
Connecting streams and databases

Gian Merlino
Druid committer • Cofounder @ Imply

Overview

Why streams and why databases?

Things you may care about

How popular stream systems work

How we deal with streams in Druid

Stream processing

Streams

Stream processing

Streams

Stream processing

Streams Actions

Stream processing

Streams You

Stream processing

Stream
processor

Streams Actions

Stream processing

Stream
processor

Streams Derived
Streams

Stream processing

Stream
processor

Streams

Database

Stream processing

Stream
processor

YouStreams

Database

Why streams?

● Real-time monitoring

● Real-time response

● Shorter feedback loops

● Better user experience

Why stream processing?

● Original streams are not exactly what we want

● Common things to want

○ Enhancement

○ Session reconstruction (and other joins)

○ Load into databases

Why databases?

● Lots of questions to ask

● Streaming through raw data, for every question, is slow

● Faster to load a derivative into a database, query it there

○ DB strengths: ad-hoc search, aggregation, key lookup

○ DB weaknesses: joining big distributed tables, joining external data

Stream operations

Basic operations

Filter Map

INSERT INTO mydata VALUES …

Output

Grouping operations

GroupByKey

Grouping operations

● Tricky!

● Data points for a window may come in “late”

● Windows may be aligned (e.g. aggregates)

● Windows may be unaligned (e.g. sessions)

Requirements

Requirements

● Correctness

● Latency

● Cost

● (Thanks, Akidau et. al)

Correctness

● Want accurate reflection of reality

Correctness

● Message processing guarantees

○ None

○ At most once

○ At least once

○ Exactly once

Correctness

● Window emitting guarantees

○ Wait for “enough” data before emitting, and emit once

○ Emit periodic updates

Latency

Very low latency
subsecond

“Low” latency
seconds – minutes

High latency
hours – days

Data pipelines

Goals

● Low-latency results

● Strong correctness guarantees

● Ability to do backfills

Why backfills?

● Bugs in processing code

● Need to restate existing data

● Limitations of some current streaming software

Backfills: Lambda

● Hybrid batch/realtime a.k.a. “lambda architecture”

● Backfills automated or on-demand

● Pros: Can achieve goals with a wide variety of OSS

● Cons: Operations and development are complex

Backfills: Lambda

Backfills: Lambda

● Batch technologies
○ Hadoop Map/Reduce

○ Spark

● Streaming technologies
○ Samza

○ Storm

○ Spark Streaming

Backfills: Lambda

● Software exists to simplify development

○ Summingbird

○ Google Cloud Dataflow

○ Starfire (internal tool)

Backfills: Stream replay

● Stream replay a.k.a. “kappa architecture”

● Backfills on demand

● Simpler development and operations

● Workable if stream processing guarantees are strong enough

Side note on batch processing

● Stream and batch processing not too different on unbounded datasets

● Batch processors must still deal with late data

Streaming systems

Kafka

http://kafka.apache.org/documentation.html

Kafka: API

● Producer: Send message to a (topic, partition)

● Consumer: Read messages from a (topic, partition)

● Very low latency

● Can do simple operations directly with the Kafka API

● More complex processing is easier with a “real” stream processor

Kafka: API

● Possible to integrate closely, and efficiently, with databases

● Not an accident

Kafka: Guarantees

● Producer: At-least-once, if configured appropriately

● Consumer

○ At-least-once straightforward with high-level consumer

○ Exactly-once (from Kafka data!) can be done with more work

Kafka: Guarantees

● Exactly-once strategies

● Naturally unique message IDs

○ Must assign outside of Kafka

○ De-duplicate messages while consuming

○ Must make sure to keep around enough de-duplication data

● Single-writer-per-partition

○ Duplicate messages will be adjacent; ignore them

Storm

http://storm.apache.org/tutorial.html

Storm

● Messages acked at spout when fully processed

● Spouts typically checkpoint after acks

● At-least-once if spouts are able to replay

● Exactly-once with idempotent operations

● No innate concept of state

Storm / Trident

● Does have concept of state

● Messages grouped into batches

● Each batch given a transaction id (txid)

● Txids globally ordered, meant to be stored in DB

● Skip DB update for stale txids

● Coordination overhead

Samza

http://samza.apache.org/learn/documentation/0.9/introduction/concepts.html

Samza

● Periodically flush output and checkpoint Kafka offsets

● At-least-once

● Exactly-once with idempotent operations

Druid

Druid

● Open source column store

● Designed for fast filtering and aggregations

● Unique optimizations for event data

● Data partitioning/sharding first done on time

● Data is partitioned into defined time buckets (hour/day/etc)

Druid Segments

Timestamp Page Views

2015-01-01T00 p1 1

2015-01-01T01 p2 1

2015-01-02T05 p3 1

2015-01-02T07 p4 1

2015-01-03T05 p5 1

2015-01-03T07 p6 1

Timestamp Page Views
2015-01-01T00 p1 1
2015-01-01T01 p2 1

Timestamp Page Views
2015-01-02T05 p3 1
2015-01-02T07 p4 1

Timestamp Page Views
2015-01-03T05 p5 1
2015-01-03T07 p6 1

Partition by time

Segment_2015-01-01/2014-01-02

Segment_2015-01-02/2014-01-03

Segment_2015-01-03/2014-01-04

Rollup on ingestion

timestamp publisher advertiser gender country click revenue
2011-01-01T01:01:35Z bieberfever.com google.com Male USA 0 0.65
2011-01-01T01:03:63Z bieberfever.com google.com Male USA 0 0.62
2011-01-01T01:04:51Z bieberfever.com google.com Male USA 1 0.45
…
2011-01-01T01:00:00Z ultratrimfast.com google.com Female UK 0 0.87
2011-01-01T02:00:00Z ultratrimfast.com google.com Female UK 0 0.99
2011-01-01T02:00:00Z ultratrimfast.com google.com Female UK 1 1.53

Rollup on ingestion

timestamp publisher advertiser gender country impressions clicks revenue
2011-01-01T01:00:00Z ultratrimfast.com google.com Male USA 1800 25 15.70
2011-01-01T01:00:00Z bieberfever.com google.com Male USA 2912 42 29.18
2011-01-01T02:00:00Z ultratrimfast.com google.com Male UK 1953 17 17.31
2011-01-01T02:00:00Z bieberfever.com google.com Male UK 3194 170 34.01

Druid Segments

● Can be built from streams

● Immutable once built: no contention between reads and writes

● Simple parallelization: one thread scans one segment

● Streaming append + atomic batch replace

● Want to avoid having a unique key for messages

Druid: Batch ingestion

● Exactly-once, from Hadoop

● Uses atomic replacement

Druid: Stream ingestion

Druid: Stream ingestion

Druid: Stream ingestion

Druid: Stream ingestion

Druid: Stream ingestion

Druid: Stream push

Druid: Kafka pull

Druid: Kafka pull (current)

Druid: Kafka pull (next-gen)

Do try this at home

Software

● Druid - druid.io - @druidio

● Kafka - kafka.apache.org - @apachekafka

● Samza - samza.apache.org - @samzastream

● Storm - storm.apache.org - @stormprocessor

Take aways

● Databases and streams are best friends

● Consider latency and correctness in system design

● Know the guarantees provided by your tools

● Have a backfill strategy if you’re interested in historical data

Thanks!

@implydata
@druidio

@gianmerlino

imply.io
druid.io

