Reactive Streams, j.u.concurrent, & Beyond!

Konrad “ktoso™ Malawski @ QCon San Francisco, 2016
pic: I:1 scale Gundam model @ Odaiba, Tokyo

Agenda:

Past => Present => Future

“We can do better than that.”

Underlying motto.
For this talk,
and our continued research.

Konrad ‘ktoso™ Malawski

Akka Team,
Reactive Streams TCK,
Persistence, Streams & HTTP, Core, Remoting

.Lightbend

Ml Lightbeno

geecon

[SC k rk] Konrad “@ktosopl” Malawski ‘ T —_—

work: akka.io lightbend.com
personal blog: http://kto.so

A communities: geecon .org Java.pl / KrakowScala.pl sckrk.com GDGKrakow.pl lambdakrk.pl
B Lightbend

http://akka.io
http://lightbend.com
http://kto.so
http://geecon.org
http://java.pl
http://krakowscala.pl
http://sckrk.com
http://gdgkrakow.pl
http://www.lambdakrk.pl

£ . £/ AN
reactive-streams / reactive-streams-jvm @Unwatch~ 171 Y Unstar 1353 VYFork M

Code Issues 23 Pull requests 4 Projects 0 Pulse hh_Graphs

Contributors Commits Code frequency Punch card Network Members

Feb 23, 2014 - Nov 7, 2016 Contributions: Commite
Contributions to master, excluding merge commits
KRAKOW SCAL
[] ktoso « 3 » Viktorklang
69 commits 4,622 -- 66 commits 2,701 --
.'\.. 2 — A |‘

work: akka.io lichtbend.com

personal blog: http://kto.so
communities: geecon.org Java.pl / KrakowScala.pl sckrk.com GDGKrakow.pl lambdakrk.pl

http://akka.io
http://lightbend.com
http://kto.so
http://geecon.org
http://java.pl
http://krakowscala.pl
http://sckrk.com
http://gdgkrakow.pl
http://www.lambdakrk.pl

5 SCOtiaban

Time
Warner
Cable

(comcast. workday.

dropcam o

£ A
TS
R
el

o Lightbend

Pl

A& akka

Make building powerful concurrent &
distributed applications simple.

Akka is a toolkit and runtime
for building highly concurrent,
distributed, and resilient
message-driven applications
on the JVM

AR akka

Actors - simple & high performance concurrency
Cluster / Remoting - [ocation transparency, resilience
Cluster Sharding — and more prepackaged patterns

Streams — back-pressured stream processing

Persistence - Event Sourcing

HTTP - complete, fully async and reactive HTTP Server
Official Kafka, Cassandra, DynamoDB integrations, tons
more in the community

Complete Java & Scala APIs for all features (since day 1)
Typed coming soon...

Reactive

And the many meanings it carries.

The many meanings of Reactive

A

RC?POUS:V&
/’ \
ELASTIC & 7 Rem,gm

Mesmoe'Dkwev

reactivemanifesto.org

-Lightbend

http://reactivemanifesto.org

The many meanings of Reactive

N

A\

Rerpous:ve
e -
Emmc & 7 ReSIL/gNT

/Messn(,e'Dkwev

SOLID FOUNDATIONS

-Lightbend

Reactive Apps

Reactive... on the Application level

So what are Reactive Streams actually?

RemeJSWE \

-
EMSTIC & T) Re”“ﬁ"’”f
/Mesfnoe'Dkwev /

-Lightbend

So what are Reactive Streams actually?

Recpous:ve c

/e
EMS‘TI\C & J,~ > Reg'L/ENT

/Mesfﬂbb'DRIveu

-Ughtbend

So what are Reactive Streams actually?

Recpous:ve c

/ae—
EMS‘TI\C & J,~ =, Reg'L/ENT

7
/Mesfﬂbb'DRIveu

&

-Ughtbend

Getting the complete picture

Cuicy

x//

Getting the complete picture

;Lightbend

Single Reactive App

Any benefits?

Reactive on the Application level

— RxNetty — Tomcat
5000rps
3750rps
—
2500rps

1250rps

- Netty achieves higher throughput
« Mostly due to lower CPU consumption per request

Orps
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 100010501100

concurrent clients

https://speakerdeck.com/benjchristensen/applying-rxjava-to-existing-applications-at-philly-ete-2015

https://speakerdeck.com/benjchristensen/applying-rxjava-to-existing-applications-at-philly-ete-2015

“Not-quite-Reactive-System”

The reason we started researching
into transparent to users flow control.

LikE A BOSS.

‘“Best practices are solutions
to yesterdays problems.”

