
©2016 Azul Systems, Inc.	 	 	 	 	 	

Java SE

State Of The Union

Gil Tene, CTO & co-Founder, Azul Systems
@giltene

©2016 Azul Systems, Inc.	 	 	 	 	 	

Agenda

Brief introduction

Some history

Some more history & future speak

Some obligatory “What’s in Java 9?” stuff

Let’s chat

©2016 Azul Systems, Inc.	 	 	 	 	 	

About me: Gil Tene

co-founder, CTO @Azul
Systems

Have been working on
“think different” GC
approaches since 2002

A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise apps,
etc...

I also depress people by
pulling the wool up from
over their eyes…

JCP EC member, OpenJDK
contributor…

* working on real-world trash compaction issues, circa 2004

©2016 Azul Systems, Inc.	 	 	 	 	 	

Java SE

State Of The Union

Gil Tene, CTO & co-Founder, Azul Systems
@giltene

©2016 Azul Systems, Inc.	 	 	 	 	 	

A brief history of Java

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10

The Java SE Timeline

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.0 1.1 1.2 1.3 1.4 5 6 7 8 9 10

The Java SE Timeline

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.0 1.1 1.2 1.3 1.4 5 6 7 8 9 10

The Java SE Timeline

Java 1.X J2SE 1.X Java SE XJ2SE 5

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.0 1.1 1.2 1.3 1.4 5 6 7 8 9 10

The Java SE Timeline

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.0 1.1 1.2 1.3

The Java SE Timeline

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.0 1.1 1.2 1.3

The Java SE Timeline

java.util.Collection

Weak refs

Reflection

Swing

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.2 1.3 1.4 5

The Java SE Timeline

java.util.Collection

Weak refs
NIO

©2016 Azul Systems, Inc.	 	 	 	 	 	

1.3 1.4 5 6 7

The Java SE Timeline

NIO Generics<>

java.util.concurrent

©2016 Azul Systems, Inc.	 	 	 	 	 	

6 7 8 9 10

The Java SE Timeline

<>

Stream API

©2016 Azul Systems, Inc.	 	 	 	 	 	

8 9 10

The Java SE Timeline

Stream API

<> ?

?

?

?
?

?

©2016 Azul Systems, Inc.	 	 	 	 	 	

value

types

8 9 10

The Java SE Timeline

Stream API

<> ?

?

?

?
?

?

Jigsaw!
HashMap<int>

Arrays 2.0

JNR/FFI

val? var?

©2016 Azul Systems, Inc.	 	 	 	 	 	

How is Java Doing?

©2016 Azul Systems, Inc.	 	 	 	 	 	

How is Java Doing?

Is Java still popular?

Are other things cooler?

Is it trending away?

©2016 Azul Systems, Inc.	 	 	 	 	 	

How is Java Doing?

©2016 Azul Systems, Inc.	 	 	 	 	 	

How is Java Doing?

©2016 Azul Systems, Inc.	 	 	 	 	 	

How is Java Doing?

©2016 Azul Systems, Inc.	 	 	 	 	 	

Java leaps and bounds
A different historical view:

©2016 Azul Systems, Inc.	 	 	 	 	 	

Java leaps and bounds

1995-2001: Server domination
2001-2010: Applications

2010-2016+: Infrastructure

©2016 Azul Systems, Inc.	 	 	 	 	 	

1995-2001: Server domination

2001-2010: Applications

2010-2016+: Infrastructure

Servlets JavaEEJDBC Pools

WebLogic WebSphere JBoss Tomcat
Portals Web Services SOA Data Grids

Hadoop Cassandra Lucene/Solr/Elastic

Spark ZookeeperKafka Storm
…

…

©2016 Azul Systems, Inc.	 	 	 	 	 	

The state of the union is
GOOD

©2016 Azul Systems, Inc.	 	 	 	 	 	

What’s in Java 9

©2016 Azul Systems, Inc.	 	 	 	 	 	

What’s in Java 9

Modules

?

!

©2016 Azul Systems, Inc.	 	 	 	 	 	

What’s in Java 9

Modules

?

!
and

some other stuff…

©2016 Azul Systems, Inc.	 	 	 	 	 	

What’s in Java 9

Modules

?

some other stuff…

©2016 Azul Systems, Inc.	 	 	 	 	 	

What’s in Java 9

Modules

?

some other stuff…
of the

©2016 Azul Systems, Inc.	 	 	 	 	 	

©2016 Azul Systems, Inc.	 	 	 	 	 	

Java has a REPL!

(read… eval… print… loop…)

©2016 Azul Systems, Inc.	 	 	 	 	 	

Why is this important?

***(where “modern” starts with “LISP”)

Because virtually every other
modern environment has one…

Java has a REPL!

©2016 Azul Systems, Inc.	 	 	 	 	 	

©2016 Azul Systems, Inc.	 	 	 	 	 	

VarHandles

“Define a standard means to invoke
the equivalents of

java.util.concurrent.atomic and
sun.misc.Unsafe operations upon
object fields and array elements.”

©2016 Azul Systems, Inc.	 	 	 	 	 	

Unsafe?

©2016 Azul Systems, Inc.	 	 	 	 	 	

Unsafe?Safe UnsafeUnsafe UnsafeSafe Safe?Unsafe Safe

©2016 Azul Systems, Inc.	 	 	 	 	 	

Unsafe?
Safe Unsafe Unsafe Unsafe

Safe Safe? Unsafe Safe

©2016 Azul Systems, Inc.	 	 	 	 	 	

Unsafe?
Safe Unsafe Unsafe Unsafe

Safe Safe? Unsafe Safe

©2016 Azul Systems, Inc.	 	 	 	 	 	

Unsafe?
Is unsafe really going away?

No.

©2016 Azul Systems, Inc.	 	 	 	 	 	

VarHandles

Also (finally) provides a fencing API

Supports ordering fences, but also:

©2016 Azul Systems, Inc.	 	 	 	 	 	

©2016 Azul Systems, Inc.	 	 	 	 	 	

Unified JVM Logging

Current Logging stuff:

©2016 Azul Systems, Inc.	 	 	 	 	 	

Unified JVM Logging

New world order for logging: -Xlog

Look up Marcus Larsson’s excellent
“Unified JVM Logging in JDK 9”
from JavaOne 2016 [CON6225]

©2016 Azul Systems, Inc.	 	 	 	 	 	

©2016 Azul Systems, Inc.	 	 	 	 	 	

Spin-Wait Hints

My Favorite…

©2016 Azul Systems, Inc.	 	 	 	 	 	

Spin-Wait Hints

Adds a single method to the JDK:

java.lang.Thread.onSpinWait()

Which does absolutely nothing…

but it does nothing faster…

©2016 Azul Systems, Inc.	 	 	 	 	 	

java.lang.Thread.onSpinWait()

©2016 Azul Systems, Inc.	 	 	 	 	 	

java.lang.Thread.onSpinWait()

©2016 Azul Systems, Inc.	 	 	 	 	 	

©2016 Azul Systems, Inc.	 	 	 	 	 	

©2016 Azul Systems, Inc.	 	 	 	 	 	

So…
what cool feature will make people move to

Java 9?

©2015 Azul Systems, Inc.	 	 	 	 	 	

Q & A
and

Open Discussion

©2015 Azul Systems, Inc.	 	 	 	 	 	

Q & A
and

Open Discussion

OpenJDK? JCP?

Valhala? Panama?

Venezuela?

