
© 2016 Mesosphere, Inc. All Rights Reserved. 1

MESOS
A State-Of-The-Art
Container Orchestrator

© 2016 Mesosphere, Inc. All Rights Reserved. 2

About me

Jie Yu (@jie_yu)
● Tech Lead at Mesosphere
● Mesos PMC member and committer
● Formerly worked at Twitter
● PhD from University of Michigan
● Worked on Mesos since 2012

http://people.apache.org/~jieyu/

© 2016 Mesosphere, Inc. All Rights Reserved. 3

● Mesos overview and fundamentals

● Why should I pick Mesos?

● Containerization in Mesos

Outline

© 2016 Mesosphere, Inc. All Rights Reserved. 4

● What does a traditional OS kernel provide?
○ Resource management Host cpu, memory, etc.
○ Programming abstractions POSIX API: processes, threads, etc.
○ Security and isolation Virtual memory, user, etc.

● Mesos: A kernel for data center applications
○ Resource management Cluster cpu, memory, etc.
○ Programming abstractions Mesos API: Task, Resource, etc.
○ Security and isolation Containerization

Mesos: A kernel for data center applications
Mesos overview and fundamentals

© 2016 Mesosphere, Inc. All Rights Reserved. 5

● Key concepts
○ Framework
○ Resource/Offer
○ Task
○ Executor

Programming abstractions
Mesos overview and fundamentals

Master

Agent

Framework

Executor

Task Task

Executor

Task

Offer (Resources) Task/Executor

Resources Task/Executor

© 2016 Mesosphere, Inc. All Rights Reserved. 6

Case study: Marathon
Mesos overview and fundamentals

Master

Agent X

Marathon

Offer
X: 8 cpus, 16G mem

Decline Offer

8 cpus, 16G mem

© 2016 Mesosphere, Inc. All Rights Reserved. 7

Create a Marathon app
Mesos overview and fundamentals

Master

Agent X

Marathon

Executor

Task

Offer
X: 8 cpus, 16G mem

Accept Offer
LAUNCH(Task: 2 cpus, 2G mem)

POST /v2/apps

© 2016 Mesosphere, Inc. All Rights Reserved. 8

Create a Marathon app
Mesos overview and fundamentals

Master

Agent X

Marathon

Executor

Task

TASK_RUNNING

TASK_RUNNING Offer
X: 6 cpus, 14G mem

© 2016 Mesosphere, Inc. All Rights Reserved. 9

A typical Mesos cluster
Mesos overview and fundamentals

Master

Agent

Marathon

Agent Agent Agent Agent Agent Agent Agent

Kafka Cassandra MarathonSpark

Master Master

Zookeeper

© 2016 Mesosphere, Inc. All Rights Reserved. 10

Mesos helps improve cluster utilization
Mesos overview and fundamentals

time

time

© 2016 Mesosphere, Inc. All Rights Reserved. 11

DS/OS vs. Mesos
Mesos overview and fundamentals

Existing
Infrastructure

Mesosphere
DCOS

Services &
Containers ● Kernel alone is not enough

● DC/OS: the easiest way to run Mesos
○ CLI/UI
○ Package management
○ Service discovery
○ Load balancing
○ Day2 ops
○ Security
○ Framework SDK

● Yes, it is open source!

© 2016 Mesosphere, Inc. All Rights Reserved. 12

● Production ready

● Proven scalability

● Highly customizable and extensible

Why should I pick Mesos?
Why Mesos?

© 2016 Mesosphere, Inc. All Rights Reserved. 13

Production
Ready

© 2016 Mesosphere, Inc. All Rights Reserved. 14

The birth of Mesos
Why Mesos?

TWITTER TECH TALK

The grad students working on Mesos
give a tech talk at Twitter.

March 2010

APACHE INCUBATION

Mesos enters the Apache Incubator.

Spring 2009

CS262B

Ben Hindman, Andy Konwinski and
Matei Zaharia create “Nexus” as their

CS262B class project.

MESOS PUBLISHED

Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center is

published as a technical report.

September 2010

December 2010

© 2016 Mesosphere, Inc. All Rights Reserved. 15

Widely adopted
Why Mesos?

MESOS GRADUATES

Mesos graduates from the Apache
Incubator to become a top level

project.

June 2013

VERIZON SCALE DEMO

Verizon demonstrates launching
50,000 containers in less than 90

seconds using Mesos and
Mesosphere’s Marathon scheduler.

April 2013

MESOSPHERE

Mesosphere is formed by engineers
who have been using Mesos at

Twitter and AirBnB.

APPLE ANNOUNCES J.A.R.V.I.S.

