
Elastic Efficient Execution of
Varied Containers

Sharma Podila
Nov 7th 2016, QCon San Francisco

How do we efficiently run
heterogeneous workloads
on an elastic pool of
heterogeneous resources,
with capacity guarantees?

In other words...

Topics

● Containers, Mesos, Fenzo - where are we today?

● Modeling an elastic Mesos cluster

● Capacity guarantees for varied applications

● Network resource and security groups

● Ongoing and future work

About Me

● Software engineer
○ Resource scheduling, stream processing,

distributed systems
○ Netflix Edge Engineering
○ Sun Microsystems + Oracle Corp.

● Author of Fenzo scheduling library
https://github.com/Netflix/Fenzo

https://github.com/Netflix/Fenzo
https://github.com/Netflix/Fenzo

Source: https://www.sandvine.com/news/global_broadband_trends.asp

81 Million subscribers worldwide and growing!

https://www.sandvine.com/news/global_broadband_trends.asp

Microservices architecture on AWS EC2

Containers, Apache Mesos, Fenzo -
where are we today?

Reactive stream processing: Mantis

Zuul
Cluster

API
Cluster

Mantis
Stream processing

Cloud native service

● Configurable message delivery guarantees
● Heterogeneous workloads

○ Real-time dashboarding, alerting
○ Anomaly detection, metric generation
○ Interactive exploration of streaming data

Anomaly
Detection

Current Mantis usage

● Peak of 1,800 EC2 instances
○ M3.2xlarge instances

● Peak of 3,700 concurrent containers
○ Trough of 2,700 containers

● Mix of perpetual and interactive exploratory jobs
● Peak of 11 Million events / sec

EC2

VPC

VMVM

Ti
tu

s
Jo

b
C

on
tro

l

Containers

App
Cloud Platform

(metrics, IPC, health)

VMVM

Batch
Containers

Eureka Edda

Container deployment: Titus

Atlas &
Insight

Current Titus usage

#Containers (tasks) for the week of 10/24 in one of the regions

● Peak of ~1,800 instances
○ Mix of m4.4xl, r3.8xl, g2.8xl
○ ~800 instances at trough

● Mix of batch, stream
processing, and some
microservices

Core architectural components

AWS EC2

Apache Mesos

Titus/Mantis Framework

Fenzo

Fenzo at
https://github.com/Netflix/Fenzo

Apache Mesos at
http://mesos.apache.org/

https://github.com/Netflix/Fenzo
https://github.com/Netflix/Fenzo
http://mesos.apache.org/
http://mesos.apache.org/

Jobs, tasks, instances, containers

Jobs can be one of batch, service, or stream
processing type of jobs

A jobs has one or more tasks to run
An instance is equivalent to a task

A task runs one container

A few common themes

Heterogeneous mix of jobs and resources

Resource Task request Agent sizes

CPU 1 - 32 CPUs 8 - 32 CPUs

Memory 2 - 200+ GB 32 - 244 GB

Network
bandwidth

10 - 2000 Mbps 1024 - 10240

Resource affinity based on task type
Task locality

A few common themes

Large variation in peak to trough resource
requirements

Mantis
events/sec

11M

2M

Titus
concurrent
containers

1000s

10s

Can we resize agent cluster based
on demand?

Modeling an elastic Mesos cluster

Task assignments in a cluster

Consider a cluster with 4-slot hosts

“Random” assignments in a cluster

An EC2
instance
with 4 slots

Used slot

Idle slot

Cluster starts random assignments of
resources to tasks

“Random” assignments in a cluster

Cluster starts to fill up...

“Random” assignments in a cluster

Cluster somewhat full.
But, only 1 agent can be terminated for scale
down without losing jobs

About 50%
utilized

“Random” assignments in a cluster

Cluster is now full

100%
utilized

“Random” assignments in a cluster

Cluster partially used as jobs finish...

About 65%
utilized

“Random” assignments in a cluster

Cluster partially used, but, can’t terminate any
instance without losing jobs

About 25%
utilized

Ideal assignments in a cluster

Cluster utilized to the same level as previous,
but, can now terminate 9 of the 12 instances!