Circuit breaking as substitute of flow-control

https://twitter.com/FrankBuytendijk/status/795555578592555008

GO

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

.Lightbend

https://www.youtube.com/watch?v=5FE6xnH5Lak

GO

See also, Nitesh Kant, Netflix @ Reactive Summit
https://www.youtube.com/watch?v=5FE6xnH5Lak

.Lightbend

https://www.youtube.com/watch?v=5FE6xnH5Lak

T

m:HTTP/l.l 503 Service Unavailable|

WLES Al
N} 7 2 —

7:HTTP/1.1 503 Service Unavailab1e|

0o

6]

Throttling as represented by 503 responses. Client will back-off... but how?
What if most of the fleet is throttling?

Calls failing fast

Success

Trip Breaker Attempt Reset
Trip Break
_ Half-Open
ResetBreaker ___—

q

HTTP/1 1 503 Service Unavailable

exe

http://doc.akka.io/docs/akka/2.4/common/circuitbreaker.html

-Lightbend

http://doc.akka.io/docs/akka/2.4/common/circuitbreaker.html

Calls failing fast

Success
Attempt Reset
Trip Breaker

Trip Breaker
. ResetBreaker ___—

Half-Open

, 6]

http://deesaka.io/docs/akka/2.4/common/circuitbreaker.html

-Lightbend

http://doc.akka.io/docs/akka/2.4/common/circuitbreaker.html

“slamming the breaks”

Lightbend

https://www.youtube.com/watch?v=5FE6xnH5Lak

@ “slamming the breaks”

;Lightbend

https://www.youtube.com/watch?v=5FE6xnH5Lak

“slamming the breaks”

Lightbend

https://www.youtube.com/watch?v=5FE6xnH5Lak

’

@ “slamming the breaks’

;Lightbend

https://www.youtube.com/watch?v=5FE6xnH5Lak

‘slamming the breaks”

FRREVIRN LGV TSN K. © W e

.....
PP

https://www.youtube.com/watch?v=5FE6xnH5Lak

@ “slamming the breaks”

gx‘)oue MTL
BACKk oF Fig

https://www.youtube.com/watch?v=5FE6xnH5Lak

Circuit Breakers

Are absolutely useful!

Still... “We can do better than that.”

AN

T Re @é
A 1) 6‘;
mt 0 /

GET ﬁ-'eo OF 'n

(GVESSWOoRK

We can do better.

But we’ll need everyone to understand
some shared semantics...

Reactive Streams

A fundamental building block.
Not end-user API by itself.

reactive-streams.org

http://reactive-streams.org

Reactive Streams

More of an SPI (Service Provider Interface),
than API.

reactive-streams.org

http://reactive-streams.org

“Stream”’

o Lightbend

“Stream?”’
What does it mean?!

-Lightbend

“Streams”’

Suddenly everyone jumped on the word “Stream”.

Aldka Streams / Reactive Streams started end-of-201 3.

€6y

* when put in ‘“”’ the word does not appear in project name, but is present in examples / style of APIs / wording.

-Lightbend

“Streams”’

Suddenly everyone jumped on the word “Stream”.

Aldka Streams / Reactive Streams started end-of-201 3.

Akka Streams Apache GearPump “streams”
Reactive Streams Apache [I] Streams (!)

RxJava “streams’* Apache [I] Beam “streams”

Spark Streaming Apache [I] Quarks “streams”
Apache Storm “streams’* Apache [I] Airflow “streams” (dead?)
Java Steams (JDKS8) Apache [I] Samza

Reactor “streams’* Scala Stream

Kafka Streams Scalaz Streams, now known as FS2
ztellman / Manifold (Clojure) Swave.io

Java InputStream / OutputStream / ... :-)

€6y

* when put in ‘“”’ the word does not appear in project name, but is present in examples / style of APIs / wording.

.Lightbend

Origins of

Reactive Streams

The specification.

A What is back-pressure?

o Lightbend

A What is back-pressure?

~
Y Dack
@./ﬂc % {/

o Lightbend

A What is back-pressure?

No no no...!
Not THAT Back-pressure!

Also known as:
flow control.

o Lightbend

A What is back-pressure?

No no no...!
Not THAT Back-pressure!

Also known as:
application level flow control.

o Lightbend

A Reactive Streams - story: 2013’s impls

N

~2013:

Reactive Programming T

becoming widely adopted on JVM.

- Play introduced “Iteratees” Teams discuss need for back-pressure
- Aldca (2009) had Aldka-10 (TCP etc.) § in simple user API.

- Ben starts work on RxJava Play’s Iteratee / Akka’s NACK in IO.

nsions-rx-for-net-silverligh X
- Ingo Maier, Martin Odersky

o Lightbend

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

A Reactive Streams - story: 2013’s impls

,/\’ Play Iteratees — , difficult API

- Aldca-10 — NACK back-pressure; low-level |O (Bytes); messaging AP

T RxJava — no back-pressure, nice AP

: n rchi nnouncing-r ive- nsions-rx-for-net-silverli X
i i i - Ingo Maier, Martin ers
/gi i X r ntri r
: i iktorklang/r ive-str -1-0-0-interview- rn
Lightbend

http://blogs.msdn.com/b/rxteam/archive/2009/11/17/announcing-reactive-extensions-rx-for-net-silverlight.aspx
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://github.com/ReactiveX/RxJava/graphs/contributors
https://github.com/reactor/reactor/graphs/contributors
https://medium.com/@viktorklang/reactive-streams-1-0-0-interview-faaca2c00bec#.69st3rndy

A Reactive Streams - expert group founded

October 2013

Roland Kuhn (Ald<a) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking asynchronous back-pressure” gets coined.

