
Aaron Turon	

Mozilla Research

Rust is a systems programming language
that runs blazingly fast, prevents nearly all

segfaults, and guarantees thread safety. 	

- https://www.rust-lang.org/

https://www.rust-lang.org/

Safety

Control
C C++

Go

Java

Haskell

Scala

“Low-level”

Low-level == Unsafe+ Safe
Conventional wisdomThe Essence of Rust

Why Rust?

- You’re already doing systems programming,  
want safety or expressiveness.	

!
- You wish you could do some systems work	

- Maybe as an embedded piece in your 
Java, Python, JS, Ruby, …

Why Mozilla?

Browsers need control.

Browsers need safety.

Servo: Next-generation
browser built in Rust.

Rust: New language for 	

safe systems programming.

What is control?
void example() {
 vector<string> vector;
 …
 auto& elem = vector[0];
 …
}

string[0]

…elem

vector

data

length

capacity

[0]

[n]

[…]

…

‘H’

…

‘e’

Stack and inline layout.

Interior references

Deterministic destruction

Stack Heap

C++

Zero-cost abstraction

Ability to define abstractions that	

optimize away to nothing.

vector data

length

cap.

[0]

[…]

data cap.

‘H’

‘e’

[…]
Not just memory layout:	

- Static dispatch	

- Template expansion	

- … Java

What is safety?
void example() {
 vector<string> vector;
 …
 auto& elem = vector[0];
 vector.push_back(some_string);
 cout << elem;
}

vector

data

length

capacity

[0]

…

[0]

[1]

elem
Aliasing: more than	

one pointer to same	

memory.

Dangling pointer: pointer	

to freed memory.

C++

Mutating the vector	

freed old contents.

What about GC?

No control.

Requires a runtime.

Insufficient to prevent related problems:	

iterator invalidation, data races, many others.

Ownership & Borrowing

Memory	

safety

Data-race	

freedom	

(and more)

No need for	

a runtime

GCC++

… Plus lots of goodies

- Pattern matching	

- Traits	

- “Smart” pointers	

- Metaprogramming	

- Package management (think Bundler)

TL;DR: Rust is a modern language

Ownership
!
n. The act, state, or right of possessing something.

Ownership (T)

Aliasing Mutation

vec

data

length

capacity

vec

data

length

capacity

1

2

fn give() {
 let mut vec = Vec::new();
 vec.push(1);
 vec.push(2);
 take(vec);
 …
}

fn take(vec: Vec<int>) {
 // …
}
!
!
!

Take ownership	

of a Vec<int>

fn give() {
 let mut vec = Vec::new();
 vec.push(1);
 vec.push(2);
 take(vec);
 …
}
 vec.push(2);

Compiler enforces moves

fn take(vec: Vec<int>) {
 // …
}
!
!
!Error: vec has been moved

Prevents:	

- use after free	

- double moves	

- …

Borrow
!
v. To receive something with the promise of returning it.

Shared borrow (&T)

Aliasing Mutation

Mutable borrow (&mut T)

Aliasing Mutation

fn lender() {
 let mut vec = Vec::new();
 vec.push(1);
 vec.push(2);
 use(&vec);
 …
}

fn use(vec: &Vec<int>) {
 // …
}
!
!
!

1

2vec

data

length

capacity

vec

“Shared reference	

to Vec<int>”

Loan out vec

fn use(vec: &Vec<int>) {
 vec.push(3);
 vec[1] += 2;
}

Shared references are immutable:

Error: cannot mutate shared reference

* Actually: mutation only in controlled circumstances

*

Aliasing Mutation

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {
 for elem in from {
 to.push(*elem);
 }
}

Mutable references

mutable reference to Vec<int>

push() is legal

1

2

3

from

to

elem

1

…

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {
 for elem in from {
 to.push(*elem);
 }
}

Mutable references

What if from and to are equal?

