
Konrad `ktoso` Malawski @ QCon San Francisco, 2016
pic: 1:1 scale Gundam model @ Odaiba, Tokyo

Reactive Streams, j.u.concurrent, & Beyond!

Past => Present => Future

Agenda:

Underlying motto.
For this talk,
and our continued research.

“We can do better than that.”

Konrad `ktoso` Malawski

Akka Team,
Reactive Streams TCK,

Persistence, Streams & HTTP, Core, Remoting

Konrad `@ktosopl` Malawski

work: akka.io lightbend.com
personal blog: http://kto.so

communities: geecon.org Java.pl / KrakowScala.pl sckrk.com GDGKrakow.pl lambdakrk.pl

http://akka.io
http://lightbend.com
http://kto.so
http://geecon.org
http://java.pl
http://krakowscala.pl
http://sckrk.com
http://gdgkrakow.pl
http://www.lambdakrk.pl

Konrad `@ktosopl` Malawski

work: akka.io lightbend.com
personal blog: http://kto.so

communities: geecon.org Java.pl / KrakowScala.pl sckrk.com GDGKrakow.pl lambdakrk.pl

http://akka.io
http://lightbend.com
http://kto.so
http://geecon.org
http://java.pl
http://krakowscala.pl
http://sckrk.com
http://gdgkrakow.pl
http://www.lambdakrk.pl

Make building powerful concurrent &
distributed applications simple.

Akka is a toolkit and runtime
for building highly concurrent,
distributed, and resilient
message-driven applications
on the JVM

Actors – simple & high performance concurrency
Cluster / Remoting – location transparency, resilience
Cluster Sharding – and more prepackaged patterns

Streams – back-pressured stream processing

Persistence – Event Sourcing

HTTP – complete, fully async and reactive HTTP Server
Official Kafka, Cassandra, DynamoDB integrations, tons
more in the community

Complete Java & Scala APIs for all features (since day 1)
Typed coming soon…

And the many meanings it carries.

Reactive

And the many meanings it carries.

Reactive

The many meanings of Reactive

reactivemanifesto.org

http://reactivemanifesto.org

The many meanings of Reactive

Reactive… on the Application level

Reactive Apps

So what are Reactive Streams actually?

So what are Reactive Streams actually?

So what are Reactive Streams actually?

Getting the complete picture

Getting the complete picture
(yet… not the topic of today’s talk)

Single Reactive App
Any benefits?

Reactive on the Application level

https://speakerdeck.com/benjchristensen/applying-rxjava-to-existing-applications-at-philly-ete-2015

https://speakerdeck.com/benjchristensen/applying-rxjava-to-existing-applications-at-philly-ete-2015

“Not-quite-Reactive-System”
The reason we started researching
into transparent to users flow control.

“Best practices are solutions
 to yesterdays problems.”

https://twitter.com/FrankBuytendijk/status/795555578592555008

Circuit breaking as substitute of flow-control

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

https://www.youtube.com/watch?v=5FE6xnH5Lak

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

https://www.youtube.com/watch?v=5FE6xnH5Lak

HTTP/1.1 503 Service Unavailable

HTTP/1.1 503 Service Unavailable

Throttling as represented by 503 responses. Client will back-off… but how?
What if most of the fleet is throttling?

http://doc.akka.io/docs/akka/2.4/common/circuitbreaker.html

HTTP/1.1 503 Service Unavailable

HTTP/1.1 503 Service Unavailable

http://doc.akka.io/docs/akka/2.4/common/circuitbreaker.html

http://doc.akka.io/docs/akka/2.4/common/circuitbreaker.html

http://doc.akka.io/docs/akka/2.4/common/circuitbreaker.html

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

“slamming the breaks”

https://www.youtube.com/watch?v=5FE6xnH5Lak

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

“slamming the breaks”

https://www.youtube.com/watch?v=5FE6xnH5Lak

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

“slamming the breaks”

https://www.youtube.com/watch?v=5FE6xnH5Lak

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

“slamming the breaks”

https://www.youtube.com/watch?v=5FE6xnH5Lak

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

“slamming the breaks”

https://www.youtube.com/watch?v=5FE6xnH5Lak

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

We’ll re-visit this specific case in a bit :-)

“slamming the breaks”

https://www.youtube.com/watch?v=5FE6xnH5Lak

Are absolutely useful!

Still… “We can do better than that.”

