
Thinking about performance

Search: a case study

Perf: speed/power/etc.

Perf: why do we care?

“Premature optimization is the
root of all evil”

“We should forget about small
efficiencies, say about 97% of

the time”

Different designs:
100x - 1000x perf difference

“Coding feels like real work”

Whiteboard: 1h/iteration
Implementation: 2yr/iteration

Scale
(precursor to perf discussion)

10k; 10M; 10G
(5kB per doc)

What’s the actual problem?

AND queries

10k; 10M; 10G
(5kB per doc)

10k

One person’s email
One forum

10k

5kB * 10k = 50MB

10k

50MB is small!

10k

$50 phone => 1GB RAM

10k

Naive algorithm

for loop over all documents {

 for loop over terms in document {

 // matching logic here.

 }

}

10k

10k; 10M; 10G
(5kB per doc)

10M

~Wikipedia sized

10M

5kB * 10M = 50GB

10M

$2000 for 128GB server
(Broadwell single socket Xeon-D)

10M

25 GB/s memory bandwidth

10M

50GB / 25 GB/s = 2s
(½ query per sec (QPS))

10M

Is 2s latency ok?

10M

Is 1/2 QPS ok?

10M

Larger service

Latency == $$$

10M

Latency == $$$

http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf

http://www.bizreport.com/2016/08/mobify-report-reveals-impact-of-mobile-website-speed.html

http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%
20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx

http://assets.en.oreilly.com/1/event/27/Varnish%20-%20A%20State%20of%20the%20Art%20High-Performance%20Reverse%20Proxy%20Pre
sentation.pdf

10M

http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf
http://www.bizreport.com/2016/08/mobify-report-reveals-impact-of-mobile-website-speed.html
http://www.bizreport.com/2016/08/mobify-report-reveals-impact-of-mobile-website-speed.html
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/27/Varnish%20-%20A%20State%20of%20the%20Art%20High-Performance%20Reverse%20Proxy%20Presentation.pdf
http://assets.en.oreilly.com/1/event/27/Varnish%20-%20A%20State%20of%20the%20Art%20High-Performance%20Reverse%20Proxy%20Presentation.pdf
http://assets.en.oreilly.com/1/event/27/Varnish%20-%20A%20State%20of%20the%20Art%20High-Performance%20Reverse%20Proxy%20Presentation.pdf

Google: 400ms extra latency

0.44% decrease in searches per user

10M

Google: 400ms extra latency

0.44% decrease in searches per user

0.76% after six weeks

10M

Google: 400ms extra latency

0.44% decrease in searches per user

0.76% after six weeks

0.21% decrease after delay removed

10M

Bing

10M

Mobify

100ms home load => 1.11% delta in conversions

10M

Mobify

100ms home load => 1.11% delta in conversions

100ms checkout page speed => 1.55% delta in

conversions

10M

10M

To hit 500ms round trip...

10M

...budget ~10ms for search

10M

Larger service

Latency == $$$

Need to handle more than ½ QPS

10M

Use an index?

Salton; The SMART Retrieval System (1971); work originally done in early 60s
10M

30 - 30,000 QPS
(we’ll talk about figuring this out later)

http://www.anandtech.com/show/9185/intel-xeon-d-review-performance-per-watt-server-soc-champion/14

Haque et al.; Few-to-Many: Incremental Parallelism for Reducing Tail Latency in Interactive Services (ASPLOS, 2015)

10M

http://www.anandtech.com/show/9185/intel-xeon-d-review-performance-per-watt-server-soc-champion/14
http://www.anandtech.com/show/9185/intel-xeon-d-review-performance-per-watt-server-soc-champion/14

10k; 10M; 10G;
(5kB per doc)

10B

5kB * 10G = 50TB

10B

Horizontal scaling
(use more machines)

10B

Easy to scale
(different docuemnts on different machines)