Similarly,
25% utilized

Ideal assignments in a cluster

Cluster scaled down easily due to “bin packing”

EC2 ASG attributes for setting
number of servers in cluster

EC2 AutoScalingGroups have three attributes to set
● Min - minimum number of instances to have
● Max - maximum number of instances
● Desired - current number of instances to have

Fenzo sets the “Desired” count based on demand

EC2 AutoScalingGroup for Mesos agents

Min

Desired

Max

Min

Desired

Max

EC2 AutoScalingGroup for Mesos agents

Min
Desired

Max

EC2 AutoScalingGroup for Mesos agents

Using multiple instance types

Amazon EC2 provides a variety of servers
a.k.a “instance types”
https://aws.amazon.com/ec2/instance-types/

Algorithm model training jobs run well on memory
optimized instances of R3 type

Typical services run well on balanced compute
instances of M4 type

Using multiple instance types

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

How do we use multiple EC2 instance
types in the same Mesos agent cluster?

Using multiple instance types

Using multiple EC2 instance types

m4.4xlarge agent ASG r3.8xlarge agent ASG

Titus

Grouping agents by instance type let’s us autoscale them independently

Using multiple EC2 instance types

m4.4xlarge agent ASG r3.8xlarge agent ASG

Titus

User job: 2 CPUs,
5GB memory

User job: 8 CPUs,
8GB memory User job: 1 CPUs,

1GB memory

Continuous deployment of agents

Continuous deployment of agents

m4.4xlarge agent ASG v1

A new version of agent introduces a new ASG

Continuous deployment of agents

m4.4xlarge agent ASG v1 m4.4xlarge agent ASG v2

A new version of agent introduces a new ASG

Continuous deployment of agents

m4.4xlarge agent ASG v1 m4.4xlarge agent ASG v2

Disable

A new version of agent introduces a new ASG

Continuous deployment of agents

m4.4xlarge agent ASG v1 m4.4xlarge agent ASG v2

Disable

Migrate
tasks

A new version of agent introduces a new ASG

Continuous deployment of agents

m4.4xlarge agent ASG v1 m4.4xlarge agent ASG v2

Disable

A new version of agent introduces a new ASG

Continuous deployment of agents

m4.4xlarge agent ASG v2

Old agent
ASG removed

A new version of agent introduces a new ASG

Bringing it all together...

m4.4xlarge agent ASG r3.8xlarge agent ASG

Titus

v2

v1

v2

v1

Capacity guarantees for varied
applications

The capacity guarantee challenge

Demand
for
resources

Supply>

New batch of tasks

Running #tasks

Tasks launched

An execution sample from a cluster

New batch of tasks

Running #tasks

Tasks launched

An execution sample from a cluster

Waiting for agents
to free up…
Or, for new agents
from scale up

New batch of tasks

Running #tasks

Tasks launched

Scale up and freed
agents satisfy all
new pending tasks

An execution sample from a cluster

New batch of tasks

Running #tasks

Tasks launched

What if a service was
launched at this time? Waiting for agents

to free up…
Or, new agents
from scale up

An execution sample from a cluster

Capacity guarantees

Guarantee capacity for timely job starts
Mesos support for quotas, etc. evolving^

Agreed upon

Capacity guarantees

Guarantee capacity for timely job starts
Mesos support for quotas, etc. evolving^

Agreed upon

Generally, optimize throughput for batch
jobs and start latency for service jobs

Capacity guarantees

Some service style jobs may be less
important

Categorize by expected behavior instead

Capacity guarantees

Some service style jobs may be less
important

Categorize by expected behavior instead

Critical versus Flex (flexible) scheduling
requirements

Capacity guarantees

Critical

Flex

Quotas

Capacity guarantees

Critical

Flex
Critical

Flex

Resource
Allocation
Order

Quotas Prioritiesvs.

