Spark: A Coding Joyride

Doug Bateman
Director of Training, NewCircle

tatabricks

Objectives

- Show Spark’s ability to rapidly process Big Data
- Extracting information with RDDs
- Querying data using DataFrames
- Visualizing and plotting data
- Create a machine-learning pipeline with Spark-ML and MLLib
- We’ll also discuss the internals which make Spark 10-100 times faster than Hadoop MapReduce and Hive.

About Me

Engineer, Architect & Instructor

- Developing with Java since 1995 (Java 1.0)
- +15yrs as software developer, architect, and consultant
- Director of Training at NewCircle
- Curriculum Lead at NewCircle

For Fun

- Sailing
- Rock climbing
- Snowboarding
- Chess

Who are you?

0) I am new to spark.
1) I have used Spark hands on before…
2) I have more than 1 year hands on experience with spark.
Spark – 100% open source and mature
Used in production by over 500 organizations. From fortune 100 to small innovators

Spark Physical Cluster

Large-Scale Usage

- Largest cluster: 8000 nodes
- Largest single job: 1 petabyte
- Top streaming intake: 1 TB/hour
- 2014 on-disk 100 TB sort record

Apache Spark: Large user community

On-Disk Sort Record:
Time to sort 100TB

- 2013 Record: Hadoop
 - 2100 machines
 - 72 minutes

- 2014 Record: Spark
 - 207 machines
 - 23 minutes

Source: Daytona GraySort benchmark, sortbenchmark.org

Spark Core
Spark Streaming
Spark SQL
MLlib
GraphX
RDD API
DataFrames API
Data Sources
Workloads
Spark – 100% open source and mature
Used in production by over 500 organizations. From fortune 100 to small innovators

Apache Spark: Large user community

Large-Scale Usage

- Largest cluster: 8000 nodes
- Largest single job: 1 petabyte
- Top streaming intake: 1 TB/hour
- 2014 on-disk 100 TB sort record

On-Disk Sort Record:
Time to sort 100TB

- 2013 Record: Hadoop
 - 2100 machines
 - 72 minutes

- 2014 Record: Spark
 - 207 machines
 - 23 minutes

Source: Daytona GraySort benchmark, sortbenchmark.org
Use Case: predict power output given a set of readings from various sensors in a gas-fired power generation plant

Schema Definition:

- AT = Atmospheric Temperature in °C
- V = Exhaust Vacuum Speed
- AP = Atmospheric Pressure
- RH = Relative Humidity
- PE = Power Output (value we are trying to predict)

Steps:

1. ETL
2. Explore + Visualize Data
3. Apply Machine Learning

About Databricks

Data science made easy

- The Databricks team contributed more than 75% of the code added to Spark in the past year
- Cloud-based integrated workspace for Apache Spark
- From the original Spark team at UC Berkeley

About NewCircle

Software Development Training for the Enterprise

- Courses tailored for your team
- Custom learning pathways & training programs
- Global delivery
A few of our courses

• Spark Developer Bootcamp
• Android Internals
• Android Testing
• Core AngularJS
• Advanced Python
• Fast Track to Java 8
• Spring & Hibernate Bootcamp
• Apache HTTPD & Tomcat Administration Bootcamp

Paul - Salesforce

“In all honesty, this is one of the best technical classes I’ve ever taken (and I’ve been doing this a very long time).”

Learn more at:

https://databricks.com/spark/training

Thanks!

30 Day Free Trial of Databricks
Visit: bit.ly/spark-bootcamp

15% off Spark Developer Bootcamp Training
Visit: https://newcircle.com/spark
Promo Code: QCON15

Thank you.
Spark Fundamentals

Transformations ➞ Actions

Actions

Lifecycle

Lifecycle
Lifecycle of a Spark Program

- Create input RDDs from external data
 - ...or parallelize a collection in your driver program
- Use transformations to lazily transform them and create new RDDs
 - ...using transformations like filter() or map()
- Ask Spark to cache any intermediate RDDs that will be reused
- Execute actions to kick off a parallel computation
 - ...such as count() and collect()
- Optimized and executed by Spark

End of Spark Fundamentals Module