Afterwards more organisations are invited to join the effort, including Pivotal, RedHat etc.

o Lightbend

https://www.coursera.org/course/reactive

A Reactive Streams - expert group founded

October 2013

Roland Kuhn (Ald<a) and Erik Meijer (Rx .NET) meet in Lausanne,
while recording “Principles of Reactive Programming” Coursera Course.

Viktor Klang (Akka), Erik Meijer, Ben Christensen (RxJava)
and Marius Eriksen (Twitter) meet at Twitter HQ.

The term “reactive non-blocking Goa|s:

asynchronous
never block (waste)
safe (back-threads pressured)

purely local abstraction
allow synchronous impls.

o Lightbend

https://www.coursera.org/course/reactive

A Reactive Streams - expert group founded

December 2013
Stephane Maldini & Jon Brisbin (Pivotal Reactor) contacted by Viktor.

= Lightbend

https://www.coursera.org/course/reactive

A Reactive Streams - expert group founded

Soon after, the “Reactive Streams” expert group is formed.

Also joining the efforts: Doug Lea (Oracle), Endre Varga (Akka), Johannes Rudolph &
Mathias Doenitz (Spray), and many others, including myself join the effort soon after.

o Lightbend

https://www.coursera.org/course/reactive

A Reactive Streams - expert group founded

reactive-streams / reactive-streams-jvm @ Unwatch~ 108 4 Unstar 5% {Fork !
Contributors Commits Code frequency Punch card Network Members
) Feb 23, 2014 - Apr 14, 2015 Cortrbutions Commits «
\ Contributions 10 master, excluding merge commits

l

L ;A“ALAA‘

‘]] ktoso = == viktorklang
/ ne 125599 ++ 4 587 ~ -1 I- me A87E

6 es 2687 -

o ALAM, A, A P L — - A . -

| ended up implementing much of the TCK.
Please use it, let me know if it needs improvements :-)

Soon after, the “Reactive Streams” expert group is formed.

Also joining the efforts: Doug Lea (Oracle), Endre Varga (Akka), Johannes Rudolph &
Mathias Doenitz (Spray), and many others, including myself join the effort soon after.

o Lightbend

https://www.coursera.org/course/reactive

A Reactive Streams - story: 2013’s impls

2014-2015:

Reactive Streams Spec & TCK o

development, and implementations.

1.0 released on April 28th 2015,
with 5+ accompanying implementations. |

2015
Proposed to be included with JDK9 by Doug Lea
via JEP-266 “More Concurrency Updates”

http://hg.openjdk.java.net/jdk9/jdk9/idk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

o Lightbend

http://openjdk.java.net/jeps/266
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

A Reactive Streams - story: 2013’s impls

2015
Proposed to be included with JDK9 by Doug Lea
via JEP-266 “More Concurrency Updates”

http://hg.openjdk.java.net/jdk9/jdk9/idk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

o Lightbend

http://openjdk.java.net/jeps/266
http://hg.openjdk.java.net/jdk9/jdk9/jdk/file/6e50b992bef4/src/java.base/share/classes/java/util/concurrent/Flow.java

Reactive Streams

But what does it do!?

A Back-pressure explained

/\
A

Publisher[T] Subscriber[T]

= Lightbend

A Push model

Fast Publisher Slow Subscriber

. fﬁ
A
/
W, 0‘7/ -

A Push model

Subscriber usually has some kind of buffer.

Z A .

O T 2

N c

A =
/)OOOPS/ o 0‘7/4995

= Lightbend

A Push model

ZA g
T U
T\
/
400 ops/ O‘D/OOEC

7€cC

o Lightbend

A Push model

2
¢gm@%
S
‘ —
A =

100 o});/ | OV/OOEC

7€cC

o Lightbend

A Push model

What if the buffer overflows!? 2

i\ |
soooly

/

— >

®
A
A

g
M
o
L

Ve

/)000199/ OP/OOEC
7ec

A Push model

Use bounded buffer,

drop messages + require re-sending NS¢
o 0Y
\\//1
&
Za L %
O I
/N =
A\ oV

400{,?9/

= Lightbend

A Push model

Use bounded buffer,
drop messages + require re-sending

Kernel does this!
Routers do this!
(TCP)

DAl
Q/” D
/\
A\

4000?9/

7€cC

oeo? G2

y

= Lightbend

A Push model

Increase buffer size...
Well, while you have memory available!