10B

Horizontal scaling

10G docs / (10M docs / machine) = 1k machines

10B

Redmond-Dresden: 150ms

10B

Horizontal scaling

10G docs / (10M docs / machine) = 1k machines

1k machines * 10 clusters = 10k machines

10B

“[With 1800 machines, in one year], it’s typical that 1,000
individual machine failures will occur; thousands of hard drive

failures will occur; one power distribution unit will fail, bringing
down 500 to 1,000 machines for about 6 hours; 20 racks will fail,

each time causing 40 to 80 machines to vanish from the network; 5
racks will “go wonky,” with half their network packets missing in
action; and the cluster will have to be rewired once, affecting 5

percent of the machines at any given moment over a 2-day span”

10B

Horizontal scaling

10G docs / (10M docs / machine) = 1k machines

1k machines * 10 clusters = 10k machines

10k machines * 3 redundancy = 30k machines

10B

Horizontal scaling

10G docs / (10M docs / machine) = 1k machines

1k machines * 10 clusters = 10k machines

10k machines * 3 redundancy = 30k machines

30k machines * $1k/yr/machine = $30M / yr

10B

2x perf: $15m/yr

10B

2% perf: $600k/yr

10B

Horizontal scaling

10G docs / (10M docs / machine) = 1k machines

1k machines * 10 clusters = 10k machines

10k machines * 3 redundancy = 30k machines

30k machines * $1k/yr/machine = $30M / yr

Machine time vs. dev time
10B

Search Algorithms

What’s the problem again?

Algorithms

Posting list

Algorithms: posting list

See http://nlp.stanford.edu/IR-book/ for

implementation details

http://nlp.stanford.edu/IR-book/

HashMap[term] => list[docs]

Algorithms: posting list

Bloom filter

Algorithms: bloom filter

BitFunnel

Algorithms: bloom filter

What about an array?

Algorithms: bloom filter

How many terms?

Algorithms: bloom filter

Algorithms: bloom filter

One site has 37B primes

Algorithms: bloom filter

GUIDs, timestamps, DNA, etc.

Algorithms: bloom filter

Why index that stuff?

Algorithms: bloom filter

GTGACCTTGGGCAAGTTACTTA
ACCTCTCTGTGCCTCAGTTTCCT
CATCTGTAAAATGGGGATAATA

Algorithms: bloom filter

Most terms aren’t in most
docs => use hashing

Algorithms: bloom filter

Bloom Filters

Algorithms: bloom filter

Probability of false positive?

Algorithms: bloom filter

(assume 10% bit density)

1 location: .1 = 10% false positive rate

Algorithms: bloom filter

(assume 10% bit density)

1 location: .1 = 10% false positive rate

2 locations: .1 * .1 = 1% false positive rate

Algorithms: bloom filter

(assume 10% bit density)

1 location: .1 = 10% false positive rate

2 locations: .1 * .1 = 1% false positive rate

3 locations: .1 * .1 * .1 = 0.1% false positive rate

Algorithms: bloom filter

Linear cost
Exponential benefit

Algorithms: bloom filter

Multiple Documents
Multiple Bloom Filters

Algorithms: bloom filter

Do comparisons in parallel!

Algorithms: bloom filter

Algorithms: bloom filter

Algorithms: bloom filter

Algorithms: bloom filter

Algorithms: bloom filterAlgorithms: bloom filter

Algorithms: bloom filter

Algorithms: bloom filter

Algorithms: bloom filter

How do we estimate perf?

Cost model
Number of operations

Perf estimation

512-bit “blocks”
(pay for memory accesses)

Perf estimation

How many memory accesses
per block?

Perf estimation

http://bitfunnel.org

Perf estimation

Perf estimation

Why do we have so many rows?

Term rewriting

Perf estimation

Term Rewriting

“Large yellow dog”

Perf estimation

Term Rewriting

“Large yellow dog” ||

“Golden Retriever”

Perf estimation

Term Rewriting

“Large yellow dog” ||

“Golden Retriever” ||

“Old Yeller” ||

Perf estimation

Expected performance?

Perf estimation

10 M docs / 512 bits per block = 20k “blocks”

Perf estimation

10 M docs / 512 bits per block = 20k “blocks”

20 k-blocks * 5 transfers per block = 100 kT

Perf estimation

10 M docs / 512 bits per block = 20k “blocks”

20 k-blocks * 5 transfers per block = 100 kT

25 GB/s / 512 bits per transfer = 390 MT/s

Perf estimation

10 M docs / 512 bits per block = 20k “blocks”

20 k-blocks * 5 transfers per block = 100 kT

25 GB/s / 512 bits per transfer = 390 MT/s

390 MT/s / 100 kT = 3900 QPS (with rounding)

Perf estimation

Actual performance?

