
A D A R K A N D S T O R M Y N I G H T
TA L E S O F O P E R A B I L I T Y A N T I - PA T T E R N S

Kiran Bhattaram
@kiranb

B U LW E R - LY T T O N

It was a dark and stormy night; the rain fell in torrents — except at
occasional intervals, when it was checked by a violent gust of wind
which swept up the streets (for it is in London that our scene lies),

rattling along the housetops, and fiercely agitating the scanty flame
of the lamps that struggled against the darkness.

DEFINITIONS

What is operability?
▸ The ability to keep a system in a safe and reliable

functioning condition, according to pre-defined
operational requirements.

Characteristics of operability
▸ safety & reliability

▸ scalability

▸ grace under pressure

DEFINITIONS

▸ ease of upgrades

▸ observability

▸ usability
▸ cultural practices around incidents

▸ AND MORE

DEFINITIONS

Characteristics of an operable system

▸ Converge towards a stable state.

▸ Give operators visibility and tools.

▸ Designed to be usable and unsurprising.

DEFINITIONS

Agenda

Robustness Usability Review!Observability

1. ROBUSTNESS

THE TALE OF THE SYSTEM THAT
COULDN’T GIVE ANYTHING UP

STORY 1

ROBUSTNESS

Define your critical path.

ROBUSTNESS

Harvest, Yield and Scalable Tolerant Systems

Yield = successful requests
total requests != uptime

Harvest =
data available

total data

* dropping requests

* degrading response

ROBUSTNESS

Controlling yield: load shedding upstream requests

▸ categories of load shedders:

▸ # of requests

▸ # of concurrent requests (protect against the long tail)

▸ overall fleet utilization (keep x% of workers for core
traffic)

ROBUSTNESS

Controlling harvest: circuit breakers

▸ stop calling a dependency if it seems down!

▸what do you return?

▸ cached data

▸ nil

▸ or propagate the error upstream

ROBUSTNESS

Controlling harvest: circuit breakers & compartmentalization

http://idighardware.com/2013/10/fire-doors-everything-you-always-wanted-to-know-but-were-afraid-to-ask/

ROBUSTNESS

Putting it all together: giving things up
▸ Combine harvest/yield degradation in different ways to

protect the critical path

▸Monitor any degradation!

▸Dark launch your rate limiters to check what they’d block.

ROBUSTNESS

Robustness, in review

▸ know how the system sheds
load

▸ know how it reacts to
downstream failures

Converge to a stable state.

2. OBSERVABILITY

THE TALE OF THE
FRACTAL QUEUE

STORY 2

OBSERVABILITY

Instrument EVERYTHING
▸ especially with queues

▸ percentiles, not averages

▸ don’t intermingle logs (keep a searchable trace ID on
requests)

OBSERVABILITY

Over-collect data, but build dashboards carefully
▸work metrics

▸ is the system doing the thing it’s supposed to?

▸ resource metrics

▸ how are the components of the system behaving?

▸ build your dashboard with work metrics first.

THE TALE OF THE 64
ALERT WEEK

STORY 4

OBSERVABILITY

Don’t normalize deviance

OBSERVABILITY

Knowing what to alert on

▸Monitor the alert volume of your system!

▸ Pages should be actionable and represent user pain.

OBSERVABILITY

Observability: what we learned
▸ Kiran has a special vendetta against unmonitored queues.

▸ Building good dashboards: work metrics & resource
metrics.

▸Monitor alert volume, too!

3. USABILITY

6. Recognition vs. recall

9. Help users recognize,
diagnose, and recover from
errors

USABILITY

A quick side note: Nielsen Heuristics

1. Visibility of system status

2. Match between system and the
real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition vs. recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Help users recognize, diagnose,
and recover from errors

10. Help and documentation

1. Visibility of system status

3. User control and freedom

5. Error prevention

Story 5: the tale of the special snowflake service

USABILITY

Heuristic 4. Consistency and Standards

▸ pattern-matching across
similar systems is really
valuable!

▸ Choose boring
technology: spend your
innovation tokens wisely!

OBSERVABILITY

Heuristic 3. User control and freedom
▸ Tooling is a part of the service!

▸ relatedly, deploy mechanisms are related to availability!

▸Give operators the ability to change operational
parameters.

THE TALE OF THE OPS
SPELL BOOK

STORY 6

USABILITY

Heuristic 6. Recognition v. recall
▸ Keep checklists minimal and heavily automated.

▸ long flowcharts in a runbook are :(

▸ relatedly: scripting user communications is helpful.

USABILITY

Heuristic 1. Visibility of system status
▸which of these are changes to production?

▸ config changes

▸ deploys

▸ utility script runs

▸ failovers

▸ adding/decreasing capacity

THE TALE OF THE
AMBIGUOUS ERROR
MESSAGE

STORY 7

USABILITY

Heuristic 9. Help users recognize, diagnose, and recover from errors

▸ error messages are a crucial part of your interface

▸ Writing a good alert message:

▸ expressed in plain language, precisely indicate the
problem, and constructively suggest a solution (runbooks!)

▸ (ex.) CRITICAL: Served 5% 5xx results in the last 5 minutes!
<link to runbook>

USABILITY

Usability, in review
▸Operational experience matters! Consider:

▸whether the system follows general conventions.

▸ how it alerts operators to errors clearly and
unambiguously.

▸ how minimal and usable the tooling is.

Review
▸ Robustness
▸ Does your system converge to a stable state?

▸ Observability
▸ Can you infer what the internal state of the system looks like?

▸ Usability
▸ Do your operators have control over the state of the system?

Do you adhere to general standards?

REVIEW

THE TALE OF THE SAD
QUEUE

STORY THE LAST

: (

A DARK AND STORMY
NIGHT

STORY THE LAST

Resources
▸ Harvest, Yield, and Scalable Tolerant Systems (Brewer & Fox)

▸ How Complex Systems Fail (Cook)

▸ "Going solid": a model of system dynamics and consequences for patient safety (Cook)

▸ Nielsen’s Usability Heuristics

▸ Choose Boring Technology (Dan McKinley)

▸ Site Reliability Engineering: How Google Runs Production Systems

▸ Stripe’s (upcoming) rate limiting blog post

▸ Collection of postmortems (Dan Luu)

REVIEW

REVIEW

On Designing and Deploying Internet-Scale Services, James Hamilton

▸ list of best practices, from design, to upgrades, to incident
response

T H A N K S !
Thanks to Ines Sombra, Charity Majors, Alyssa Frazee, Rachel Sanders, and
Andy Bonventre for review!

APPENDIX
STUFF I COULDN’T GET TO

OBSERVABILITY

decouple deploys from releases

▸ get a minimal version in dark-reads into production asap

▸ corollary: have good kill switches!

▸ Know what rollbacks look like

OBSERVABILITY

collect operational metrics in this shadow phase
▸Gain historical knowledge of what the system’s healthy

state looks like.

▸ Tweak your alerts and SLAs.

▸Gameday the system! Write runbooks!

