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Overview

Why streams and why databases?

Things you may care about

How popular stream systems work

How we deal with streams in Druid
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Why streams?

● Real-time monitoring

● Real-time response

● Shorter feedback loops

● Better user experience



Why stream processing?

● Original streams are not exactly what we want

● Common things to want

○ Enhancement

○ Session reconstruction (and other joins)

○ Load into databases



Why databases?

● Lots of questions to ask

● Streaming through raw data, for every question, is slow

● Faster to load a derivative into a database, query it there

○ DB strengths: ad-hoc search, aggregation, key lookup

○ DB weaknesses: joining big distributed tables, joining external data



Stream operations



Basic operations

Filter Map

INSERT INTO mydata VALUES …

Output



Grouping operations

GroupByKey



Grouping operations

● Tricky!

● Data points for a window may come in “late”

● Windows may be aligned (e.g. aggregates)

● Windows may be unaligned (e.g. sessions)



Requirements



Requirements

● Correctness

● Latency

● Cost

● (Thanks, Akidau et. al)



Correctness

● Want accurate reflection of reality



Correctness

● Message processing guarantees

○ None

○ At most once

○ At least once

○ Exactly once



Correctness

● Window emitting guarantees

○ Wait for “enough” data before emitting, and emit once

○ Emit periodic updates



Latency

Very low latency
subsecond

“Low” latency
seconds – minutes

High latency
hours – days



Data pipelines



Goals

● Low-latency results

● Strong correctness guarantees

● Ability to do backfills



Why backfills?

● Bugs in processing code

● Need to restate existing data

● Limitations of some current streaming software



Backfills: Lambda

● Hybrid batch/realtime a.k.a. “lambda architecture”

● Backfills automated or on-demand

● Pros: Can achieve goals with a wide variety of OSS

● Cons: Operations and development are complex



Backfills: Lambda



Backfills: Lambda

● Batch technologies
○ Hadoop Map/Reduce

○ Spark

● Streaming technologies
○ Samza

○ Storm

○ Spark Streaming



Backfills: Lambda

● Software exists to simplify development

○ Summingbird

○ Google Cloud Dataflow

○ Starfire (internal tool)



Backfills: Stream replay

● Stream replay a.k.a. “kappa architecture”

● Backfills on demand

● Simpler development and operations

● Workable if stream processing guarantees are strong enough



Side note on batch processing

● Stream and batch processing not too different on unbounded datasets

● Batch processors must still deal with late data



Streaming systems



Kafka

http://kafka.apache.org/documentation.html



Kafka: API

● Producer: Send message to a (topic, partition)

● Consumer: Read messages from a (topic, partition)

● Very low latency

● Can do simple operations directly with the Kafka API

● More complex processing is easier with a “real” stream processor



Kafka: API

● Possible to integrate closely, and efficiently, with databases

● Not an accident



Kafka: Guarantees

● Producer: At-least-once, if configured appropriately

● Consumer

○ At-least-once straightforward with high-level consumer

○ Exactly-once (from Kafka data!) can be done with more work



Kafka: Guarantees

● Exactly-once strategies

● Naturally unique message IDs

○ Must assign outside of Kafka

○ De-duplicate messages while consuming

○ Must make sure to keep around enough de-duplication data

● Single-writer-per-partition

○ Duplicate messages will be adjacent; ignore them



Storm

http://storm.apache.org/tutorial.html



Storm

● Messages acked at spout when fully processed

● Spouts typically checkpoint after acks

● At-least-once if spouts are able to replay

● Exactly-once with idempotent operations

● No innate concept of state



Storm / Trident

● Does have concept of state

● Messages grouped into batches

● Each batch given a transaction id (txid)

● Txids globally ordered, meant to be stored in DB

● Skip DB update for stale txids

● Coordination overhead



Samza

http://samza.apache.org/learn/documentation/0.9/introduction/concepts.html



Samza

● Periodically flush output and checkpoint Kafka offsets

● At-least-once

● Exactly-once with idempotent operations



Druid



Druid

● Open source column store

● Designed for fast filtering and aggregations

● Unique optimizations for event data

● Data partitioning/sharding first done on time

● Data is partitioned into defined time buckets (hour/day/etc)



Druid Segments

Timestamp Page Views

2015-01-01T00 p1 1

2015-01-01T01 p2 1

2015-01-02T05 p3 1

2015-01-02T07 p4 1

2015-01-03T05 p5 1

2015-01-03T07 p6 1

Timestamp Page Views
2015-01-01T00 p1 1
2015-01-01T01 p2 1

Timestamp Page Views
2015-01-02T05 p3 1
2015-01-02T07 p4 1

Timestamp Page Views
2015-01-03T05 p5 1
2015-01-03T07 p6 1

Partition by time

Segment_2015-01-01/2014-01-02

Segment_2015-01-02/2014-01-03

Segment_2015-01-03/2014-01-04



Rollup on ingestion

timestamp             publisher          advertiser  gender  country click  revenue
2011-01-01T01:01:35Z  bieberfever.com    google.com  Male    USA     0      0.65
2011-01-01T01:03:63Z  bieberfever.com    google.com  Male    USA     0      0.62
2011-01-01T01:04:51Z  bieberfever.com    google.com  Male    USA     1      0.45
…
2011-01-01T01:00:00Z  ultratrimfast.com  google.com  Female  UK      0      0.87
2011-01-01T02:00:00Z  ultratrimfast.com  google.com  Female  UK      0      0.99
2011-01-01T02:00:00Z  ultratrimfast.com  google.com  Female  UK      1      1.53



Rollup on ingestion

timestamp             publisher          advertiser  gender  country impressions clicks revenue
2011-01-01T01:00:00Z  ultratrimfast.com  google.com  Male    USA     1800        25     15.70
2011-01-01T01:00:00Z  bieberfever.com    google.com  Male    USA     2912        42     29.18
2011-01-01T02:00:00Z  ultratrimfast.com  google.com  Male    UK      1953        17     17.31
2011-01-01T02:00:00Z  bieberfever.com    google.com  Male    UK      3194        170    34.01



Druid Segments

● Can be built from streams

● Immutable once built: no contention between reads and writes

● Simple parallelization: one thread scans one segment

● Streaming append + atomic batch replace

● Want to avoid having a unique key for messages



Druid: Batch ingestion

● Exactly-once, from Hadoop

● Uses atomic replacement



Druid: Stream ingestion



Druid: Stream ingestion



Druid: Stream ingestion



Druid: Stream ingestion



Druid: Stream ingestion



Druid: Stream push



Druid: Kafka pull



Druid: Kafka pull (current)



Druid: Kafka pull (next-gen)



Do try this at home



Software

● Druid - druid.io - @druidio

● Kafka - kafka.apache.org - @apachekafka

● Samza - samza.apache.org - @samzastream

● Storm - storm.apache.org - @stormprocessor



Take aways

● Databases and streams are best friends

● Consider latency and correctness in system design

● Know the guarantees provided by your tools

● Have a backfill strategy if you’re interested in historical data



Thanks!

@implydata
@druidio

@gianmerlino

imply.io
druid.io