1

2

3

from

to

elem

1

2

3

…

1

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {
 for elem in from {
 to.push(*elem);
 }
} dangling pointer

fn push_all(from: &Vec<int>, to: &mut Vec<int>) {…}
!
fn caller() {
 let mut vec = …;
 push_all(&vec, &mut vec);
}

shared reference

Error: cannot have both shared and
mutable reference at same time

A &mut T is the only way to access	

the memory it points at

{
 let mut vec = Vec::new();
 …
 for i in 0 .. vec.len() {
 let elem: &int = &vec[i];
 …
 vec.push(…);
 }
 …
 vec.push(…);
}

Borrows restrict access to
the original path for their
duration.

Error: vec[i] is borrowed,
cannot mutate

OK. loan expired.

&
&mut

no writes, no moves

no access at all

Concurrency
!
n. several computations executing simultaneously, and
potentially interacting with each other.

Rust’s vision for concurrency

Originally:	

!
Now:

only isolated message passing

libraries for many paradigms,	

using ownership to avoid footguns,	

guaranteeing no data races

Data race

Two unsynchronized threads	

accessing same data

where at least one writes.

✎ ✎

Aliasing

Mutation

No ordering

Data race

Sound familiar?

No data races =	

No accidentally-shared state.	

!

All sharing is explicit!

*some_value = 5;
return *some_value == 5; // ALWAYS true

Messaging
(ownership)

data

length

capacity

data

length

capacity

move || {
 let m = Vec::new();
 …
 tx.send(m);
}

rx

tx

tx

m

fn parent() {
 let (tx, rx) = channel();
 spawn(move || {…});
 let m = rx.recv();
}

Locked mutable access
(ownership, borrowing)

✎
✎

fn sync_inc(mutex: &Mutex<int>) {
 let mut data = mutex.lock();
 *data += 1;
}

Destructor releases lock
Yields a mutable reference to data

Destructor runs here, releasing lock

Disjoint, scoped access
(borrowing)

✎
✎

fn qsort(vec: &mut [int]) {
 if vec.len() <= 1 { return; }
 let pivot = vec[random(vec.len())];
 let mid = vec.partition(vec, pivot);
 let (less, greater) = vec.split_at_mut(mid);
 qsort(less);
 qsort(greater);
}

[0] [1] [2] [3] […] [n]

let vec: &mut [int] = …;

less greater

fn split_at_mut(&mut self, mid: usize)
 -> (&mut [T], & mut [T])

[0] [1] [2] [3] […] [n]

let vec: &mut [int] = …;

less greater

fn parallel_qsort(vec: &mut [int]) {
 if vec.len() <= 1 { return; }
 let pivot = vec[random(vec.len())];
 let mid = vec.partition(vec, pivot);
 let (less, greater) = vec.split_at_mut(mid);
 parallel::join(
 || parallel_qsort(less),
 || parallel_qsort(greater)
);
}

Arc<Vec<int>>: Send
Rc<Vec<int>> : !Send

fn send<T: Send>(&self, t: T)

Only “sendable” types

Static checking for thread safety

And beyond…
Concurrency is an area of active development.	

!
Either already have or have plans for:	

- Atomic primitives	

- Non-blocking queues	

- Concurrent hashtables	

- Lightweight thread pools	

- Futures	

- CILK-style fork-join concurrency	

- etc.

Always data-race free

Unsafe
!
adj. not safe; hazardous

Safe abstractions

unsafe {
 …
}

Useful for:	

	
 Bending mutation/aliasing rules (split_at_mut)	

	
 Interfacing with C code

Trust me.

fn something_safe(…) {
!
!
!
!
}

Validates input, etc.

Ownership enables safe abstraction boundaries.

Community
!
n. A feeling of fellowship with others sharing similar goals.

“The Rust community seems to be
populated entirely by human beings.
I have no idea how this was done.”	

— Jamie Brandon

It takes a village…

Community focus from the start:	

	
 Rust 1.0 had > 1,000 contributors	

	
 Welcoming, pragmatic culture	

!
Developed “in the open”	

	
 Much iteration;	
humility is key!	

!
Clear leadership	

	
 Mix of academic and engineering backgrounds	

	
 “Keepers of the vision”

Memory safety	

Concurrency	

Abstraction	

Stability
without

garbage collection	

data races	

overhead	

stagnation

Hack without fear!

Articulating the vision

