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Agenda

Brief introduction


Some history


Some more history & future speak


Some obligatory “What’s in Java 9?” stuff 


Let’s chat
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About me: Gil Tene 

co-founder, CTO  @Azul 
Systems


Have been working on 
“think different” GC 
approaches since 2002


A Long history building 
Virtual & Physical 
Machines, Operating 
Systems, Enterprise apps, 
etc...


I also depress people by 
pulling the wool up from 
over their eyes…


JCP EC member, OpenJDK 
contributor…

* working on real-world trash compaction issues, circa 2004
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A brief history of Java
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1.0 1.1 1.2 1.3 1.4 5 6 7 8 9 10

The Java SE Timeline

Java 1.X J2SE 1.X Java SE XJ2SE 5



©2016 Azul Systems, Inc.	 	 	 	 	 	

1.0 1.1 1.2 1.3 1.4 5 6 7 8 9 10

The Java SE Timeline



©2016 Azul Systems, Inc.	 	 	 	 	 	
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1.0 1.1 1.2 1.3

The Java SE Timeline

java.util.Collection

Weak refs

Reflection

Swing
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1.2 1.3 1.4 5

The Java SE Timeline

java.util.Collection

Weak refs
NIO
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1.3 1.4 5 6 7

The Java SE Timeline

NIO Generics<>

java.util.concurrent
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6 7 8 9 10

The Java SE Timeline

<>

Stream API
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The Java SE Timeline
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value

types

8 9 10

The Java SE Timeline

Stream API
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Jigsaw!
HashMap<int>

Arrays 2.0

JNR/FFI

val? var?
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How is Java Doing?

Is Java still popular?

Are other things cooler?

Is it trending away?
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How is Java Doing?
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Java leaps and bounds
A different historical view:
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Java leaps and bounds

1995-2001: Server domination
2001-2010: Applications

2010-2016+: Infrastructure
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1995-2001: Server domination

2001-2010: Applications

2010-2016+: Infrastructure

Servlets JavaEEJDBC Pools

WebLogic WebSphere JBoss Tomcat
Portals Web Services SOA Data Grids

Hadoop Cassandra Lucene/Solr/Elastic

Spark ZookeeperKafka Storm
…

…
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The state of the union is 
GOOD
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What’s in Java 9

Modules

?

!
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What’s in Java 9

Modules

?

some other stuff…
of the
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Java has a REPL!

(read… eval… print… loop…)
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Why is this important?

***(where “modern” starts with “LISP”)

Because virtually every other 
modern environment has one…

Java has a REPL!
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VarHandles

“Define a standard means to invoke 
the equivalents of 

java.util.concurrent.atomic and 
sun.misc.Unsafe operations upon 
object fields and array elements.”
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Unsafe?
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Unsafe?
Is unsafe really going away?

No.
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VarHandles

Also (finally) provides a fencing API  

Supports ordering fences, but also:
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Unified JVM Logging

Current Logging stuff:
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Unified JVM Logging

New world order for logging: -Xlog

Look up Marcus Larsson’s excellent 
“Unified JVM Logging in JDK 9” 
from JavaOne 2016 [CON6225]
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Spin-Wait Hints

My Favorite…
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Spin-Wait Hints

Adds a single method to the JDK:

java.lang.Thread.onSpinWait()

Which does absolutely nothing…

but it does nothing faster…
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java.lang.Thread.onSpinWait()
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java.lang.Thread.onSpinWait()
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So… 
what cool feature will make people move to 

Java 9?
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Q & A 
and  

Open Discussion 
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Q & A 
and  

Open Discussion 

OpenJDK? JCP?

Valhala? Panama?

Venezuela?


