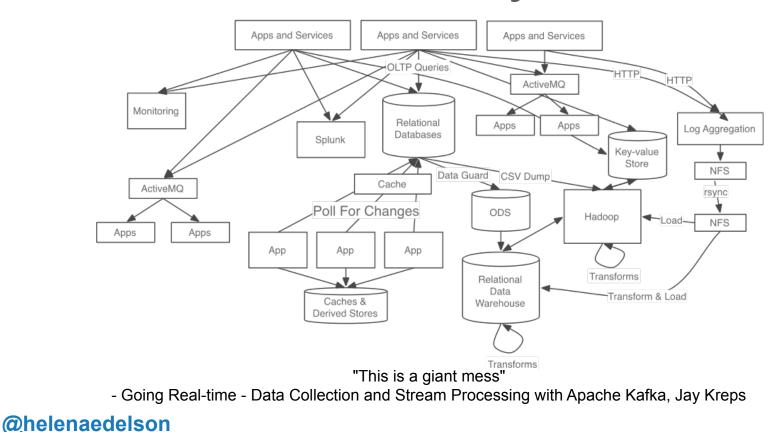
```
// save the DataFrame to FiloDB
dfWithBatchTime.write.format("filodb.spark")
    .option("dataset", "ratings")
    .save()
```

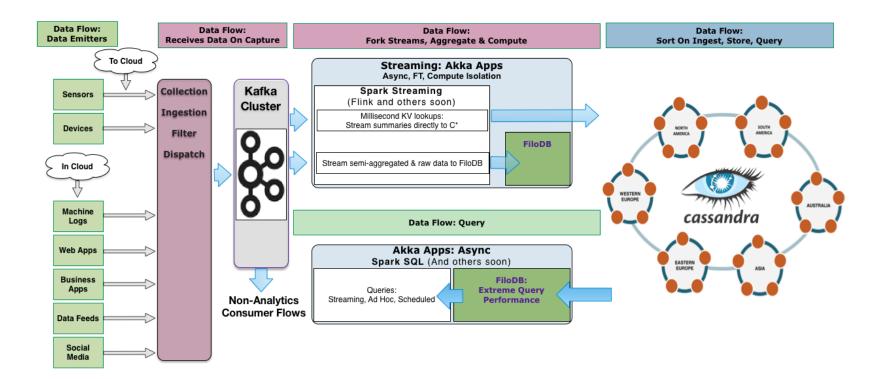
}

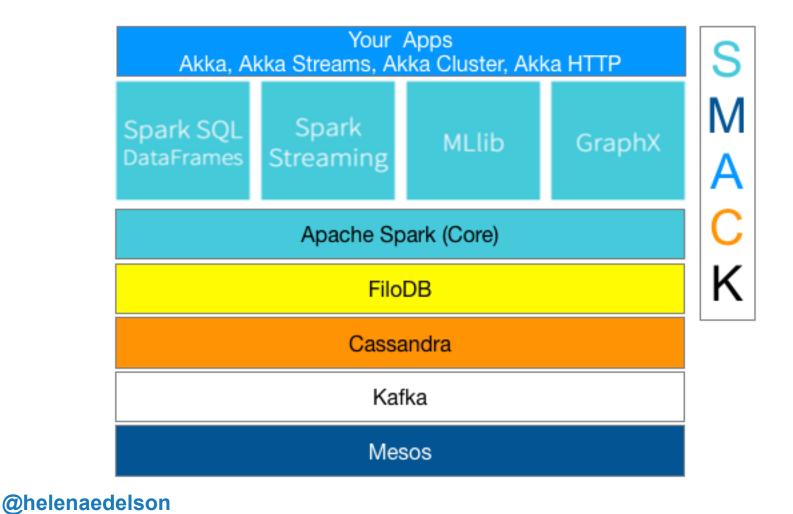
elenaedelson

.dfWithBatchTime.write.format("org.apache.spark.sql.cassandra")

Architectyr?







THANKS!

- helena@tuplejump.com
- Bildeshare.net/helenaedelson

Designers

In this role we come in early to augument your product management team. We help you envision and innovate your next-gen data solutions pushing the limits of what's possible.

Builders

Every team can leverage experience. We will work with your team to provide the experience kickstart required. We will mentor them and deliver your data solutions as well as the ability to handle its progress.

Architects

Know what you want, wondering how to get there? We come in as archtiects and work to identify the required technology stack and deliver the architecture to realize your vision.

Firefighters

Sometimes it is too late before you identify the problems. But its never too late for us to step in and clear out the fire. In collaboration with your team we will out the problem and deliver the solution for it too.

tuplejump

Your Software Development Partners

> www.tuplejump.com info@tuplejump.com