Apple announces that the Siri
infrastructure now runs on Mesos,

atop “thousands” of nodes.

April 2015

August 2015

© 2016 Mesosphere, Inc. All Rights Reserved. 16

Production Mesos users
Why Mesos?

© 2016 Mesosphere, Inc. All Rights Reserved. 17

Proven
Scalability

© 2016 Mesosphere, Inc. All Rights Reserved. 18

Twitter

● Largest Mesos cluster
○ > 30000 nodes
○ > 250K containers

© 2016 Mesosphere, Inc. All Rights Reserved. 19

Apple

● Siri is powered by
Mesos!

© 2016 Mesosphere, Inc. All Rights Reserved. 20

Verizon

● 50K containers
in 50 seconds

© 2016 Mesosphere, Inc. All Rights Reserved. 21

● Stateless master
○ Inspired from the GFS design
○ Agents hold truth about running tasks (distributed)
○ Master state can be reconstructed when agents register

● Simple, only cares about
○ Resource allocation and isolation
○ Task management

● Implemented in C++
○ Native performance
○ No GC issue

Why Mesos is so scalable?
Why Mesos?

© 2016 Mesosphere, Inc. All Rights Reserved. 22

● Known that Mesos will scale to Twitter/Apple level
○ Feature is easy to add, took time to make it scalable

● Quality assurance for free
○ Imagine a test environment having 30k+ nodes with real workload

● Take backwards compatibility seriously
○ We don’t want to break their production environment

What does it mean to you?
Why Mesos?

© 2016 Mesosphere, Inc. All Rights Reserved. 23

Highly
Customizable
and Extensible

© 2016 Mesosphere, Inc. All Rights Reserved. 24

● Every company’s environment is different
○ Scheduling
○ Service discovery
○ Container image format
○ Networking
○ Storage
○ Special hardware/accelerators (e.g., GPU, FPGA)

● No one-fits-all solution typically

Why this is important?
Why Mesos?

© 2016 Mesosphere, Inc. All Rights Reserved. 25

Pluggable schedulers
Why Mesos?

● For instance, you need separate schedulers for
○ Long running stateless services
○ Cron jobs
○ Stateful services (e.g., database, DFS)
○ Batch jobs (e.g., map-reduce)

● Monolithic scheduler?
Monolithic schedulers do not make it easy to add new policies and specialized
implementations, and may not scale up to the cluster sizes we are planning for.

 --- From Google Omega Paper (EuroSys’13)

Mesos frameworks
== pluggable schedulers

© 2016 Mesosphere, Inc. All Rights Reserved. 26

Flexible service discovery
Why Mesos?

● Mesos is not opinionated about service discovery
○ DNS based
○ ZK/Etcd/Chubby based (e.g., twitter, google, with client libraries)
○ Your custom way, every company is different
○ Mesos provides an endpoint to stream SD information

● DNS based solution does not scale well
Larger jobs create worse problems, and several jobs many be running
at once. The variability in our DNS load had been a serious problem for
Google before Chubby was introduced.

--- From Google Chubby paper (OSDI’06)

© 2016 Mesosphere, Inc. All Rights Reserved. 27

● Container image format
● Networking
● Storage
● Custom isolation
● Container lifecycle hooks

Pluggable and extensible containerization
Why Mesos?

© 2016 Mesosphere, Inc. All Rights Reserved. 28

● Mesos overview and fundamentals
● Why should I pick Mesos?
● Containerization in Mesos

○ Pluggable architecture
○ Container image
○ Container network
○ Container storage
○ Customization and extensions
○ Nesting container support

Outline

© 2016 Mesosphere, Inc. All Rights Reserved. 29

What is Containerizer?
Containerization in Mesos

29

Containerizer

● Between agents and containers
● Launch/update/destroy containers
● Provide isolations between containers
● Report container stats and status

Mesos Master Mesos Master Mesos Master

Zookeeper

Marathon
Framework

Cassandra
Framework

Mesos Agent

Containerizer

Container

Executor

T1 T2

Mesos Agent

Containerizer

Container

Executor

T1 T2

Mesos Agent

Containerizer

Container

Executor

T1 T2

© 2016 Mesosphere, Inc. All Rights Reserved. 30

Docker containerizer
● Delegate to Docker daemon

Mesos containerizer
● Using standard OS features (e.g.,

cgroups, namespaces)
● Pluggable architecture allowing

customization and extension

Currently supported containerizers
Containerization in Mesos

Very stable. Used in large
scale production clusters

© 2016 Mesosphere, Inc. All Rights Reserved. 31

Docker containerizer
● Delegate to Docker daemon

Mesos containerizer
● Using standard OS features (e.g.,

cgroups, namespaces)
● Pluggable architecture allowing

customization and extension
● Support Docker, Appc, OCI (soon)

