
Automating Operations
with Machine Intelligence

Rob Harrop

CEO @ Skipjaq

Co-founder @ SpringSource

Automated performance management

Why automate operations?

Why now?

What does automated operations look like?

How do we build for automation?

Solving a real problem…

Why automate operations?

More Complexity

Monolith -> Microservices

Strong -> Eventual Consistency

Assume reliability -> Assume failure

More Deployments

Very end of 2009
Today

30

20

10

40

Credit: Mike Brittain, Engineering Director @ Easy

Less time to identify fixes

Rollbacks more likely

Tiny window for human intervention

Harder

Faster

Why now?

We have to

We can

Cloud

Containers

Observability

Microservices

ML/AI

Trends

Current trends provide the impetus

and tools for automation by AI

Automated Operations

Move 37

Move 78 - God’s Touch

AI Human

Wholly performed by human

Wholly performed by AI

Co-operation between human and AI

Actionable insight

Types of Operation Actions

Data is not insight

Gathering metrics is not automating operations

But, metrics are critical to automating operations

On Metrics

Human ≠ Manual

Testing

Deployment

Provisioning

Actions by Human

Anomaly alerting

Rollback broken builds

Dependency upgrade

Cooperative Actions

Predictive auto scaling

Workload placement

Automatic rollback

Performance optimisation?

Security?

Actions by AI

Actions
and

Actionable Insights

Building for Automation

Visible metrics and logs

Ability to start/stop/restart/move workload

Ability to change configuration

Ability to modify dependencies

Ability to wire/rewire external services

Requirements for Operations

Self-contained package

Disposable processes

Externally-configurable

Externally-observable

Externalised dependencies

Externalised service wiring

12+1 Factor

Metrics as event streams

Standard metrics

 - CPU usage, memory usage, …

Service-specific metrics

 - Leads received, items sold, …

13th Factor - Observability

Detecting Anomalous DB CPU

Case Study

Background

Consumer-facing web application running Rails against PostgreSQL on AWS

RDS

Mix of transactional and batch workloads running against the same database

Question: when is the DB unusually overloaded?

Detecting Anomalies

Policy-based

Statistical model

Predictive model

Classification model

Policy Based

Fixed threshold alerting

How well does this work?

Not Very

Statistical Model

Twitter AnomalyDetection package

 - Seasonal Hybrid ESD

Is this point unexpected in our distribution?

 - With seasonal and trend effects removed

Statistical Model

Stream
Metrics

Sliding window of observations
(1 month, 1 year?)

Each new observation
run model (S - H - ESD)

Is the new point an outlier?

Predictive Model

Train a model to predict values in the time series

Prediction error > critical value => outlier

x1

x2

x3

+1 +1

Layer L1 Layer L2

Layer L3

hW,b(x)

a2
(2)

a3
(2)

a1
(2)

From: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

h0 h1 h2 h3 h4

x0 x1 x2 x3 x4

A A A A A

Predictive Model

Metrics Stream
Prediction

Training set  
?? last month

Model
Re-Train

(Nightly, weekly?)
Is prediction error
an outlier???

Handling Anomalies

Actionable alerts

 - Confidence in predictions

No alerts for pointless things

Handling Anomalies

Taking action

 - Rewiring services to read-replica?

 - Kill long-running queries?

Handling Anomalies

Confidence in the model leads

to confidence in automation

Summary

Increasing complexity and deployment speed make operational
automation a must

We must build services that are ready for automation

Simple models can often beat complex ones

Cheap compute and storage makes large-scale ML available to
everyone

Thank You