_ 9.
s lgh

o Hes

I\ =

~ =

A\ *

/)OOOPG/ o OOEC

7€C

= Lightbend

A Push model

o Lightbend

A Reactive Streams explained

Reactive Streams
explained 1n 1 slide

o Lightbend

A Reactive Streams: “dynamic push/pull”

Fast Publisher will send at-most 3 elements.
This is pull-based-backpressure.

(%) ’T’/ /O
oY [/ 9ec

= Lightbend

A JEP-266 - soon...!

public final class Flow {
private Flow() {} // uninstantiable

@QFunctionalInterface
public static interface Publisher<T> {
public void subscribe(Subscriber<? super T> subscriber);

}

public static interface Subscriber<T> {
public void onSubscribe(Subscription subscription)
public void onNext (T item);
public void onError (Throwable throwable) ;
public void onComplete();

public static interface Subscription {
public void request(long n);
public void cancel();

public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> {

}

o Lightbend

A JEP-266 - soon...!

public final class Flow {
private Flow() {} // uninstantiable

@QFunctionalInterface
public static interface Publisher<T> {
public void subscribe(Subscriber<? super T> subscriber);

}

plik'l A~ odbkadkan~ danrndkAarfanan CuulhamralhAasesmMN I's

Single basic (helper) implementation available in JDK:
SubmissionPublisher

public static interface Subscription {
public void request(long n);
public void cancel();

public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> {

}

o Lightbend

http://gee.cs.oswego.edu/dl/jsr166/dist/docs/java/util/concurrent/SubmissionPublisher.html

"u M
! "J'(J[d"\]r'r P ('rr
'T)ffi

0)
ate)<C812k“"V”est 5
Y Default
<. 271
-IC"("(Y on j?ﬂ

" 'v“h-)
MiIOve ()f\.Jr(“pn: atin
Nerate Run - -2uon Perform,
te Run.t: ance -
T(*.!’ 2 3
-5t Class.Fila Tests Autor
’ - 1) e aally - 274
+ Farser AP fn S Generated by ia
A or A td!» uve 275
nuUx/)\m I"" ‘ [+ PP 276.
H"—‘“Ddf:(‘ ‘A’u ;'(3" 27)
" pv z
N "M.q‘ Ti ‘.D(:“ ;‘1‘}“‘ 275
<L 278
t Yoot 279
280
281: Ho

1€ Jhat
VM Comp
“Omp r Interface

:f.' \
'.r I“)lr

jl Ch. "o t)

: E -(‘,

N

1.t

.

: Rer Move ¢t
. .')\If"T‘]C\';.: t

c‘ch‘qu:%uUGﬁ 282

* 13w
a vadoc ’ u)vd'L(f“c'C‘
avado N Annl
Javao o C('u{'% r 'LS AP ICat OoNn-Lay
J ~ _ Li]yk, A
- ld s | - \1 ‘
lﬂdfuThq;y Ne Elam A
(‘_-.'r{;r(:,,‘“._ \f,:'l,‘ 'r\-, - - ' JUIY &

1 |
* g

i
Llions fo
N F, ‘}":'—v. \VYar
LA S
‘
()J'

,Phﬁq"'T S

."()k1 gﬂ"r‘qr

.ST0.0 nte
292: Implem ent Se

odu afization

\FSS fw— S 'V r "

Pror
» ,are,a«d-le
. Compact Strings
“erge Selected Xere
“ \ p'
o Into JAXP
Ny’ ~(Jt rn(
ewer Version of GStreamer

2.11.0 Updates

‘Ir.]nlr*"\ A
Update JavaFX/Media to

2 Reactive Streams: goals

|) Avoiding unbounded buffering across async boundaries

2) Inter-op interfaces between various libraries

o Lightbend

2 Reactive Streams: goals

) across async boundaries

2) between various libraries

Argh, implementing a correct
RS Publisher or Subscriber is so hard!

o

o Lightbend

2 Reactive Streams: goals

)
2)

-t

l+] Rule
The total number of onNext signals sentbya Publisher toa
Subscriber MUST be less than or equal to the total number of
elements requested by that Subscriber s Subscription at
all times
A Publisher MAY signal less onNext than requested and

2 terminate the Subscription bycaling orComplete or
onError .

onSubscribe . onNext ., onError and onComplete signaled
3 toa Subscriber MUST be signaled sequentially (no concurrent
notifications).
4 Ha Publisher falls t MUST signal an onError .