images natively w/o dependency

Currently supported containerizers
Containerization in Mesos

Very stable. Used in large
scale production clusters

© 2016 Mesosphere, Inc. All Rights Reserved. 32

Docker containerizer
● Delegate to Docker daemon

Unified containerizer
● Using standard OS features (e.g.,

cgroups, namespaces)
● Pluggable architecture allowing

customization and extension
● Support Docker, Appc, OCI (soon)

images natively w/o dependency

Currently supported containerizers
Containerization in Mesos

Very stable. Used in large
scale production clusters

© 2016 Mesosphere, Inc. All Rights Reserved. 33

● Pluggable architecture
● Container image
● Container network
● Container storage
● Customization and extensions
● Nesting container support

Unified Containerizer
Containerization in Mesos

© 2016 Mesosphere, Inc. All Rights Reserved. 34

Pluggable architecture
Unified Containerizer

Launcher Isolators

Unified containerizer

Provisioner

Process
management

Container
lifecycle hook

Container
image support

35

Responsible for process management
● Spawn containers
● Kill and wait containers

Supported launchers:
● Posix launcher
● Linux launcher
● Windows launcher

Launcher
Unified Containerizer

36

Interface for extensions during the life cycle of a container
● Pre-launch - prepare()
● Post-launch (both in parent and child context) - isolate()
● Termination - cleanup()
● Resources update - update()
● Resources limitation reached - watch()
● Agent restart and recovery - recover()
● Stats and status pulling - usage()

Isolator
Unified Containerizer

Sufficient for most of
the extensions!

37

Isolator example: cgroups memory isolator
Unified Containerizer

Agent Process

Launcher
creates
Subprocess Container

Process

execve()

LaunchInfo = Isolator::prepare()

* Create a cgroup for the container
in memory cgroup hierarchy:
/sys/fs/cgroup/memory/mesos/…

* Start listening for OOM event

Isolator::isolate(pid)
Block on pipe

Move ‘pid’ to the
memory cgroup just
created

Invoke ‘LaunchInfo.script’

Exec the executor

Signal the Child to continue

38

Isolator example: cgroups memory isolator
Unified Containerizer

Agent Process Container
Process

Isolator::update()

Change cgroup control:
memory.limit_in_bytes

Sending a new Task to
Executor, ‘resources’ of
the Executor changes

Send Task to Executor

39

Isolator example: cgroups memory isolator
Unified Containerizer

Agent Process Container
Process

Isolator::cleanup()

Remove the memory
cgroup associated
with the container

Shutdown Executor
or kill Task Destroy container

Container terminated

40

Cgroups isolators: cgroups/cpu, cgroups/mem, ...

Disk isolators: disk/du, disk/xfs

Filesystem isolators: filesystem/posix, filesystem/linux

Volume isolators: docker/volume

Network isolators: network/cni, network/port_mapping

GPU isolators: gpu/nvidia

…... and more! Need your contribution!

Built-in isolators
Unified Containerizer

41

Start from 0.28, you can run your Docker container on
Mesos without a Docker daemon installed!

● One less dependency in your stack
● Agent restart handled gracefully, task not affected
● Compose well with all existing isolators
● Easier to add extensions

Container image support
Unified Containerizer

42

● Mesos supports multiple container image format
○ Docker (without docker daemon)
○ Appc (without rkt)
○ OCI (ready soon)
○ CVMFS (experimental)
○ Host filesystem with tars/jars
○ Your own image format!

Pluggable container image format
Unified Containerizer

Used in large scale
production clusters

https://mesosconna2016.sched.org/event/6jtr/a-novel-approach-for-distributing-and-managing-container-images-integrating-cernvm-file-system-and-mesos-jakob-blomer-cern-jie-yu-artem-harutyunyan-mesosphere?iframe=no
https://mesosconna2016.sched.org/event/6jtr/a-novel-approach-for-distributing-and-managing-container-images-integrating-cernvm-file-system-and-mesos-jakob-blomer-cern-jie-yu-artem-harutyunyan-mesosphere?iframe=no

43

● Manage container images
○ Store: fetch and cache image layers
○ Backend: assemble rootfs from image layers

■ E.g., copy, overlayfs, bind, aufs
● Store can be extended

○ Currently supported: Docker, Appc
○ Plan to support: OCI (ongoing), CVMFS
○ Custom fetching (e.g., p2p)

Provisioner
Unified Containerizer

44

Demo
Unified Containerizer

45

● Support Container Network Interface (CNI) from 1.0
○ A spec for container networking
○ Supported by most network vendors

● Implemented as an isolator
○ --isolation=network/cni,...

