

ScyllaDB: Achieving No-Compromise
Performance

Avi Kivity, CTO
@AviKivity
(Hiring!)

Agenda

Background
Goals
Methods
Conclusion

Non-Agenda

● Docker
● Microservices
● Node.js
● Docker

● Orchestration
● JVM GC Tuning
● JSON over HTTP
● Docker

More Non-Agenda

● Cache lines, coherency protocols
● NUMA
● Algorithms are the only thing that matters,

everything else is implementation detail
● Docker

Background - ScyllaDB

● Clustered NoSQL database compatible with
Apache Cassandra

● ~10X performance on same hardware
● Low latency, esp. higher percentiles
● Self tuning
● C++14, fully asynchronous; Seastar!

YCSB Benchmark:
3 node Scylla cluster vs 3, 9, 15, 30
Cassandra machines

3 Scylla
30 Cassandra

3 Cassandra

3 Scylla

30 Cassandra

3 Cassandra

Log-Structured Merge Tree

SStable 1

SStable 2

SStable 3Ti
m

e

SStable 4

SStable 5
SStable 1+2+3

Foreground Job Background Job

High-level Goals

● Efficiency:
○ Make the most out of every cycle

● Utilization:
○ Squeeze every cycle from the machine

● Control
○ Spend the cycles on what we want, when we want

Characterizing the problem

● Large numbers of small operations
○ Make coordination cheap

● Lots of communications
○ Within the machine
○ With disk
○ With other machines

Asynchrony,
Everywhere

● Thread-per-core design
○ Never block

● Asynchronous networking
● Asynchronous file I/O
● Asynchronous multicore

General Architecture

Scylla has its own task scheduler
Traditional stack Scylla’s stack

Promise

Task

Promise

Task

Promise

Task

Promise

Task

CPU

Promise

Task

Promise

Task

Promise

Task

Promise

Task

CPU

Promise

Task

Promise

Task

Promise

Task

Promise

Task

CPU

Promise

Task

Promise

Task

Promise

Task

Promise

Task

CPU

Promise

Task

Promise

Task

Promise

Task

Promise

Task

CPU

Promise is a
pointer to
eventually
computed value

Task is a
pointer to a
lambda function

Scheduler

CPU

Scheduler

CPU

Scheduler

CPU

Scheduler

CPU

Scheduler

CPU

Thread

Stack

Thread

Stack

Thread

Stack

Thread

Stack

Thread

Stack

Thread

Stack

Thread

Stack

Thread

Stack

Thread is a
function pointer

Stack is a byte
array from 64k
to megabytes

Context switch cost is

high. Large stacks pollutes

the caches No sharing, millio
ns of

parallel events

The Concurrency
Dilemma

Fundamental performance equation

Concurrency = Throughput * Latency

Fundamental performance equation

Throughput =
Concurrency

Latency

Fundamental performance equation

Latency =
Concurrency

Throughput

Lower bounds for concurrency

● Disks want minimum iodepth for full
throughput (heads/chips)

● Remote nodes need concurrency to hide
network latency and their own min.
concurrency

● Compute wants work for each core

Results of Mathematical Analysis

● Want high concurrency (for throughput)
● Want low concurrency (for latency)
● Resources require concurrency for full

utilization

Sources of concurrency

● Users
○ Reduce concurrency / add nodes

● Internal processes
○ Generate as much concurrency as possible
○ Schedule

Resource Scheduling

S
ch

ed
ul

er

Storage

8

User read

User write

Compaction (internal)

Streaming (internal)

30

12

50

50

Why not the Linux I/O scheduler?

● Can only communicate priority by originating
thread

● Will reorder/merge like crazy
● Disable

Figuring out optimal disk
concurrency

Max useful disk
concurrency

Cache design

Cache files or objects?

Using the kernel page cache

● 4k granularity
● Thread-safe
● Synchronous APIs
● General-purpose
● Lack of control (1)
● Lack of control (2)

● Exists
● Hundreds of

hacker-years
● Handling lots of edge

cases

Unified cache
Cassandra Scylla

Key cache

Row cache

On-heap /
Off-heap

Linux page cache

SSTables

Unified cache

SSTables

TuningParasitic rowsPage faults

App thread

Kernel

SSD

Page fault
Suspend thread

Initiate I/O
Context switch

I/O completes
Interrupt
Context switch

Map page
Resume thread

SSTable page (4k)

Your data (300b)

Workload Conditioning

Workload Conditioning
• Internal feedback loops to balance competing loads

Memtable

Seastar
SchedulerCompaction

Query

Repair

Commitlog

SSD

Compaction
Backlog
Monitor

Memory
Monitor

Adjust priority
Adjust priority

WAN

CPU

Replacing the system
 memory allocator

System memory allocator problems

● Thread safe
● Allocation back pressure

Seastar memory allocator

● Non-Thread safe!
○ Each core gets a private memory pool

● Allocation back pressure
○ Allocator calls a callback when low on memory
○ Scylla evicts cache in response

One allocator
is not enough

Remaining problems with
malloc/free

● Memory gets fragmented over time
○ If workload changes sizes of allocated objects

● Allocating a large contiguous block
requires evicting most of cache

OOM :(
Memory

Log-structured memory allocation

● The cache
○ Large majority of memory allocated
○ Small subset of allocation sites

● Teach allocator how to move allocated
objects around
○ Updating references

Log-structured memory allocation

Fancy Animation

Future Improvements

Userspace TCP/IP stack

● Thread-per-core design
● Use DPDK to drive hardware
● Present as experimental mode

○ Needs more testing and productization

Query Compilation to Native Code

● Use LLVM to JIT-compile CQL queries
● Embed database schema and internal

object layouts into the query

● Full control of the software stack can generate big
payoffs

● Careful system design can maximize throughput
● Without sacrificing latency
● Without requiring endless end-user tuning
● While having a lot of fun

Conclusions

● Download: http://www.scylladb.com
● Twitter: @ScyllaDB
● Source: http://github.com/scylladb/scylla
● Mailing lists: scylladb-user @ groups.google.com
● Company site & blog: http://www.scylladb.com

How to interact

THE SCYLLA IS THE LIMIT
Thank you.