fa Publisher terminates successfully (finite stream) it MUST
signal an onComplete .
ifa Publisher signais either onError or onCompléete ona
L Subscriber , that Subscriber s Subscription MUST be
considered cancelled.
Once a terminal state has been sgnaled (onError ,
onComplete) It is REQUIRED that no further signals occcur.
fa Subscription iscancelled its Subscriber MUST
eventually stop being signaled.
Publisher.subscribe MUST call onSubscribe on the
provided Subscriber prior to any other signals to that
Subscriber and MUST return normally, except when the
provided Subscriber Is null in which case it MUST throw a
java.lang.NullPointerException to the caller, for all other
stuations [1] the only legal way to signal fallure (or reject the
Subscriber) Is by caling onError (after calling
onSubscribe).
Publisher.subscribe MAY be called as many times as
10 wanted but MUST be with a different Subscriber each time
[see 2.12).
A Publisher MAY supporn multiple Subscriber s and decides
whother each Subscription is unicast or multicast,

"

[1) : A stateful Publisher can be overwheimed, bounded by a finite
number of underlying resources, exhausted, shut-down or In a falled
state.

o Lightbend

10

"

12

19

Rule
A Subscriber MUST signal demand via
Subscription.request(long n) toreceive onNext sigrals.
fa Subscriber suspects that o3¢ g of signals wil
negatively impact 23 Publisher 's responsivity, t is
RECOMMENDED that it asynchronously JSpatches 23 signals.
Subscriber.onComplete() and
Ssbscriber, ontrror(Throwsble t) MUST NOT call any
methods on the Subscription orthe Publisher .

Sebscriber.onComplete() and
Subscriber.onError{Throwadle t) MUST consider the
Subscription cancelied afer Paving NCeved the signal

A Subscriber MUST call Subscription.cancel() onthe
gven Subscription after an onSubscribe signal if it alreacy
has an active Sebscription .

A Subscriber MUST call Subscription.cancel() f2isno
jonger valid 0 the Publisher without the Publisher having
signaled ontrror o onlomplete .

A Subscriber MUST onsure that all cals on its
Scbscription take place fom the Same toad of provice for
respecve exierna synchronzation

A Subscriber MUST be prepansd 10 feciive One or mone
onNext sigrals a®er having called Subscription.cancel() #
T 2% STl requested slements pendng (see 3.12).
Subscription.cancel() does not guarartee 10 perioem the
UNCoriying Claning Cpenations Immediately.

A Subscriber MUST be prepared 10 roceive an onComplete
SGnal With O without & precedng
Subscription.request(long n) call

A Subscriber MUST be prepared 10 receive an onError
signal with or without a preceding
Subscription.request(long n) cal

A Subscriber MUST make sure that &l cals on 28 onoX
methods happen-bedore | 1] the processing of the respective
S0NaS. Lo, ™ ScbacriDer must take Cane of propenly pubiishing
e signal 10 its procesaing logio

Subscriber.onSubscribe MUST be called at most once for a
gven Subscriber (Dased on ODOCT equANTy).

Caling onSubscribe , onNext , onError o onComplete
MUST seturn nomaly axcopt when Rny provided parnamenes is
null in which case it MUST throw a

Java. lang.sullPointerfxception 0 e calier for all Other
SAU0NE the Only lega wiry for 8 Sebscriber 20 signal falure
s by canceling its Subscriptions . In the case that this rule is
VICIed, any ASOCaled Subscription e Subscriber
MUST be considerad a3 cancelied, and the caler MUST rase this
SOE CONAIION 1N & 1ASNON TAL IS SSGUANe 1or T runtime
environment.

=~ j)oundaries

subscription.cancel MUST only be caled
nside of its Subscriber context. A
Subscription represants he unGue
relatonship botween a Subscriber anda
Publisher [see2.12)

The Subscription MUST sliow the
Subscriber tocal Subscription.request

syrchronously from within oaNext o
onSubscribe .

s libraries

Subscription.request MUST place an
VEper Dound On POSIBIe SYNCICNoUs
MRCUNSICH Datween Publisher and

Subscriber [1). ~

Subscription.request SHOULD respect the
MNapOnSivity of its Caler Dy returming In A timely
manner{Z]

Subscription.cancel MUST respect the
responsivity of its caler by returming n a tmely
manner(Z] MUST be iderpotent and MUST be
Teeac-sarne.

Aftar the Subscription is canceled,
adotional Subscription.request(losg n)
MUST be NOPs.

After the Subscription is canceled,
acotional Subscription.cancel() MUST be
NOPs

Whie e Subscription s not cancelied,

Subscription.request(long n) MUST
register the given number of additional elements
%0 De produced 10 the respeciive subscriber
Whie e Subscription is not cancelied,

Subscription.request(long n) MUST
sgral onfrror witha

Java, lang. IllegalargunentException f
the argument is <« 0. The cause message
MUST inchade a reference % this rule and‘or
Quone the Tul rule
Whie e Subscription s not canceled,

Subscription.request(long n) MAY
synchronously call onNext on thes (or other)
SUDSCNDOS).

