

Destination
adress

Interface
name

Port number
with source

NAT

As of a week ago

debugging highly dynamic
networks

• virtual network interfaces get burnt down and
recreated with each deployment

• IP addresses keep changing

• NAT keeps IP addresses obfuscated

Why did my build lose
network connectivity?

Designed for
deployment

Badri Janakiraman

@badrij https://snap-ci.com ThoughtWorks Inc

https://snap-ci.com

some assumptions
• you work on applications with some number of

distributed components

• you run and operate the software you create

• you are familiar with AWS or some such
cloudprovider

• you use Chef or some such IaC tool

what you can expect
• what things other than application code can keep

a team from being efficient in getting software
deployed

• some lessons that took us a while to learn

• how to design things other than software that
nonetheless have a massive impact on getting it to
your users

–Raymond Chen
https://blogs.msdn.microsoft.com/oldnewthing/20070406-00/?p=27343

“Code is read much more often than it is
written, so plan accordingly. Design for

readability.”

https://blogs.msdn.microsoft.com/oldnewthing/20070406-00/?p=27343

• sensible variable names

• keeping methods small

• using composed methods

• eschewing magic numbers

• refactoring to explain rather than commenting the code

• using tests as living documentation

• format consistently…

• ….

you build it, you run it

• we deploy over 50 times

• multiple environments

• run 10000s of builds a day

• we run software and triage issues as much as we
write or read code

Telling stories
@dherholz - https://flic.kr/p/8a8Xqf

https://flic.kr/p/8a8Xqf

anatomy of a log line

[PCN][owner/repo (#739)][PIP-4][STG-
run_tests][JOB-1][CTID-307][LXC]
execute: “…”

[qtp647111342-5400] INFO:
c.s.a.p.BackendUploadProcessor - Source
Path: …

tracing requests through services

• aggregated searchable logs

• for historical context: log data that doesn’t expire

• maintain logging context across services

• custom request headers to propagate context

• reconstruct histories from stored facets

Dependencies
astro@spaceboyz.net - https://flic.kr/p/qePnFA

https://flic.kr/p/qePnFA

story time:
or how we ended up trying to compile
mongodb from source when
upgrading git

bringing servers to spec

• automate building of server images

• there isn’t a “lock” file for native packages

• be explicit in the versions you require

https://aws.amazon.com/answers/configuration-management/aws-ami-design/

pr
ob

le
m

s d
isc

ov
er

ed
 in

im

ag
e

bu
ild

 p
ip

el
in

e

pr
ob

le
m

s d
isc

ov
er

ed
 in

de

pl
oy

m
en

t p
ip

el
in

e

bringing servers to spec

• publish installed packages as build artifacts

• yum list all / dpkg -l

maintain your own mirrors
• package maintainers try to be good - but sometimes packages

disappear

• maintain your own versioned package mirror for system packages

• reposync / aptly

• accumulate packages in your system package mirrors

• v2=v1+updated_packages

• have canary builds point to internet mirrors

• keep canary builds clean

maintain your own mirrors
• use dependency tracking in your deployment

pipeline tool to keep application binary
dependencies in check.

• if you need a mirror for application packages,
keep it distinct from system packages

• do not accumulate packages in application
package mirrors

WYSIWYGIAC
Simon Strandgaard - https://flic.kr/p/4Ns5LQ

https://flic.kr/p/4Ns5LQ

story time:
or how we ended up causing an
outage due to automatic attributes kept
on chef-server

chef disclaimer

https://docs.chef.io/roles.html

“The canonical source of a role’s data is stored
on the Chef server, which means that keeping

role data in version source control can be
challenging.”

https://docs.chef.io/roles.html

chef-solo with non-secure
attributes in VCS

• one place for attribute defaults (attribute files)

• one place for final attribute values (environments)

• maintain role-cookbooks if needed

• avoid chef-server, prefer chef-solo

• use cloud-init and git to move cookbooks into
servers

but security …
• minimize the number of credentials and secure

information that needs to be explicitly set

• encrypt secure attributes before storage in version
control systems

• gitcrypt / blackbox

• keep secure information in your CD tool

• but remember to secure your CD tool

AWS disclaimer

cloudformation
• never rely on output parameters from a previous

run

• the generated template should describe all
aspects of the deployment

• use identity-management-service & key-
management service to achieve minimal secure
information transmission

Separate template from topology
https://math.stackexchange.com/users/139/douglas-s-stones - https://math.stackexchange.com/

questions/221198/the-number-of-non-isomorphic-spanning-trees-in-k4

https://math.stackexchange.com/questions/221198/the-number-of-non-isomorphic-spanning-trees-in-k4
https://math.stackexchange.com/questions/221198/the-number-of-non-isomorphic-spanning-trees-in-k4

template-topology correspondence

Layering the cloud
https://www.thoughtworks.com/insights/blog/layering-cloud - @petegillardmoss

• DNS, load balancers etc.

Static and consistent.

• servers, application services.

Highly dynamic.

• DB and file servers. The

IMPORTANT stuff.

Visible

Volatile

Persistent

https://www.thoughtworks.com/insights/blog/layering-cloud

template for each layer
Visible Volatile Persistent

snap templates
visible+volatile Persistent

blue/green deployments

Persistent

visible+volatile

refactoring templates

Visible

Volatile

Persistent

Networking

Compute-Green

Compute-Blue

Persistent

template-topology relationship
• Define stacks in terms of deployment units

• Single stack a bad idea for anything but static and
small applications.

• Always isolate the persistence stack.

• Within a stack, use declarative benefits

• Outside a stack, use imperative logic to move the
"stacks" into place

designing for deployment
• application design & code quality are necessary but not

sufficient

• retain the ability to tell stories even with multiple services

• maintain system and platform dependencies with the same rigor
as application dependencies

• ensure that your IAC tooling does not rely on globals ambient
information to avoid side-effects

• define infrastructure components in terms of deployment units,
not logical or topological units

thank you

Badri Janakiraman

@badrij https://snap-ci.com ThoughtWorks Inc

https://snap-ci.com