Circuit Breakers

But we’ll need everyone to understand
some shared semantics…

We can do better.

A fundamental building block.
Not end-user API by itself.

reactive-streams.org

Reactive Streams

http://reactive-streams.org

Reactive Streams
More of an SPI (Service Provider Interface),

than API.

reactive-streams.org

http://reactive-streams.org

“Stream”

“Stream”
What does it mean?!

Suddenly everyone jumped on the word “Stream”.

Akka Streams / Reactive Streams started end-of-2013.

“Streams”

* when put in “” the word does not appear in project name, but is present in examples / style of APIs / wording.

Suddenly everyone jumped on the word “Stream”.

Akka Streams / Reactive Streams started end-of-2013.

“Streams”

Akka Streams
Reactive Streams
RxJava “streams”*
Spark Streaming
Apache Storm “streams”*
Java Steams (JDK8)
Reactor “streams”*
Kafka Streams
ztellman / Manifold (Clojure)

* when put in “” the word does not appear in project name, but is present in examples / style of APIs / wording.

Apache GearPump “streams”
Apache [I] Streams (!)
Apache [I] Beam “streams”
Apache [I] Quarks “streams”
Apache [I] Airflow “streams” (dead?)
Apache [I] Samza
Scala Stream
Scalaz Streams, now known as FS2
Swave.io
Java InputStream / OutputStream / … :-)

The specification.
Reactive Streams

Origins of

What is back-pressure?

?

What is back-pressure?

No no no…!
Not THAT Back-pressure!

 Also known as:
 flow control.

What is back-pressure?

No no no…!
Not THAT Back-pressure!

 Also known as:
 application level flow control.

What is back-pressure?

Reactive Streams - story: 2013’s impls

~2013:

Reactive Programming
becoming widely adopted on JVM.

- Play introduced “Iteratees”
- Akka (2009) had Akka-IO (TCP etc.)
- Ben starts work on RxJava

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf - Ingo Maier, Martin Odersky

https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors

https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Teams discuss need for back-pressure
in simple user API.
Play’s Iteratee / Akka’s NACK in IO.

}

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Reactive Streams - story: 2013’s impls

Play Iteratees – pull back-pressure, difficult API

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf - Ingo Maier, Martin Odersky

https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors

https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Akka-IO – NACK back-pressure; low-level IO (Bytes); messaging API

RxJava – no back-pressure, nice API

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

Afterwards more organisations are invited to join the effort, including Pivotal, RedHat etc.

https://www.coursera.org/course/reactive

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.Goals:
- asynchronous
- never block (waste)
- safe (back-threads pressured)
- purely local abstraction
- allow synchronous impls.

https://www.coursera.org/course/reactive

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

December 2013
Stephane Maldini & Jon Brisbin (Pivotal Reactor) contacted by Viktor.

https://www.coursera.org/course/reactive

Reactive Streams - expert group founded

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

December 2013
Stephane Maldini & Jon Brisbin (Pivotal Reactor) contacted by Viktor.

Soon after, the “Reactive Streams” expert group is formed.

Also joining the efforts: Doug Lea (Oracle), Endre Varga (Akka), Johannes Rudolph &  
Mathias Doenitz (Spray), and many others, including myself join the effort soon after.

https://www.coursera.org/course/reactive

October 2013

Roland Kuhn (Akka) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

December 2013
Stephane Maldini & Jon Brisbin (Pivotal Reactor) contacted by Viktor.

Soon after, the “Reactive Streams” expert group is formed.

Also joining the efforts: Doug Lea (Oracle), Endre Varga (Akka), Johannes Rudolph &  
Mathias Doenitz (Spray), and many others, including myself join the effort soon after.

Reactive Streams - expert group founded

I ended up implementing much of the TCK.
Please use it, let me know if it needs improvements :-)

https://www.coursera.org/course/reactive

Reactive Streams - story: 2013’s impls

2014–2015:

Reactive Streams Spec & TCK
development, and implementations.

1.0 released on April 28th 2015,
with 5+ accompanying implementations.

2015
Proposed to be included with JDK9 by Doug Lea
via JEP-266 “More Concurrency Updates”

http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

http://openjdk.java.net/jeps/266
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

2014–2015:

Reactive Streams Spec & TCK
development, and implementations.

1.0 released on April 28th 2015,
with 5+ accompanying implementations.

