
Josh	Evans	– Engineering	Leader

November	8,	2016

Mastering	Chaos
A	Netflix Guide	to	Microservices

Illness	in	the	Family

Myelin Sheathe

Autoimmune	disorder
Externally	trigger
Treatable

Guillain-Barré	Syndrome

Breathing	is	a	miraculous	act	of	
bravery

ELB

and	so	is	taking	traffic

Introductions
Microservice	Basics
Challenges	&	Solutions
Organization	&	Architecture

Our	Talk	Today

Introductions
Microservice	Basics
Challenges	&	Solutions
Organization	&	Architecture

Our	Talk	Today

1999	– 2009
Engineer	&	Engineering	Manager
Ecommerce	(DVD	à Streaming)	

2009	– 2013
Director	of	Engineering	- Playback	Services

2013	– 2016
Director	of	Operations	Engineering

Josh	Evans

Taking	time	off
Spending	time	with	family
Thinking	about	what’s	next

Today

Leader	in	subscription	internet	tv service
Hollywood,	indy,	local
Growing	slate	of	original	content

86	million	members
~190	countries,	10s	of	languages
1000s	of	device	types

Microservices on	AWS

Introductions
Microservice	Basics
Challenges	&	Solutions
Organization	&	Architecture

Our	Talk	Today

Netflix	DVD	Data	Center	- 2000

Linux	Host

What	microservices are	not

Apache Tomcat
Javaweb

STORE

Lo
ad
	B
al
an
ce
r

BILLING

HTTP

JDBC

DB Link

HTTP/S

Monolithic code base
Monolithic database
Tightly coupled architecture

What	is	a	microservice?

…the	microservice	architectural	style	is	an	
approach	to	developing	a	single	application	as	a	
suite	of	small	services,	each	running	in	its	own	
process	and	communicating	with	lightweight	
mechanisms,	often	an	HTTP	resource	API.

- Martin	Fowler

Separation	of	concerns
Modularity,	encapsulation

Scalability
Horizontally	scaling
Workload	partitioning

Virtualization	&	elasticity
Automated	operations
On	demand	provisioning

An	Evolutionary	Response

Organ	Systems
Each	organ	has	a	purpose
Organs	form	systems
Systems	form	an	organism

Edge

ELB

Zuul

NCCP

API

Middle	Tier	&	Platform

Product
• Bucket testing
• Subscriber
• Recommendations

Platform
• Routing
• Configuration
• Crypto

Persistence
• Cache
• Database

Client Application

Client Library

EVCache Client Service Client

S S S S. . .

DB DB DB DB. . .

. . .

Microservices	are	an	abstraction

. . .

Microservice

Introductions
Microservice	Basics
Challenges	&	Solutions
Organization	&	Architecture

Our	Talk	Today

Dependency
Scale
Variance
Change

Challenges	&	Solutions

Dependency
Scale
Variance
Change

Challenges	&	Solutions

Intra-service	requests
Client	libraries
Data	Persistence
Infrastructure

Use	Cases

Intra-service	Requests

Crossing	the	Chasm

Linux	Host
Linux	Host

Linux	Host
Linux	Host

Crossing	the	Chasm

Linux	Host

Apache Tomcat

Linux	Host

Apache Tomcat

Network	latency,	congestion,	failure
Logical	or	scaling	failure

Service	A Service	B

Cascading	Failure

How	do	you	know	if	it	works?

Inoculation

Device Service	B	

Service	C

Internet EdgeZuul

Service	A	

ELB

FITSynthetic	transactions
Override	by	device	or	account
%	of	live	traffic	up	to	100%

Fault	Injection	Testing	(FIT)

Device Service	B	

Service	C

Internet EdgeZuul

Service	A	

ELB

FIT

Fault	Injection	Testing	(FIT)

Enforced	throughout	the	call	path

ELB

API

How	do	we	constrain	testing	scope?