Whie e Subscription s not cancalieg,

Subscription.request(long n) MAY
synchronously el onComplete or onlrror
on this for other) subscriber(s)

Whie e Subscription s not cancelied,

2 Reactive Streams: goals

) across async boundaries

2) between various libraries

Argh, implementing a correct
RS Publisher or Subscriber is so hard!

e
You should be using
Akka StreM

o Lightbend

Reactive Streams

Already made a huge industry impact

A Back-pressure as a feature

Spark / SPARK-7398

Soak' Add back-pressure to Spark Streaming (umbrella JIRA)

Agile Board

Sub-Tasks

1. Implement a mechanism to send a new rate from the driver to the block generator

2. ® Define the RateEstimator interface, and implement the ReceiverRateController

3.® Implement a PIDRateEstimator

4.® Implement the DirectKafkaRateController

5.@ Make all BlockGenerators subscribe to rate limit updates

6.® Handle a couple of corner cases in the PID rate estimator

7.@ BlockGenerator lock structure can cause lock starvation of the block updating thread
8.® Rename the SparkConf property to spark.streaming.backpressure.{enable --> enabled}

9. Provide pluggable Congestion Strategies to deal with Streaming load

o Lightbend

& @ 8088 @ 8 8¥ @ @

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

RESOLVED

IN PROGRESS

lulian Dragos
lulian Dragos
lulian Dragos
lulian Dragos
Tathagata Das
Tathagata Das
Tathagata Das
Tathagata Das

Unassigned

A Inspiring other technologies

elixir-lang / elixir-lang.github.com @ Watch~ 18 s Star 129 ¥Fork
<> Code ')lssues 3 Pull requests 2 Projects 0 Pulse Graphs
Give credit where credit is due Browse fil
I’ master
. josevalim committed on GitHub on Aug 5 1 parent 62f6171 commit 39c@eae818c9289d@e9f31902cS5aabcecdss
Showing 1 changed file with 2 additions and 0 deletions. Unified @ !
2 Em _posts/2016-07-14-announcing-genstage.markdown <> @ Vi

We are very excited with the possibilities GenStage brings to developers and all new paths it allows us to explore and
research. So give it a try and let us know! GenStage, Flows, and more will also be the topic of my keynote at ElixirConf 2016
and we hope to see you there.

Finally, we want to thank the akka-streams and reactive-streams projects which provided us guidance in implementing the
demand-driven exchange between stages as well as the Apache Spark and Apache Beam initiatives that inspire the work
behind GenStage.Flow .

Happy coding!

o Lightbend

A Inspiring other technologies

It's been a while since Java inspired
other modern technologies, hasn't it?

o Lightbend

Akka Streams

The implementation.

Complete and awesome Java and Scala APls.
As everything since day 1 in Akka.

A Akka Streams in 20 seconds:

// types:
source<Out, Mat>

Flow<In, Out, Mat> Proper static typing!

Sink<In, Mat>

// generally speaking, it's always:
val ready =
Source.from..(???).via(flow).map(i -> 1 * 2).to(sink)

val mat: Mat = ready.run()

// the usual example:

val f: Future<String> =
Source.single(l).map(i -> i.toString).runWith(Sink.head)

o Lightbend

A Akka Streams in 20 seconds:

Source.single(l) .map(i -> i.toString).runWith(Sink.head())

// types:
Source<Int, NotUsed>
Flow<Int, String, NotUsed>
Sink<String, Future<String>>

= Lightbend

A Akka Streams in 20 seconds:

Sink.head())

Source.sin%

Source<
Flow<

(" Powev User/’MOJe)

o Lightbend

Materialization

Gears from GeeCON.org, did | mention it’s an awesome conf?

o Lightbend

http://geecon.org

A What is “materialization” really?

Flow /SoURcé Sinvic
Grmm Stace

o Lightbend

2 What is “materialization” really?

b ¥
—> -
X

Fuseo
Flow /SoURcf; Swic Inevet

R gpRESEMTATIOY
G RAPH Stace

o Lightbend

2 What is “materialization” really?

—

FUSIN G /

o pTImISATIOVS

| m

— P
X

Fuseo
FL ow /SoURcb Sivic ,m&m’m

R gpRESE M ATV
G RAPH Stag €

o Lightbend

A What is “materialization” really?

o Lightbend

A Akka Streams & HTTP

A akka streams
&HTTP

o Lightbend

A Akka Streams & HTTP

A core feature not obvious to the untrained eye...!

Quiz timel

TCP is a M

= Lightbend

A Akka Streams & HTTP

A core feature not obvious to the untrained eye...!

