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Non-Agenda

● Docker
● Microservices
● Node.js
● Docker

● Orchestration
● JVM GC Tuning
● JSON over HTTP
● Docker



More Non-Agenda

● Cache lines, coherency protocols
● NUMA
● Algorithms are the only thing that matters, 

everything else is implementation detail
● Docker



Background - ScyllaDB

● Clustered NoSQL database compatible with 
Apache Cassandra

● ~10X performance on same hardware
● Low latency, esp. higher percentiles
● Self tuning
● C++14, fully asynchronous; Seastar!



YCSB Benchmark:
3 node Scylla cluster vs 3, 9, 15, 30
Cassandra machines
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High-level Goals

● Efficiency:
○ Make the most out of every cycle

● Utilization:
○ Squeeze every cycle from the machine

● Control
○ Spend the cycles on what we want, when we want



Characterizing the problem

● Large numbers of small operations 
○ Make coordination cheap

● Lots of communications
○ Within the machine
○ With disk
○ With other machines



Asynchrony,
Everywhere







● Thread-per-core design
○ Never block

● Asynchronous networking
● Asynchronous file I/O
● Asynchronous multicore

General Architecture



Scylla has its own task scheduler
Traditional stack Scylla’s stack
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The Concurrency 
Dilemma



Fundamental performance equation

Concurrency = Throughput * Latency



Fundamental performance equation

Throughput =  
Concurrency

Latency



Fundamental performance equation

Latency =  
Concurrency

Throughput



Lower bounds for concurrency

● Disks want minimum iodepth for full 
throughput (heads/chips)

● Remote nodes need concurrency to hide 
network latency and their own min. 
concurrency

● Compute wants work for each core



Results of Mathematical Analysis

● Want high concurrency (for throughput)
● Want low concurrency (for latency)
● Resources require concurrency for full 

utilization



Sources of concurrency

● Users
○ Reduce concurrency / add nodes

● Internal processes
○ Generate as much concurrency as possible
○ Schedule
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Why not the Linux I/O scheduler?

● Can only communicate priority by originating 
thread

● Will reorder/merge like crazy
● Disable



Figuring out optimal disk 
concurrency

Max useful disk 
concurrency



Cache design

Cache files or objects?



Using the kernel page cache

● 4k granularity
● Thread-safe
● Synchronous APIs
● General-purpose
● Lack of control (1)
● Lack of control (2)

● Exists
● Hundreds of 

hacker-years
● Handling lots of edge 

cases



Unified cache
Cassandra Scylla
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Workload Conditioning



Workload Conditioning
• Internal feedback loops to balance competing loads
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Replacing the system
 memory allocator



System memory allocator problems

● Thread safe
● Allocation back pressure



Seastar memory allocator

● Non-Thread safe!
○ Each core gets a private memory pool

● Allocation back pressure
○ Allocator calls a callback when low on memory
○ Scylla evicts cache in response



One allocator
is not enough



Remaining problems with 
malloc/free

● Memory gets fragmented over time
○ If workload changes sizes of allocated objects

● Allocating a large contiguous block 
requires evicting most of cache



OOM :(
Memory



Log-structured memory allocation

● The cache
○ Large majority of memory allocated
○ Small subset of allocation sites

● Teach allocator how to move allocated 
objects around
○ Updating references



Log-structured memory allocation

Fancy Animation



Future Improvements



Userspace TCP/IP stack

● Thread-per-core design
● Use DPDK to drive hardware
● Present as experimental mode

○ Needs more testing and productization



Query Compilation to Native Code

● Use LLVM to JIT-compile CQL queries
● Embed database schema and internal 

object layouts into the query



● Full control of the software stack can generate big 
payoffs

● Careful system design can maximize throughput
● Without sacrificing latency
● Without requiring endless end-user tuning
● While having a lot of fun

Conclusions



● Download: http://www.scylladb.com
● Twitter: @ScyllaDB
● Source: http://github.com/scylladb/scylla
● Mailing lists: scylladb-user @ groups.google.com
● Company site & blog: http://www.scylladb.com

How to interact



THE SCYLLA IS THE LIMIT
Thank you.


