
Building a Microservices 
Platform with Kubernetes

Matthew Mark Miller
@DataMiller



Cloud Native:
Microservices running inside
Containers on top of 
Platforms on any infrastructure



Microservice

A software component of a system that is independently 
releasable and independently scalable from other parts of the 
system.



Container

A software process whose access has been reduced to the 
point that it thinks it is the only thing running.



Platform

The parts of your service that you don't build yourself.



But wait...aren’t we supposed to be Full 
Stack?!







A platform’s responsibility is to make 
implicit the link between a service and 

the resource it consumes.







Clouds operate because of workload orchestration



Don’t roll your own orchestration.



Integrating workloads requires tinkering at runtime
Token swapping

Modifications to the host container’s configuration

Swapping in binaries



Integrating this way isn’t easy
Takes time & testing to get it right

What you built and tested isn’t necessarily what 
runs in production.

Leads to providers offering fewer, more highly 
opinionated stacks



A big question for platform 
engineers:

How can we spend more time building useful 
services and less time maintaining the platform?







Kubernetes
Borg meets Docker; Resistance is futile





(Obligatory architecture slide)











Kubernetes is popular, open and growing



To those of us building platforms, Kubernetes offers
Reliable cluster & workload management

A stack agnostic hosting abstraction 
(Docker)

Battle-tested fundamental abstractions that 
give rise to powerful deployment patterns



Kubernetes Fundamentals



Controllers
Loops that maintain state

Run continuously on Master

Each Kubernetes object gets 
its own Controller

Controllers are pluggable & 
lightweight

Rely on declarative manifests 
to determine intent



The Pod
Many containers, working together as a single unit

Shared IP & localhost

Shared filesystem

Scale together

Separate hardware limits

Can be tagged with a label, 
providing scheduling advice



Services
Permanent, logical addresses for internal services
Expose a name, port and stable IP for a 
group of pods

Load balance between individual pods

Provided to pods via DNS or 
environment variable

Constructed using a selector onto pod 
labels (sort of like a database query)



Networking
Rules for all Kubernetes installations
Each Pod gets its own unique IP 
address (which is the same outside and 
in)

All Pods must be able to communicate 
with each other without NAT

All Pods must be able to communicate 
with and participate in Services



Ingress
Simplifies Layer 7 access to Kubernetes services
Works with load balancers, including 
cloud load balancers & nginx

Presents a single root URL mapping to 
multiple services

Publicly expose private networks

Terminates TLS/SSL



Using the fundamentals to 
build a platform

Pod patterns from Burns & Oppenheimer, USENIX 2016



How can my platform provide availability 
during workload releases?



Rolling Deployments



Rolling Deployments



Rolling Deployments



Rolling Deployments



How can my platform non-destructively 
add functionality to a workload?



Sidecars



How can my platform insulate workloads 
from complexity and state of services?



Ambassador



How can my platform communicate with 
a workload when I want a different 

protocol than it was built with?



Adapter



How can my platform provide “singleton” 
behaviors in a scaled-out service?



Leader Elector



How can my platform provide “work 
queue” behavior without altering a 

workload?



Work Queue



Kubernetes Tweet Bait
“Could this be POSIX of distributed systems?!”



How does it all come together?



Scalewhale: A troubled service
The output we want… … but we get overloaded



Initial rollout



Brute force scale-out



Metric-driven Autoscale



Swap in a work queue!



Questions



Get hip to the heptagon
A platform is a real developer advantage but must avoid reinvention and being 
overly proscriptive.

Kubernetes was built to bring independence from hardware choices.

Kubernetes also brings separation of concerns to dev teams.

It’s built from simple rules and objects that improve the usefulness and portability 
of containers.



Slides available at
https://is.gd/k8splatform



Bibliography
“Design Patterns for Container-base Distributed Systems” -- Burns, Oppenheimer 
USENIX 2016

“Site Reliability Engineering” -- Beyer, Jones, Petoff, Murphy. O’Reilly 2016

“From Google to the World: The Kubernetes Origin Story” -- McLuckie, 2016