Quiz timel

TCP is a STREAMING protocol!

o Lightbend

A Streaming in Akka HTTP

HttpServer as a: \\/"
Flow[HttpRequest, HttpResponse]

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778

o Lightbend

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
https://github.com/akka/akka/pull/20778

A Streaming in Akka HTTP

HttpServer as a: \\/"
Flow[HttpRequest, HttpResponse]

HTTP Entity as a:
Source[ByteString, _]

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778

o Lightbend

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
https://github.com/akka/akka/pull/20778

A Streaming in Akka HTTP

HttpServer as a: \\/"
Flow[HttpRequest, HttpResponse]

HTTP Entity as a:
Source[ByteString, _]

Websocket connection as a:
Flow[ws.Message, ws.Message]

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778

o Lightbend

http://doc.akka.io/docs/akka/2.4/scala/stream/stream-customize.html#graphstage-scala
https://github.com/akka/akka/pull/20778

A It’s turtles buffers all the way down!

o Lightbend

A Streaming from Akka HTTP

APPLIC AT ION NETWORC
% ByvrfEN

'.,.

BYFPER
o S
APPLICATION , ELE';‘EOV ¢ OMTR oL (owTQ C

= Lightbend

A Streaming from Akka HTTP

APPLIC AT ION NETW ORI

——~ 7 ByTEs? flev (cf)

T EMmENT”
APPLIcATION ,EL Heou CONMTR oL conTROL

o Lightbend

A Streaming from Akka HTTP

——\ 7 ByTEs” flev (i)

- EMmENT™
APPLIcATION ,EL Flow CONTROL conTROL

= Lightbend

A Streaming from Akka HTTP (Java)

public static void main(String[] args) {
final ActorSystem system = ActorSystem.create();
final Materializer materializer = ActorMaterializer.create(system);
final Http http = Http.get(system);

final Source<Tweet, NotUsed> tweets = Source.repeat(new Tweet("Hello world"));

final Route tweetsRoute =
path("tweets", () ->
completeWithSource (tweets, Jackson.marshaller(), EntityStreamingSupport.json())

) ;

final Flow<HttpRequest, HttpResponse, NotUsed> handler =
tweetsRoute.flow(system, materializer);

http.bindAndHandle (handler,
ConnectHttp.toHost("localhost"”, 8080),
materializer

) 7

System.out.println("Running at http://localhost:8080");

o Lightbend

A Streaming from Akka HTTP (Java)

public static void main(String[] args) {
final ActorSystem system = ActorSystem.create();
final Materializer materializer = ActorMaterializer.create(system);
final Http http = Http.get(system);

final Source<Tweet, NotUsed> tweets = Source.repeat(new Tweet("Hello world"));

final Route tweetsRoute =
path("tweets", () ->
completeWithSource (tweets, Jackson.marshaller(), EntityStreamingSupport.json())

) i

final Flow<HttpRequest, HttpResponse, NotUsed> handler =
tweetsRoute.flow(system, materializer);

http.bindAndHandle (handler,
ConnectHttp.toHost("localhost"”, 8080),
materializer

) 7

System.out.println("Running at http://localhost:8080");

o Lightbend

A Streaming from Akka HTTP (Scala)

object Example extends App
with SprayJdsonSupport with DefaultJdsonProtocol {
import akka.http.scaladsl.server.Directives.
implicit val system = ActorSystem()
implicit val mat = ActorMaterializer()

implicit val jsonRenderingMode = EntityStreamingSupport.json()
implicit val TweetFormat = jsonFormatl (Tweet)

def tweetsStreamRoutes =
path("tweets") {
complete {
Source.repeat (Tweet(" "))

}
}

Http() .bindAndHandle (tweetsStreamRoutes, "127.0.0.1", 8080)
System.out.println("Running at http://localhost:8080");

o Lightbend

Ecosystem that solves problems
>

solving all the problems ourselves

Codename:

‘Alpakka

L

// these are “Alpacasso”

A Alpakka - a community for Stream connectors

Alp akka

A community for Streams connectors

o Lightbend

A Alpakka - a community for Stream connectors

Threading & Concurrency in Akka Streams Explained (part |)

Mastering GraphStages (part |, Introduction)

Akka Streams Integration, codename Alpakka

A gentle introduction to building Sinks and Sources using GraphStage APls
(Mastering GraphStages, Part |l)

Writing Akka Streams Connectors for existing APlIs

Flow control at the boundary of Akka Streams and a data provider

Akka Streams Kafka 0.1 |

o Lightbend

http://blog.akka.io/streams/2016/07/06/threading-and-concurrency-in-akka-streams-explained
http://blog.akka.io/streams/2016/07/30/mastering-graph-stage-part-1
http://blog.akka.io/integrations/2016/08/23/intro-alpakka
http://blog.akka.io/integrations/2016/08/25/simple-sink-source-with-graphstage
http://blog.akka.io/integrations/2016/08/29/connecting-existing-apis
http://blog.akka.io/integrations/2016/09/05/flow-control-at-the-akka-stream-boundary
http://blog.akka.io/integrations/2016/09/10/akka-stream-kafka

A Alpakka - a community for Stream connectors

Existing examples:
MQTT
AMQP

Streaming HT TP

Streaming TCP

Streaming FilelO

Cassandra Queries

“Reactive Kafka” (akka-stream-kafka)

S3, SQS & other Amazon APls
Streaming |[SON
Streaming XML

o Lightbend

A Alpakka - a community for Stream connectors

Existing examples:
MQTT
AMQP
Streaming HT TP
Streaming TCP
Streaming FilelO
Cassandra Queries
“Reactive Kafka” (akka-stream-kafka)
S3,S0QS & other Amazon APls
Streaming JSON Parsing
Streaming XML Parsing

o Lightbend

Is now the time to adopt?

