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Why automate operations? 

Why now? 

What does automated operations look like? 

How do we build for automation? 

Solving a real problem…



Why automate operations?



More Complexity



Monolith -> Microservices 

Strong -> Eventual Consistency 

Assume reliability -> Assume failure



More Deployments
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Less time to identify fixes 

Rollbacks more likely 

Tiny window for human intervention



Harder 

Faster



Why now?



We have to



We can



Cloud 

Containers 

Observability 

Microservices 

ML/AI

Trends



Current trends provide the impetus 

and tools for automation by AI



Automated Operations



Move 37





Move 78 - God’s Touch





AI Human



Wholly performed by human 

Wholly performed by AI 

Co-operation between human and AI 

Actionable insight

Types of Operation Actions



Data is not insight 

Gathering metrics is not automating operations 

But, metrics are critical to automating operations

On Metrics



Human ≠ Manual



Testing 

Deployment 

Provisioning

Actions by Human



Anomaly alerting 

Rollback broken builds 

Dependency upgrade

Cooperative Actions



Predictive auto scaling 

Workload placement 

Automatic rollback 

Performance optimisation? 

Security?

Actions by AI



Actions 
and 

Actionable Insights



Building for Automation



Visible metrics and logs 

Ability to start/stop/restart/move workload 

Ability to change configuration 

Ability to modify dependencies 

Ability to wire/rewire external services

Requirements for Operations



Self-contained package 

Disposable processes 

Externally-configurable 

Externally-observable 

Externalised dependencies 

Externalised service wiring



12+1 Factor



Metrics as event streams 

Standard metrics 

  - CPU usage, memory usage, … 

Service-specific metrics 

  - Leads received, items sold, …

13th Factor - Observability



Detecting Anomalous DB CPU

Case Study



Background

Consumer-facing web application running Rails against PostgreSQL on AWS 

RDS 

Mix of transactional and batch workloads running against the same database 

Question: when is the DB unusually overloaded?





Detecting Anomalies

Policy-based 

Statistical model 

Predictive model 

Classification model



Policy Based

Fixed threshold alerting 

How well does this work?



Not Very



Statistical Model

Twitter AnomalyDetection package 

  - Seasonal Hybrid ESD 

Is this point unexpected in our distribution? 

  - With seasonal and trend effects removed









Statistical Model

Stream 
Metrics

Sliding window of observations 
(1 month, 1 year?)

Each new observation 
run model (S - H - ESD)

Is the new point an outlier?



Predictive Model

Train a model to predict values in the time series 

Prediction error > critical value => outlier
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From: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Predictive Model

Metrics Stream
Prediction

Training set  
?? last month

Model
Re-Train 

(Nightly, weekly?)
Is prediction error 
an outlier???



Handling Anomalies

Actionable alerts 

  - Confidence in predictions 

No alerts for pointless things



Handling Anomalies

Taking action 

  - Rewiring services to read-replica? 

  - Kill long-running queries?



Handling Anomalies

Confidence in the model leads 

to confidence in automation



Summary

Increasing complexity and deployment speed make operational 
automation a must 

We must build services that are ready for automation 

Simple models can often beat complex ones 

Cheap compute and storage makes large-scale ML available to 
everyone



Thank You


