
ETL is dead;
long-live streams

Neha Narkhede,
Co-founder & CTO, Confluent

“
Data and data systems have really

changed in the past decade

Old world: Two popular locations for data

Operational databases Relational data warehouse

DB

DB

DB

DB DWH

“
Several recent data trends are driving a
dramatic change in the ETL architecture

“#1: Single-server databases are replaced
by a myriad of distributed data

platforms that operate at company-wide
scale

“#2: Many more types of data sources
beyond transactional data - logs, sensors,

metrics...

“#3: Stream data is increasingly
ubiquitous; need for faster processing

than daily

“The end result? This is what data
integration ends up looking like in

practice

App App App App

search

HadoopDWH

monitoring security
MQ MQ

cachecache

A giant
 mess!

App App App App

search

HadoopDWH

monitoring security
MQ MQ

cachecache

“
We will see how transitioning to streams

cleans up this mess and works towards...

Streaming platform

DWH Hadoop

security

App App App App

search

NoSQL

monitor
ing

request-response

messaging
 OR
stream
processing

streaming data pipelines

changelogs

A short history of data
integration

“
Surfaced in the 1990s in retail

organizations for analyzing buyer trends

“Extract data from databases

Transform into destination warehouse schema

Load into a central data warehouse

“BUT … ETL tools have been around for a
long time, data coverage in data

warehouses is still low! WHY?

Etl has drawbacks

“
#1: The need for a global schema

“#2: Data cleansing and curation is
manual and fundamentally error-prone

“#3: Operational cost of ETL is high; it is
slow; time and resource intensive

“#4: ETL tools were built to narrowly
focus on connecting databases and the
data warehouse in a batch fashion

“Early take on real-time ETL
=

Enterprise Application Integration (EAI)

“EAI: A different class of data integration
technology for connecting applications in

real-time

“
EAI employed Enterprise Service Buses

and MQs; weren’t scalable

ETL and EAI are
outdated!

Old world: scale or timely data, pick one

re
al-

tim
e

scale

ba
tc

h
EAI

ETL

real-time BUT
not scalable

scalable
BUT batch

“Data integration and ETL in the modern
world need a complete revamp

new world: streaming, real-time and scalable

re
al-

tim
e

scale

EAI

ETL

Streaming
Platform

real-time BUT
not scalable

real-time
AND

scalable

scalable
BUT batch

ba
tc

h

“Modern streaming world has new set of
requirements for data integration

“#1: Ability to process high-volume and
high-diversity data

“#2 Real-time from the grounds up; a
fundamental transition to
event-centric thinking

Event-Centric Thinking

Streaming
Platform

“A product was viewed”

HadoopWeb
app

Event-Centric Thinking

Streaming
Platform

“A product was viewed”

Hadoop
Web
app

mobile
app

APIs

mobile
app

web
app

APIs

Streaming
Platform

Hadoop

Security

Monitoring

Rec
engine“A product was viewed”

Event-Centric Thinking

“Event-centric thinking, when applied at a
company-wide scale, leads to this

simplification ...

Streaming platform

DWH Hadoop

App

App App App App

App

App

App

request-response

messaging
 OR
stream
processing

streaming data pipelines

changelogs

“#3: Enable forward-compatible
data architecture; the ability to add more
applications that need to process the

same data … differently

“To enable forward compatibility, redefine
the T in ETL:

Clean data in; Clean data out

app logs app logs

app logs

app logs

#1: Extract as
unstructured text

#2: Transform1 = data cleansing
= “what is a product view”

#4: Transform2 =
drop PII fields”

#3: Load into DWH

DWH

#1: Extract as
unstructured text

#2: Transform1 = data cleansing =
“what is a product view”

#4: Transform2 =
drop PII fields”

DWH

#2: Transform1 =
data cleansing =
“what is a product view”

#4: Transform2 = drop PII fields”

Cassandra

#1: Extract as
unstructured text
again

#3: Load cleansed data

#3: Load cleansed data

#1: Extract as
structured product
view events

#2: Transforms = drop
PII fields”

#4:.1 Load product
view stream

#4: Load
filtered product
View stream

DWH

Cassandra

Streaming
Platform

#4.2 Load
filtered product
view stream

“To enable forward compatibility, redefine
the T in ETL:

Data transformations, not data cleansing!

#1: Extract once as
structured product
view events

#2: Transform once =
drop PII fields” and enrich
with product metadata #4.1: Load product

views stream

#4: Load
filtered and

enriched product
views stream

DWH

Cassandra

Streaming
Platform

#4.2: Load filtered
and enriched
product views
stream

“Forward compatibility =
Extract clean-data once; Transform many

different ways before Loading into respective
destinations … as and when required

“In summary, needs of modern data
integration solution?