Reactive Streams / Akka Streams

Totally, go for it.

Taking it to the next level:

ReactiveSocket.io

http://reactivesocket.io

Taking it to the next level:

ReactiveSocket.io

A collaboration similar in spirit, and continuing from where
Reactive Streams brought us today.

http://reactivesocket.io

A Reactive Streams over network boundaries

Reactive Streams = async boundaries
Reactive Socket =RS + network boundaries

http://reactivesocket.io/

o Lightbend

http://reactivesocket.io/

‘ Reactive Streams over network boundaries

Reactive Streams = async boundaries
Reactive Socket =RS + network boundaries

Primarily led by:
- Ben Christensen, Todd Montgomery (Facebook) & team
- Nitesh Kant (Netflix) & team

Lightbend on board as well — right now we’re prototyping with it.

http://reactivesocket.io/

o Lightbend

http://reactivesocket.io/

‘ Reactive Streams over network boundaries

“ReactiveSocket is an application protocol
providing Reactive Streams semantics
over an asynchronous, binary boundary.”

http://reactivesocket.io/

o Lightbend

http://reactivesocket.io/

A Reactive Streams over network boundaries

Support various platforms:
- java

- Ct++

- S

o Lightbend

A Reactive Streams over network boundaries

Obviously we want it to be

Async — async and properly bi-directional.

-

o Lightbend

A Reactive Streams over network boundaries

Application Again, bridging app-level
protocol - semantics to wire semantics.

Reactive Streams semantics:
- “you can do 10 requests”

o Lightbend

A Reactive Streams over network boundaries

Application Again, bridging app semantics
protocol - to wire semantics.

Reactive Streams semantics:
- “you can do 10 requests”

Extra Lease semantics:
- “you can do 10 reqgs in 30secs”

o Lightbend

A Lease semantics, “flipping the problem”

o Lightbend

A Lease semantics, “flipping the problem”

a0

ImPLICITL) '
@

INVALIDATED
LEASE

S

o Lightbend

A Lease semantics, “flipping the problem”

o Lightbend

A Exciting times ahead!

‘t«ﬁ -\

o Lightbend

A State and Future[_] of Reactive

Reactive Systems — well established “goal” architecture
...excellent building blocks available, and getting even better with:

Reactive-Streams eco-system blooming!
... as very important building block of the puzzle.

Aldca Streams driving implementation of Reactive Streams
(first passing TCK, prime contributor to spec, strong ecosystem)

Reactive Socket continuing to improve app-level flow-control
semantics. More control than “just use HTTP/2".
... considering resumability for streams as well.

The best is yet to come:
combining all these components into resilient, scalable systems!

| Lightbend

A Happy hAkking!

. - _ o~
T
. Y 4

o Lightbend

<3

® Easy to contribute:

o https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute
° https://github.com/akka/akka/issues?q=is%3Aissue+is’3Aopentlabel%3A%22nice-to-have+%28low-prio%29%22

® Akka: akka.io && github.com/akka
® Reactive Streams: reactive-streams.org
® Reactive Socket: reactivesocket.io

® Mailing list:
® https://groups.google.com/group/akka-user

® Public chat rooms:
® http://gitter.im/akka/dev developing Akka
® http://gitter.im/akka/akka using Akka

B T
- Lightbend

https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute
https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3A%22nice-to-have+%28low-prio%29%22
http://akka.io
http://github.com/akka
http://reactive-streams.org
http://reactivesocket.io
https://groups.google.com/group/akka-user
http://gitter.im/akka/dev
http://gitter.im/akka/akka

Gundam pictures from: http://www.wallpaperup.com/tag/gundam/3

http://www.wallpaperup.com/tag/gundam/3

A Obligatory “read my book!” slide :-)

OREILLY"

\/Vhy Reactive? Free e-book and printed report.
| bit.ly/why-reactive

Foundational Principles for
Enterprise Adoption

Covers what reactive actually is.
Implementing in existing architectures.

Thoughts from the team that’s building
reactive apps since more than 6 years.

http://bit.ly/why-reactive

Qx

] ...—A___Ad X

OTE

N

-|_|ghtbend ktoso @ lightbend.com github: ktoso home: akka.io

twitter: ktosopl team blog: blog.akka.io =~ myself: kto.so

http://twitter.com/ktosopl
http://github.com/ktoso
http://blog.akka.io
http://akka.io
http://kto.so