2015
Proposed to be included with JDK9 by Doug Lea
via JEP-266 “More Concurrency Updates”

http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

Reactive Streams - story: 2013’s impls

http://openjdk.java.net/jeps/266
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

But what does it do!?

Reactive Streams

Publisher[T] Subscriber[T]

Back-pressure explained

Fast Publisher Slow Subscriber

Push model

Subscriber usually has some kind of buffer.

Push model

Push model

Push model

What if the buffer overflows?

Push model

Use bounded buffer,
drop messages + require re-sending

Push model

Kernel does this!
Routers do this!

(TCP)

Use bounded buffer,
drop messages + require re-sending

Push model

Increase buffer size…
Well, while you have memory available!

Push model

Push model

Reactive Streams explained

Reactive Streams
explained in 1 slide

Fast Publisher will send at-most 3 elements.
This is pull-based-backpressure.

Reactive Streams: “dynamic push/pull”

JEP-266 – soon…!
public final class Flow {
 private Flow() {} // uninstantiable

 @FunctionalInterface
 public static interface Publisher<T> {
 public void subscribe(Subscriber<? super T> subscriber);
 }

 public static interface Subscriber<T> {
 public void onSubscribe(Subscription subscription);
 public void onNext(T item);
 public void onError(Throwable throwable);
 public void onComplete();
 }

 public static interface Subscription {
 public void request(long n);
 public void cancel();
 }

 public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> {
 }
}

JEP-266 – soon…!
public final class Flow {
 private Flow() {} // uninstantiable

 @FunctionalInterface
 public static interface Publisher<T> {
 public void subscribe(Subscriber<? super T> subscriber);
 }

 public static interface Subscriber<T> {
 public void onSubscribe(Subscription subscription);
 public void onNext(T item);
 public void onError(Throwable throwable);
 public void onComplete();
 }

 public static interface Subscription {
 public void request(long n);
 public void cancel();
 }

 public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> {
 }
}

Single basic (helper) implementation available in JDK:
SubmissionPublisher

http://gee.cs.oswego.edu/dl/jsr166/dist/docs/java/util/concurrent/SubmissionPublisher.html

Reactive Streams: goals

1) Avoiding unbounded buffering across async boundaries

2)Inter-op interfaces between various libraries

Reactive Streams: goals
1) Avoiding unbounded buffering across async boundaries

2) Inter-op interfaces between various libraries

Argh, implementing a correct
RS Publisher or Subscriber is so hard!

1) Avoiding unbounded buffering across async boundaries

2) Inter-op interfaces between various libraries

Reactive Streams: goals

Argh, implementing a correct RS Publisher
or Subscriber is so hard!

Reactive Streams: goals

Argh, implementing a correct
RS Publisher or Subscriber is so hard!

You should be using
Akka Streams instead!

1) Avoiding unbounded buffering across async boundaries

2) Inter-op interfaces between various libraries

Already made a huge industry impact

Reactive Streams

Back-pressure as a feature

Inspiring other technologies

Inspiring other technologies

It’s been a while since Java inspired
other modern technologies, hasn’t it?

The implementation.

Complete and awesome Java and Scala APIs.
As everything since day 1 in Akka.

Akka Streams

Akka Streams in 20 seconds:
 // types:
 Source<Out, Mat>
 Flow<In, Out, Mat>
 Sink<In, Mat>

 // generally speaking, it's always:
 val ready =
 Source.from…(???).via(flow).map(i -> i * 2).to(sink)

 val mat: Mat = ready.run()

 // the usual example:
 val f: Future<String> =
 Source.single(1).map(i -> i.toString).runWith(Sink.head)

Proper static typing!

Source.single(1).map(i -> i.toString).runWith(Sink.head())

Akka Streams in 20 seconds:

// types: _
Source<Int, NotUsed>
 Flow<Int, String, NotUsed>
 Sink<String, Future<String>>

Source.single(1).map(i -> i.toString).runWith(Sink.head())

// types: _
Source<Int, Unit>
 Flow<Int, String, Unit>
 Sink<String, Future<String>>

Akka Streams in 20 seconds:

Materialization

Gears from GeeCON.org, did I mention it’s an awesome conf?

http://geecon.org

What is “materialization” really?

What is “materialization” really?

What is “materialization” really?

What is “materialization” really?

Akka Streams & HTTP

streams
& HTTP

A core feature not obvious to the untrained eye…!

Quiz time!
TCP is a ______ protocol?

Akka Streams & HTTP

A core feature not obvious to the untrained eye…!