API	Gateway

App	1

App	2

App	4

App	5

App	6

App	3

App	7

App	8

99.99

99.99

99.99

99.99

99.99

99.99

99.99

99.99

Proxy

99.99 99.99

Combinatorial	Math

99.9910 = 99.9

Critical	Microservices

Client	Libraries

• Many	clients
• Common	business	logic
• Common	access	patterns	

Return	of	the	Monolith

Heap	consumption
Logical	defects
Transitive	dependencies

Parasitic	Infestation

Client Application

Client Library

EVCache Client Service Client

S S S S. . .

DB DB DB DB. . .

. . .

Simple	Logic,	Common	Patterns

. . .

Persistence

In	the	presence	of	a	network	partition,	you	must	choose	
between	consistency	and	availability

CAP	Theorem

DB

DB

DB

Network B

Network C

Network D

Service

Network A X

Zone	A

Zone	B

Zone	C

Zone	B

Zone	C

Client

Zone	A

Local Quorum
(Typical)

100ms

Eventual	Consistency

Infrastructure

December	24th,	2012

US-East-1

Canada

No	place	to	go

US

Latin	America

US-East-1US-West-2 EU-West-1

#NetflixEverywhere	Global	Architecture
QCon London,	2016
https://www.infoq.com/presentations/netflix-failure-multiple-regions

Dependency
Scale
Variance
Change

Challenges	&	Solutions

Stateless	services	
Stateful services
Hybrid	services

Use	Cases

Stateless	Services

Not	a	cache	or	a	database
Frequently	accessed	metadata
No	instance	affinity
Loss	a	node	is	a	non-event

What	is	a	stateless	service?

Minimum size

Desired capacity

Maximum size

Scale out as needed

S3AMI retrieved on demand

Compute efficiency
Node failure
Traffic spikes
Performance bugs

Auto	Scaling	Groups

Cluster A Cluster D

Edge Cluster

Cluster B

Cluster C

Surviving Instance Failure

Stateful Services

Databases	&	caches
Custom	apps	which	hold	large	amounts	of	data
Loss	of	a	node	is	a	notable	event

What	is	a	stateful service?

Dedicated	Shards	– An	Antipattern

Squid 1 Squid 2 Squid 3

Client Application

Subscriber Client Library

Cache Client Service Client

S S S S. . .

DB DB DB DB. . .

Squid n

HA Proxy

Set 1 Set 2 Set 3 Set n

X

Redundancy	is	fundamental

Zone	A Zone	B Zone	C

.

EVCache Writes

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

Zone	A

Client	Application

Client	Library

EVCache	Client

Zone	B

Client	Application

Client	Library

EVCache	Client

Zone	C

Client	Application

Client	Library

EVCache	Client

.

EVCache Reads

Hybrid	Services

Client Application

Client Library

EVCache Client Service Client

S S S S. . .

DB DB DB DB. . .

. . .

Hybrid	Microservice

. . .

It’s	easy	to	take	EVCache	for	granted

30	million	requests/sec
2	trillion	requests	per	day	globally

Hundreds	of	billions	of	objects
Tens	of	thousands	of	memcached instances

Milliseconds	of	latency	per	request

Batch

S S S S. . .

DB DB DB DB. . .

.

Member Path
Member Path

Member Path
Batch

BatchCalled	by	many	services
Online	&	offline	clients
Called	many	times	/	request
800k	– 1M	RPS

Fallback	to	service/db

Excessive	Load

Batch

S S S S. . .

DB DB DB DB. . .

.

Member Path
Member Path

Member Path
Batch

Batch

Excessive	Load

X X

Batch

S S S S. . .

DB DB DB DB. . .

.

Member Path
Member Path

Member Path
Batch

BatchWorkload	partitioning
Request-level	caching
Secure	token	fallback
Chaos	under	load

Solutions

Online Offline

Dependency
Scale
Variance
Change

Challenges	&	Solutions

Operational	drift
Polyglot	&	containers

Use	Cases

Operational	Drift
(Unintentional	Variance)

Over	time
Alert	thresholds
Timeouts,	retries,	fallbacks
Throughput	(RPS)