A
ppC

1

A
ppC

2

A
ppC

3

A
ppC

N

A
ppF1

A
ppF2

A
ppFN

A
ppF3

Resource
Allocation
Order

Capacity guarantees: hybrid view

Critical

Flex

Capacity guarantees via Fenzo

Fenzo supports multi-tiered task
queues

Multiple “buckets” per tier with
“fair sharing” by dominant
resource usage

Tier 0

Tier 1

Translating application capacity to
EC2 instances

● Define per application capacity guarantees
● Define per tier capacity guarantees
● Translate to number of EC2 instances

Defining application capacity

App1-cap = num_app_instances *
app_instance_dimensions

app_instance_dimensions:
{ #cpus, memory, disk, network}

Agnostic to EC2 instance types

Defining application capacity

Applications specify resource needs, not EC2
instance types
● Can manage capacity guarantees using a variety of

instance types
● Eases migration to new instance types, thereby helps

capacity procurement teams

Tier Capacity =
SUM (App1-cap + App2-cap + … + AppN-cap)
+ BUFFER

BUFFER:
● Accommodate some new or ad hoc jobs with no guarantees
● Red-black pushes of services temporarily double capacity

Defining Tier capacity

#EC2_instances = Tier_capacity /
EC2_instance_dimensions

A tier may use multiple instance types

Translate to number of instances

Critical

Flex

= { m4.4xlarge, m3.2xlarge }

= { r3.8xlarge, g2.8xlarge }

Network resource and security groups

Container executor

+ <
Augment missing pieces:

IP per container
Security - Security Groups, IAM roles
Isolation for networking b/w, disk I/O

MULTI-TENANT

Elastic Network Interfaces (ENI)

AWS EC2 Instance

ENI0

IP0
IP1
IP2
IP3

ENI1

IP4
IP5
IP6
IP7

ENI2

IP8
IP9

IP10
IP11

ENI0

IP0
IP1
IP2
IP3

● Each EC2 instance
in VPC has 2 or
more ENIs

● Each ENI can have 2
or more IPs

● Security Groups are
set on the ENI

ENI+IP resource allocation model
A two level resource modeled in Fenzo
Each agent reports #ENIs and #IPs per ENI via custom attribute
Fenzo does allocation and usage tracking

ENI 1

Assigned Security Group: SG1 Used IPs Count: 2 of 7

ENI 2

Assigned Security Group: SG1,SG2 Used IPs Count: 1 of 7

ENI 3

Assigned Security Group: SG3 Used IPs Count: 7 of 7

Plumbing VPC Networking into Docker

No IP, SecGrp A

Task 0

SecGrp Y,Z

Task 1 Task 2 Task 3

Titus EC2 Host VMeth1

ENI1
SecGrp=A

eth2

ENI2
SecGrp=X

eth3

ENI3
SecGrp=Y,Z

IP 1
IP 2

IP 3

pod root

veth<id>

app

SecGrp X

pod root

veth<id>

app

SecGrp X

pod root

veth<id>

appapp

veth<id>

Linux Policy Based
Routing + Traffic Control

Titus
EC2

Metadata
Proxy

169.254.169.254
IPTables NAT (*)

* **

169.254.169.254Non-routable IP

*

Network bandwidth isolation

Each container gets an IP on one of the ENIs

Linux tc policies used on virtual Ethernet
For both incoming and outgoing traffic

Bandwidth limited to the requested value
No borrowing of unused bandwidth
Easy to reason about

Ongoing and future work

Current and future work

● Fine grain capacity guarantees
○ Hierarchical sharing policies
○ Preemptions to satisfy priority tiers and sharing policies

● Execution environment security hardening
● Onboarding new applications
● Looking forward to working with the

community

In Summary...

Mesos and Fenzo help us run lots of containers

● In an elastic fashion
● With guaranteed capacity for varied

applications
● Custom AWS integration gives us network

resource isolation and security groups

In summary...

Questions?

Elastic Efficient Execution of
Varied Containers
Sharma Podila spodila @ netflix . com

@podila linkedin . com / in / spodila