Quiz time!
TCP is a STREAMING protocol!

Akka Streams & HTTP

Streaming in Akka HTTP
DEMO

HttpServer as a:
Flow[HttpRequest, HttpResponse]

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
https://github.com/akka/akka/pull/20778

Streaming in Akka HTTP
DEMO

HttpServer as a:
Flow[HttpRequest, HttpResponse]

HTTP Entity as a:
Source[ByteString, _]

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
https://github.com/akka/akka/pull/20778

Streaming in Akka HTTP
DEMO

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778

HttpServer as a:
Flow[HttpRequest, HttpResponse]

HTTP Entity as a:
Source[ByteString, _]

Websocket connection as a:
Flow[ws.Message, ws.Message]

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
https://github.com/akka/akka/pull/20778

It’s turtles buffers all the way down!

Streaming from Akka HTTP

Streaming from Akka HTTP

Streaming from Akka HTTP

Streaming from Akka HTTP (Java)
 public static void main(String[] args) {
 final ActorSystem system = ActorSystem.create();
 final Materializer materializer = ActorMaterializer.create(system);
 final Http http = Http.get(system);

 final Source<Tweet, NotUsed> tweets = Source.repeat(new Tweet("Hello world"));

 final Route tweetsRoute =
 path("tweets", () ->
 completeWithSource(tweets, Jackson.marshaller(), EntityStreamingSupport.json())
);

 final Flow<HttpRequest, HttpResponse, NotUsed> handler =
 tweetsRoute.flow(system, materializer);

 http.bindAndHandle(handler,
 ConnectHttp.toHost("localhost", 8080),
 materializer
);
 System.out.println("Running at http://localhost:8080");

 }

Streaming from Akka HTTP (Java)
 public static void main(String[] args) {
 final ActorSystem system = ActorSystem.create();
 final Materializer materializer = ActorMaterializer.create(system);
 final Http http = Http.get(system);

 final Source<Tweet, NotUsed> tweets = Source.repeat(new Tweet("Hello world"));

 final Route tweetsRoute =
 path("tweets", () ->
 completeWithSource(tweets, Jackson.marshaller(), EntityStreamingSupport.json())
);

 final Flow<HttpRequest, HttpResponse, NotUsed> handler =
 tweetsRoute.flow(system, materializer);

 http.bindAndHandle(handler,
 ConnectHttp.toHost("localhost", 8080),
 materializer
);
 System.out.println("Running at http://localhost:8080");

 }

Streaming from Akka HTTP (Scala)
object Example extends App
 with SprayJsonSupport with DefaultJsonProtocol {
 import akka.http.scaladsl.server.Directives._

 implicit val system = ActorSystem()
 implicit val mat = ActorMaterializer()

 implicit val jsonRenderingMode = EntityStreamingSupport.json()
 implicit val TweetFormat = jsonFormat1(Tweet)

 def tweetsStreamRoutes =
 path("tweets") {
 complete {
 Source.repeat(Tweet(""))
 }
 }

 Http().bindAndHandle(tweetsStreamRoutes, "127.0.0.1", 8080)
 System.out.println("Running at http://localhost:8080");
}

Ecosystem that solves problems

 > (is greater than)
solving all the problems ourselves

Codename:
Alpakka

// these are “Alpacasso”

A community for Streams connectors

Alpakka – a community for Stream connectors

Alp

Alpakka – a community for Stream connectors

Threading & Concurrency in Akka Streams Explained (part I)

Mastering GraphStages (part I, Introduction)

Akka Streams Integration, codename Alpakka

A gentle introduction to building Sinks and Sources using GraphStage APIs
(Mastering GraphStages, Part II)

Writing Akka Streams Connectors for existing APIs

Flow control at the boundary of Akka Streams and a data provider

Akka Streams Kafka 0.11

http://blog.akka.io/streams/2016/07/06/threading-and-concurrency-in-akka-streams-explained
http://blog.akka.io/streams/2016/07/30/mastering-graph-stage-part-1
http://blog.akka.io/integrations/2016/08/23/intro-alpakka
http://blog.akka.io/integrations/2016/08/25/simple-sink-source-with-graphstage
http://blog.akka.io/integrations/2016/08/29/connecting-existing-apis
http://blog.akka.io/integrations/2016/09/05/flow-control-at-the-akka-stream-boundary
http://blog.akka.io/integrations/2016/09/10/akka-stream-kafka