Perf estimation

Actual performance ~similar

Perf estimation

Small factors

Perf estimation

Large factors

Perf estimation

Ranking results

Perf estimation

Ingestion
(faster than querying)

Perf estimation

Ingestion is just setting bits

Perf estimation

Hierarchical bloom filters

Perf estimation

Complicating issues?

Perf estimation

Conclusions?

False conclusions

Search is simple

False conclusions

Search is simple

Bloom filters are better than posting lists

Zobel et al., Inverted files versus signature files for text indexing; TODS 1998

False conclusions

Search is simple

Bloom filters are better than posting lists

You can easily reason about all performance

Zobel et al., Inverted files versus signature files for text indexing; TODS 1998

Conclusions!

You can reason about perf

It’s often just arithmetic

Acknowledgements

Thanks to Leah Hanson, Mike Hopcroft, Julia Evans, Hari Angepat,

David Turner, Danielle Sucher, Ikhwan Lee, Tejas Sapre, Raul Jara,

Rich Ercolani, Bert Muthalaly, Harsha Nori, Jeshua Smith, Bill

Barnes, Gary Bernhardt, Marek Majkowski, Tom Crayford, Gina

Willard, Laura Lindzey, Larry Marbuger, Siddarth Anand, Eric

Lemmon, Tom Ballinger, and [Anonymous Reviewer] for feedback.

bitfunnel.org/strangeloop

github.com/bitfunnel/bitfunnel

danluu.com

Unused slides
(thar be dragons)

SLIDE FOR HOMEWORK. TODO: USE DIFFERENT TEMPLATE

Why are posting lists standard?

Literature on alternatives

“Signatures files were proposed in [23] and shown to be inferior to inverted indexing in [24]. “

“ Inverted indexes have been benchmarked as the most generalisable, and well performing structure (Zobel et al., 1998). The experiments in this

thesis are therefore conducted solely on an inverted index system.”

“While this technique provides a relatively low computation overhead, studies by Zobel et al. [1998] have shown that inverted files significantly

outperform signature files. We will now focus the analysis on inverted files as it is generally considered to be the most efficient indexing method

for most IR systems.”

“The other two mechanisms are usually adopted in certain applications even if, recently, they have been mostly abandoned in favor of inverted

indexes because some extensive experimental results [194] have shown that: Inverted indexes offer better performance than signature files and

bitmaps, in terms of both size of index and speed of query handling [188]”

“Zobel et al. [16] compared inverted files and signature files with respect to query response time and space requirements. They found that the

inverted files evaluated queries in less time than the signature files and needed less space. Their results showed that the signature files were

much larger, more expensive to construct and update, their response time was unpredictable, they support ranked queries only with difficulty,

they did not scale well and they were slow“

Zobel et al., actual quotes

“Inverted file indexes with in-memory search structures require no more disk accesses to

answer a conjunctive query than do bitsliced signature files.”

“One of the difficulties in the comparison of inverted files and signature files is that many

variants of signature file techniques have been proposed, and it is possible that some

combination of parameters and variants will result in a better method.”

Citations are lossy

Search: why do we care?

$20M/yr * 2% savings
=

$400k/yr

How things fit together

TODO: add diagram

Posting list

How many terms?

TODO: pseudo-code

TODO: diagram about how bits drop out

TODO: search is a high dynamic range problem.

TODO: higher rank rows

TODO: sharding by document length

TODO: diagram of how things fit together. Could just be concentric circles

Posting lists are standard

Posting list optimizations

Skip list

Delta compression

etc.

Search

Perf: how to think about it?

Performance

Search is BIG

Parsing / Tokenization
Harder than it sounds

Search is a big problem

Tokenization

Some languages mix alphabets, are partially left-to-right and right-to-left, etc.

Can’t drop non-alphanumeric characters (C# vs C++)

Multi-language queries

Ranking / Relevance

Distributed Systems

etc.