Scale, diversity, latency and forward
compatibility

Requirements for a modern streaming data
integration solution

- Fault tolerance
- Parallelism
- Latency
- Delivery semantics
- Operations and

monitoring
- Schema management

Data integration:
platform vs tool

Central, reusable
infrastructure for
many use cases

One-off, non-reusable
solution for a
particular use case

New shiny future of etl: a streaming platform

NoSQL

RDBMS

Hadoop

DWH

Apps Apps Apps

Search Monitoring RT
analytics

“Streaming platform serves as the
central nervous system for a

company’s data in the following ways ...

“#1: Serves as the real-time, scalable
messaging bus for applications; no

EAI

“#2: Serves as the source-of-truth
pipeline for feeding all data processing

destinations; Hadoop, DWH, NoSQL
systems and more

“#3: Serves as the building block for
stateful stream processing

microservices

“
Batch data integration

Streaming

“
Batch ETL

Streaming

a short history of data integration

drawbacks of ETL

needs and requirements for a streaming platform

new, shiny future of ETL: a streaming platform

What does a streaming platform look like and how
it enables Streaming ETL?

Apache kafka: a
distributed
streaming platform

57Confidential

Apache kafka 6 years
ago

57

58Confidential

> 1,400,000,000,000
messages processed / day

58

Now Adopted at 1000s of companies worldwide

“
What role does Kafka play in the new

shiny future for data integration?

“#1: Kafka is the de-facto storage of
choice for stream data

The log

0 1 2 3 4 5 6 7

next write

reader 1 reader 2

The log & pub-sub

0 1 2 3 4 5 6 7

publisher

subscriber 1 subscriber 2

“#2: Kafka offers a scalable
messaging backbone for application

integration

Kafka messaging APIs: scalable eai

app

Messaging APIs
produce(message) consume(message)

“#3: Kafka enables building streaming
data pipelines (E & L in ETL)

Kafka’s Connect API: Streaming data ingestion

app

Messaging APIsMessaging APIs

Co
nn

ec
t A

PI

Co
nn

ec
t A

PI

app

source sink

Extract Load

“#4: Kafka is the basis for stream
processing and transformations

Kafka’s streams API: stream processing (transforms)

Messaging API

Streams API

apps

apps

Co
nn

ec
t A

PI

Co
nn

ec
t A

PI

source sink

Extract Load

Transforms

Kafka’s connect API
=

E and L in Streaming ETL

Connectors!

NoSQL

RDBMS

Hadoop

DWH

Search Monitoring
RT
analytics

Apps Apps Apps

How to keep data centers in-sync?

Sources and sinks

Co
nn

ec
t A

PI

Co
nn

ec
t A

PI

source sink

Extract Load

changelogs

Transforming changelogs

Kafka’s Connect API = Connectors Made Easy!

- Scalability: Leverages Kafka for scalability
- Fault tolerance: Builds on Kafka’s fault tolerance model
- Management and monitoring: One way of monitoring all

connectors
- Schemas: Offers an option for preserving schemas

from source to sink

Kafka all the things!

Co
nn

ec
t A

PI

Kafka’s streams API
=

The T in STREAMING ETL

“
Stream processing =

transformations on stream data

2 visions for stream processing

Real-time Mapreduce Event-driven microservicesVS

2 visions for stream processing

Real-time Mapreduce Event-driven microservicesVS
- Central cluster
- Custom packaging,

deployment &
monitoring

- Suitable for
analytics-type use
cases

- Embedded library
in any Java app

- Just Kafka and
your app

- Makes stream
processing
accessible to any
use case

Vision 1: real-time mapreduce

Vision 2: event-driven microservices => Kafka’s
streams API

Streams API

microservice

Transforms

“
Kafka’s Streams API = Easiest way to do

stream processing using Kafka

“#1: Powerful and lightweight Java
library; need just Kafka and your app

app

“#2: Convenient DSL with all sorts of
operators: join(), map(), filter(), windowed

aggregates etc

Word count program using Kafka’s streams API

“#3: True event-at-a-time stream
processing; no microbatching

“#4: Dataflow-style windowing based on
event-time; handles late-arriving data

“#5: Out-of-the-box support for local
state; supports fast stateful processing

External state

local state

Fault-tolerant local state

“#6: Kafka’s Streams API allows
reprocessing; useful to upgrade apps or

do A/B testing

reprocessing

Real-time dashboard for security monitoring

Kafka’s streams api: simple is beautiful

Vision 1

Vision 2

Logs unify batch and stream processing

Streams API

app

sinksource

Co
nn

ec
t A

PI

Co
nn

ec
t A

PI

Transforms

LoadExtract

New shiny future of ETL: Kafka

A giant
 mess!

App App App App

search

HadoopDWH

monitoring security
MQ MQ

cachecache

All your data … everywhere … now

Streaming platform

DWH Hadoop

App

App App App App

App

App

App

request-response

messaging
 OR
stream
processing

streaming data pipelines

changelogs

VISION: All your data … everywhere … now

Streaming platform

DWH Hadoop

App

App App App App

App

App

App

request-response

messaging
 OR
stream
processing

streaming data pipelines

changelogs

Thank you!
@nehanarkhede