Alpakka – a community for Stream connectors

Existing examples:
MQTT
AMQP

Streaming HTTP
Streaming TCP

Streaming FileIO
Cassandra Queries

“Reactive Kafka” (akka-stream-kafka)
S3, SQS & other Amazon APIs

Streaming JSON
Streaming XML

Alpakka – a community for Stream connectors

Existing examples:
MQTT
AMQP

Streaming HTTP
Streaming TCP

Streaming FileIO
Cassandra Queries

“Reactive Kafka” (akka-stream-kafka)
S3, SQS & other Amazon APIs

Streaming JSON Parsing
Streaming XML Parsing

Reactive Streams / Akka Streams

Is now the time to adopt?

Totally, go for it.

ReactiveSocket.io

Taking it to the next level:

http://reactivesocket.io

ReactiveSocket.io

Taking it to the next level:

A collaboration similar in spirit, and continuing from where
Reactive Streams brought us today.

http://reactivesocket.io

Reactive Streams over network boundaries

http://reactivesocket.io/

Reactive Streams = async boundaries
Reactive Socket = RS + network boundaries

http://reactivesocket.io/

Reactive Streams over network boundaries

http://reactivesocket.io/

Reactive Streams = async boundaries
Reactive Socket = RS + network boundaries

Primarily led by:
- Ben Christensen, Todd Montgomery (Facebook) & team
- Nitesh Kant (Netflix) & team

Lightbend on board as well – right now we’re prototyping with it.

http://reactivesocket.io/

Reactive Streams over network boundaries

“ReactiveSocket is an application protocol
providing Reactive Streams semantics

over an asynchronous, binary boundary.”

http://reactivesocket.io/

http://reactivesocket.io/

Reactive Streams over network boundaries

Binary
Support various platforms:
- java
- c++
- js
- …

Reactive Streams over network boundaries

Async
Obviously we want it to be
async and properly bi-directional.

Reactive Streams over network boundaries

Application
protocol

Again, bridging app-level
semantics to wire semantics.

Reactive Streams semantics:
 - “you can do 10 requests”

Reactive Streams over network boundaries

Application
protocol

Again, bridging app semantics
to wire semantics.

Reactive Streams semantics:
 - “you can do 10 requests”

Extra Lease semantics:
 - “you can do 10 reqs in 30secs”

Lease semantics, “flipping the problem”

Lease semantics, “flipping the problem”

Lease semantics, “flipping the problem”

Exciting times ahead!

State and Future[_] of Reactive
Reactive Systems – well established “goal” architecture
…excellent building blocks available, and getting even better with:

Reactive-Streams eco-system blooming!
… as very important building block of the puzzle.

Akka Streams driving implementation of Reactive Streams
(first passing TCK, prime contributor to spec, strong ecosystem)

Reactive Socket continuing to improve app-level flow-control
semantics. More control than “just use HTTP/2”.
… considering resumability for streams as well.

The best is yet to come:
combining all these components into resilient, scalable systems!

Happy hAkking!

We <3 contributions
• Easy to contribute:

• https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute
• https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3A%22nice-to-have+%28low-prio%29%22

• Akka: akka.io && github.com/akka
• Reactive Streams: reactive-streams.org
• Reactive Socket: reactivesocket.io

• Mailing list:
• https://groups.google.com/group/akka-user

• Public chat rooms:
• http://gitter.im/akka/dev developing Akka
• http://gitter.im/akka/akka using Akka

https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute
https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3A%22nice-to-have+%28low-prio%29%22
http://akka.io
http://github.com/akka
http://reactive-streams.org
http://reactivesocket.io
https://groups.google.com/group/akka-user
http://gitter.im/akka/dev
http://gitter.im/akka/akka

Pics

Gundam pictures from: http://www.wallpaperup.com/tag/gundam/3

http://www.wallpaperup.com/tag/gundam/3

Free e-book and printed report.
bit.ly/why-reactive

Covers what reactive actually is.
Implementing in existing architectures.

Thoughts from the team that’s building
reactive apps since more than 6 years.

Obligatory “read my book!” slide :-)

http://bit.ly/why-reactive

Q/A
ktoso @ lightbend.com
twitter: ktosopl

github: ktoso
team blog: blog.akka.io

home: akka.io
myself: kto.so

http://twitter.com/ktosopl
http://github.com/ktoso
http://blog.akka.io
http://akka.io
http://kto.so