Across	microservices
Reliability	best	practices

Operational	Drift

Autonomic	Nervous
System
You don’t have to think about
digestion or breathing

Incident

Resolution

Review

Remediation

Analysis

Best	Practice

Automation

Adoption

Continuous Learning & Automation

Alerts
Apache	&	Tomcat
Automated	canary	analysis
Autoscaling
Chaos
Consistent	naming
ELB	config
Healthcheck
Immutable	machine	images
Squeeze	testing
Staged,	red/black	deployments
Timeouts,	retries, fallbacks

Production Ready

Polyglot	&	Containers
(Intentional	Variance)

The	Paved	Road
Stash
Nebula/Gradle
BaseAMI/Ubuntu
Jenkins
Spinnaker
Runtime	Platform

In	the	Critical	Path

In	the	Critical	Path

Productivity	tooling
Insight	&	triage	capabilities
Base	image	fragmentation
Node	management	
Library/platform	duplication
Learning	curve	- production	expertise

Cost	of	Variance

Raise	awareness	of	costs
Constrain	centralized	support
Prioritize	by	impact
Seek	reusable	solutions

Strategic	Stance

Dependency
Scale
Variance
Change

Challenges	&	Solutions

How	do	we	achieve	velocity	with	confidence?

Global	Cloud	Management	&	Delivery

Integrated, Automated Practices

Conformity	checks
Red/black	pipelines
Automated	canaries
Staged	deployments
Squeeze	tests

Alerts
Apache	&	Tomcat
Automated	canary	analysis
Autoscaling
Chaos
Consistent	naming
ELB	config
Healthcheck
Immutable	machine	images
Squeeze	testing
Staged,	red/black	deployments
Timeouts,	retries, fallbacks

Production Ready

https://www.youtube.com/watch?v=IkPb15FfuQU

Introductions
Microservice	Basics
Challenges	&	Solutions
Organization	&	Architecture

Our	Talk	Today

Customer	Device Netflix	Data	Center	- 2009

NCCP

Electronic	Delivery	- NRDP	1.x

Lo
ad
	B
al
an
ce
r

Netflix	App

Security
Activation
Playback

Platform	(NRDP)

UI

Collaborative design
XML payloads
Custom responses
Versioned firmware releases
Long cycles

Simple UI – “Queue Reader”

ED

Netflix	API	- let	a	1000	flowers	bloom!

Netflix	Data	Center	- 2009

API

Netflix	API	– from	public	to	private

Lo
ad
	B
al
an
ce
r

General REST API
JSON schema
HTTP response codes
Oauth security model

Content Metadata

Content	
Metadata

Application

Customer	Device

Netflix	Data	Center	– 2010

API

Hybrid	Architecture

LB

Netflix	App

Security
Activation
Playback

Platform	(NRDP)

UI

Content	
Metadata

NCCP

ED

LB

Distinct
• Services
• Protocols
• Schemas
• Security

Josh:	what	is	the	right	long	term	architecture?

Peter:	do	you	care	about	the	organizational		
implications?

Conway’s	Law

Organizations	which	design	systems	are	constrained	to	
produce	designs	which	are	copies	of	the	
communication	structures	of	these	organizations.

Any	piece	of	software	reflects	the	organizational	
structure	that	produced	it.

Conway’s	Law

If	you	have	four	teams	working	on	a	compiler	you	will	
end	up	with	a	four	pass	compiler

NCCP

API

Blade	Runner

Outcomes
Productivity	&	new	capabilities
Refactored	organization

Lessons
Solutions	first,	team	second
Reconfigure	teams	to	best	support	your	architecture

Outcomes	&	Lessons

Introductions
Microservice	Basics
Challenges	&	Solutions
Organization	&	Architecture
Recap

Our	Talk	Today

Microservice	architectures	are	
complex	and	organic

Health	depends	on	discipline	and	
chaos

Dependency
Circuit	breakers,	fallbacks,	chaos
Simple	clients
Eventual	consistency
Multi-region	failover

Scale
Auto-scaling
Redundancy	– avoid	SPoF
Partitioned	workloads
Failure-driven	design
Chaos	under	load

Variance
Engineered	operations	
Understood	cost	of	variance
Prioritized	support	by	impact

Change
Automated	delivery
Integrated	practices

Organization	&	Architecture
Solutions	first,	team	second

netflix.github.io

techblog.netflix.com

Questions?

