ETL IS DEAD; LONG-LIVE STREAMS

Neha Narkhede, Co-founder & CTO, Confluent

Data and data systems have really changed in the past decade

OLD WORLD: TWO POPULAR LOCATIONS FOR DATA

Operational databases

Relational data warehouse

Several recent data trends are driving a dramatic change in the ETL architecture

#1: Single-server databases are replaced by a myriad of distributed data platforms that operate at company-wide Scale

#2: Many more types of data sources beyond transactional data - logs, sensors, metrics...

#3: Stream data is increasingly ubiquitous; need for faster processing than daily

The end result? This is what data integration ends up looking like in practice

we will see how transitioning to streams cleans up this mess and works towards...

A SHORT HISTORY OF DATA INTEGRATION

Surfaced in the 1990s in retail organizations for analyzing buyer trends

Extract data from databases Transform into destination warehouse schema Load into a central data warehouse

BUT ... ETL tools have been around for a long time, data coverage in data warehouses is still low! WHY?

ETL HAS DRAWBACKS

#1: The need for a global schema

#2: Data cleansing and curation is manual and fundamentally **error-prone**

#3: Operational cost of ETL is high; it is slow; time and resource intensive

#4: ETL tools were built to narrowly focus on connecting databases and the data warehouse in a **batch** fashion

Early take on real-time ETL =

Enterprise Application Integration (EAI)

EAI: A different class of data integration technology for connecting applications in real-time

EAI employed Enterprise Service Buses and MQs; weren't scalable

ETL AND EAI ARE OUTDATED!

OLD WORLD: SCALE OR TIMELY DATA, PICK ONE real-time EAI real-time BUT not scalable scalable batch ETL BUT batch -- confluent

scale

Data integration and ETL in the modern world need a COmplete revamp

NEW WORLD: STREAMING, REAL-TIME AND SCALABLE

Modern streaming world has new set of requirements for data integration

#1: Ability to process high-volume and high-diversity data

#2 Real-time from the grounds up; a fundamental transition to event-centric thinking

"A product was viewed"

Event-centric thinking, when applied at a company-wide scale, leads to this simplification ...

-- confluent
#3: Enable forward-compatible data architecture; the ability to add more applications that need to process the same data ... differently

To enable forward compatibility, redefine the T in ETZ: Clean data in; Clean data out

confluent

To enable forward compatibility, redefine the T in ETZ: Data transformations, not data cleansing!

Forward compatibility = Extract clean-data once; Transform many different ways before Loading into respective destinations ... as and when required

In summary, needs of modern data integration solution? Scale, diversity, latency and forward compatibility

REQUIREMENTS FOR A MODERN STREAMING DATA INTEGRATION SOLUTION

- Fault tolerance
- Parallelism
- Latency
- Delivery semanticsOperations and
- Schema management

Data Integration: — Platform VS Tool —

Central, reusable infrastructure for many use cases

-confluent

one-off, non-reusable solution for a particular use case

NEW SHINY FUTURE OF ETL: A STREAMING PLATFORM

Streaming platform serves as the central nervous system for a company's data in the following ways ...

#1: Serves as the **real-time**, scalable **messaging bus** for applications; no EAI

#2: Serves as the **Source-of-truth** pipeline for feeding all data processing destinations; Hadoop, DWH, NoSQL systems and more

#3: Serves as the building block for stateful stream processing microservices

a short history of data integration

drawbacks of ETL

needs and requirements for a streaming platform

new, shiny future of ETL: a streaming platform

What does a streaming platform look like and how it enables Streaming ETZ?

APACHE KAFKA: A DISTRIBUTED STREAMING PLATFORM

> 1,400,000,000,000 messages processed / day

NOW ADOPTED AT 10005 OF COMPANIES WORLDWIDE

-confluent

what role does Kafka play in the new shiny future for data integration?

#1: Kafka is the de-facto storage of choice for stream data

THE LOG

next write

THE LOG + PUB-SUB

#2: Kafka offers a scalable messaging backbone for application integration

KAFKA MESSAGING APIS: SCALABLE EAI

#3: Kafka enables building streaming data pipelines (E & L in ETL)

KAFKA'S CONNECT API: STREAMING DATA INGESTION

confluent

#4: Kafka is the basis for stream processing and transformations

KAFKA'S STREAMS API: STREAM PROCESSING (TRANSFORMS)

KAFKA'S CONNECT API

E AND L IN STREAMING ETL

CONNECTORS!

confluent

HOW TO KEEP DATA CENTERS IN-SYNC?

confluent
Sources and sinks

CHANGELOGS

TRANSFORMING CHANGELOGS

KAFKA'S CONNECT API = CONNECTORS MADE EASY!

- Scalability: Leverages Kafka for scalability
 Fault tolerance: Builds on Kafka's fault tolerance model
- Management and monitoring: One way of monitoring all connectors
- Schemas: Offers an option for preserving schemas from source to sink

KAFKA ALL THE THINGS!

KAFKA'S STREAMS API = THE T IN STREAMING ETL

Stream processing = transformations on stream data

Z VISIONS FOR STREAM PROCESSING

Real-time Mapreduce VS Event-driven microservices

Z VISIONS FOR STREAM PROCESSING

Real-time Mapreduce VS Event-driven microservices

- Central cluster
- Custom packaging, deployment & monitoring
- Suitable for analytics-type use cases

-- confluent

- Embedded library
 in any Java app
 Just Kafka and
 your app
- Makes stream processing
 - accessible to any use case

VISION 1: REAL-TIME MAPREDUCE

VISION Z: EVENT-DRIVEN MICROSERVICES => KAFKA'S STREAMS API

confluent

Kafka's Streams API = Easiest way to do stream processing using Kafka

#1: Powerful and lightweight Java library; need just Kafka and your app

#2: Convenient DSL with all sorts of operators: join(), map(), filter(), windowed aggregates etc

WORD COUNT PROGRAM USING KAFKA'S STREAMS API

KStreamBuilder builder = new KStreamBuilder();
KStream<String, String> textLines = builder.stream(stringDeserializer, stringDeserializer, "TextLinesTopic");

```
KStream<String, Long> wordCounts = textLines
    .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+")))
    .map((key, value) -> new KeyValue<>(value, value))
    .countByKey(stringSerializer, longSerializer, stringDeserializer, longDeserializer, "Counts")
    .toStream();
```

wordCounts.to("WordsWithCountsTopic", stringSerializer, longSerializer);

```
KafkaStreams streams = new KafkaStreams(builder, config);
streams.start();
```

```
confluent
```

#3: True event-at-a-time stream processing; no microbatching

#4: Dataflow-style windowing based on event-time; handles late-arriving data

#5: Out-of-the-box support for local state; supports fast stateful processing

EXTERNAL STATE

LOCAL STATE

FAULT-TOLERANT LOCAL STATE

#6: Kafka's Streams API allows reprocessing: useful to upgrade apps or do A/B testing

REAL-TIME DASHBOARD FOR SECURITY MONITORING

KAFKA'S STREAMS API: SIMPLE IS BEAUTIFUL

confluent

LOGS UNIFY BATCH AND STREAM PROCESSING

NEW SHINY FUTURE OF ETL: KAFKA

ALL YOUR DATA ... EVERYWHERE ... NOW

VISION: ALL YOUR DATA ... EVERYWHERE ... NOW

Chehanarkhede

