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“
Data and data systems have really 

changed in the past decade



Old world: Two popular locations for data

Operational databases Relational data warehouse
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“
Several recent data trends are driving a 
dramatic change in the ETL architecture



“#1: Single-server databases are replaced 
by a myriad of distributed data 

platforms that operate at company-wide 
scale 



“#2: Many more types of data sources 
beyond transactional data - logs, sensors, 

metrics...



“#3: Stream data is increasingly 
ubiquitous; need for faster processing 

than daily



“The end result? This is what data 
integration ends up looking like in 

practice
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“
We will see how transitioning to streams 

cleans up this mess and works towards...
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A short history of data 
integration



“
Surfaced in the 1990s in retail 

organizations for analyzing buyer trends



“Extract data from databases

Transform into destination warehouse schema

Load into a central data warehouse



“BUT … ETL tools have been around for a 
long time, data coverage in data 

warehouses is still low! WHY?



Etl has drawbacks



“
#1: The need for a global schema



“#2: Data cleansing and curation is 
manual and fundamentally error-prone 



“#3: Operational cost of ETL is high; it is 
slow; time and resource intensive 



“#4: ETL tools were built to narrowly 
focus on connecting databases and the 
data warehouse in a batch fashion



“Early take on real-time ETL 
= 

Enterprise Application Integration (EAI)



“EAI: A different class of data integration 
technology for connecting applications in 

real-time



“
EAI employed Enterprise Service Buses 

and MQs; weren’t scalable



ETL and EAI are 
outdated!



Old world: scale or timely data, pick one
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“Data integration and ETL in the modern 
world need a complete revamp



new world: streaming, real-time and scalable
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“Modern streaming world has new set of 
requirements for data integration



“#1: Ability to process high-volume and 
high-diversity data 



“#2 Real-time from the grounds up; a 
fundamental transition to 
event-centric thinking



Event-Centric Thinking
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“Event-centric thinking, when applied at a 
company-wide scale, leads to this 

simplification ...
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“#3: Enable forward-compatible 
data architecture; the ability to add more 
applications that need to process the 

same data … differently



“To enable forward compatibility, redefine 
the T in ETL: 

Clean data in; Clean data out
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“To enable forward compatibility, redefine 
the T in ETL:

Data transformations, not data cleansing!



#1: Extract once as 
structured product 
view events

#2: Transform once = 
drop PII fields” and enrich 
with product metadata #4.1: Load product 

views stream
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“Forward compatibility =  
Extract clean-data once; Transform many 

different ways before Loading into respective 
destinations … as and when required



“In summary, needs of modern data 
integration solution? 

Scale, diversity, latency and forward 
compatibility



Requirements for a modern streaming data 
integration solution

- Fault tolerance
- Parallelism
- Latency
- Delivery semantics
- Operations and 

monitoring
- Schema management



Data integration: 
platform vs tool

Central, reusable 
infrastructure for 
many use cases

One-off, non-reusable 
solution for a 
particular use case



New shiny future of etl: a streaming platform
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“Streaming platform serves as the 
central nervous system for a 

company’s data in the following ways ...



“#1: Serves as the real-time, scalable 
messaging bus for applications; no 

EAI 



“#2: Serves as the source-of-truth 
pipeline for feeding all data processing 

destinations; Hadoop, DWH, NoSQL 
systems and more



“#3: Serves as the building block for 
stateful stream processing 

microservices



“
Batch data integration 

Streaming



“
Batch ETL

Streaming



a short history of data integration

drawbacks of ETL

needs and requirements for a streaming platform

new, shiny future of ETL: a streaming platform

What does a streaming platform look like and how 
it enables Streaming ETL?



Apache kafka: a 
distributed 
streaming platform
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Apache kafka 6 years 
ago
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> 1,400,000,000,000 
messages processed / day
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Now Adopted at 1000s of companies worldwide 



“
What role does Kafka play in the new 

shiny future for data integration?



“#1: Kafka is the de-facto storage of 
choice for stream data
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The log & pub-sub
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“#2: Kafka offers a scalable 
messaging backbone for application 

integration 



Kafka messaging APIs: scalable eai

app
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“#3: Kafka enables building streaming 
data pipelines (E & L in ETL)



Kafka’s Connect API: Streaming data ingestion
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“#4: Kafka is the basis for stream 
processing and transformations



Kafka’s streams API: stream processing (transforms)
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Kafka’s connect API 
= 

E and L in Streaming ETL



Connectors!
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How to keep data centers in-sync?
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changelogs



Transforming changelogs



Kafka’s Connect API = Connectors Made Easy!

- Scalability: Leverages Kafka for scalability
- Fault tolerance: Builds on Kafka’s fault tolerance model
- Management and monitoring: One way of monitoring all 

connectors
- Schemas: Offers an option for preserving schemas 

from source to sink



Kafka all the things!
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Kafka’s streams API 
= 

The T in STREAMING ETL



“
Stream processing = 

transformations on stream data



2 visions for stream processing

Real-time Mapreduce Event-driven microservicesVS



2 visions for stream processing

Real-time Mapreduce Event-driven microservicesVS
- Central cluster
- Custom packaging, 

deployment & 
monitoring

- Suitable for 
analytics-type use 
cases

- Embedded library 
in any Java app

- Just Kafka and 
your app

- Makes stream 
processing 
accessible to any 
use case



Vision 1: real-time mapreduce



Vision 2: event-driven microservices => Kafka’s 
streams API

Streams API
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“
Kafka’s Streams API = Easiest way to do 

stream processing using Kafka



“#1: Powerful and lightweight Java 
library; need just Kafka and your app

app



“#2: Convenient DSL with all sorts of 
operators: join(), map(), filter(), windowed 

aggregates etc



Word count program using Kafka’s streams API



“#3: True event-at-a-time stream 
processing; no microbatching



“#4: Dataflow-style windowing based on 
event-time; handles late-arriving data



“#5: Out-of-the-box support for local 
state; supports fast stateful processing



External state



local state



Fault-tolerant local state



“#6: Kafka’s Streams API allows 
reprocessing; useful to upgrade apps or 

do A/B testing



reprocessing



Real-time dashboard for security monitoring



Kafka’s streams api: simple is beautiful

Vision 1

Vision 2



Logs unify batch and stream processing
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VISION: All your data … everywhere … now
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Thank you!
@nehanarkhede