Container network support
Unified Containerizer

46

● Proposed by CoreOS :
https://github.com/containernetworking/cni

● Simple contract between container
runtime and CNI plugin defined in the
form of a JSON schema
○ CLI interface
○ ADD: attach to network
○ DEL: detach from network

Container Network Interface (CNI)
Unified Containerizer

Mesos Agent

Containerizer

Container

Executor

T1 T2

CNI Plugin

IPAM

veth

Network

● Simpler and less dependencies than Docker CNM
● Backed by Kubernetes community as well
● Rich plugins from network vendors
● Clear separation between container and network management
● IPAM has its own pluggable interface

47

Why CNI?
Unified Containerizer

48

Existing CNI plugins
● ipvlan
● macvlan
● bridge
● flannel
● calico
● contiv
● contrail
● weave
● …

CNI plugins
Unified Containerizer

You can write your own plugin,
and Mesos supports it!

49

● Support Docker volume plugins from 1.0
○ Define the interface between container runtime and storage provider
○ https://docs.docker.com/engine/extend/plugins_volume/

● A variety of Docker volume plugins
○ Ceph
○ Convoy
○ Flocker
○ Glusterfs
○ Rexray

Container storage support
Unified Containerizer

50

Launcher
● Custom container processes management

Isolator
● Extension to the life cycle of a container

Provisioner
● New type of images
● Custom fetching and caching

Extensions
Unified Containerizer

© 2016 Mesosphere, Inc. All Rights Reserved. 51

● New in Mesos 1.1
○ Building block for supporting Pod like feature

● Highlighted features
○ Support arbitrary levels of nesting
○ Re-use all existing isolators
○ Allow dynamically creation of nested containers

Nested container support
Nested container support

© 2016 Mesosphere, Inc. All Rights Reserved. 52

Nested container support
Nested container support

Mesos Master Mesos Master Mesos Master

Zookeeper

Marathon
Framework

Cassandra
Framework

Mesos Agent

Containerizer

Container

Executor

T1 T2

Mesos Agent

Containerizer

Container

Executor

T1 T2

Mesos Agent

Containerizer

Container

Executor

T1 T2

Container

Executor

T1 T2

Nested Container Nested Container

© 2016 Mesosphere, Inc. All Rights Reserved. 53

New Agent API for Nested Containers
Nested container support

message agent::Call {

 enum Type {

 // Calls for managing nested containers

 // under an executor's container.

 LAUNCH_NESTED_CONTAINER = 14;

 WAIT_NESTED_CONTAINER = 15;

 KILL_NESTED_CONTAINER = 16;

 }

}

© 2016 Mesosphere, Inc. All Rights Reserved. 54

Launch nested container
Nested container support

Container

ExecutorMesos Agent

Containerizer

LAUNCH

Nginx

© 2016 Mesosphere, Inc. All Rights Reserved. 55

Watch nested container
Nested container support

Container

ExecutorMesos Agent

Containerizer

WAIT

NginxExit Status = 0

© 2016 Mesosphere, Inc. All Rights Reserved. 56

Arbitrary levels of nesting
Nested container support

Container

Executor

Nginx

Mesos Agent

Containerizer

LAUNCH
Debug

57

Demo
Unified Containerizer

© 2016 Mesosphere, Inc. All Rights Reserved.

● Mesos: state of the art container orchestrator
○ Production ready
○ Proven scalability

○ Highly customizable and extensible

● Containerization in Mesos
○ Pluggable architecture
○ Native support for Docker/Appc images (w/o Docker daemon or rkt)
○ Container network: CNI
○ Container storage: DVD
○ Nested container support

58

Summary

© 2016 Mesosphere, Inc. All Rights Reserved. 59

Questions?

60

CNI support using an isolator
Unified Containerizer

Agent Process

Launcher
creates
Subprocess Container

Process

execve()

LaunchInfo = Isolator::prepare()

Tell the launcher to create the
child process in a new NET, UTS
and MNT namespace.

Isolator::isolate(pid)
Block on pipe

Bind mount the NET
namespace to keep
it open

Invoke ‘ADD’ of the
CNI plugin with the
NET namespace
associated with pid

Setup network
related /etc/xx files
for the container

Invoke ‘LaunchInfo.script’

Exec the executor

Signal the Child to continue

61

CNI support using an isolator
Unified Containerizer

Container
Process

Isolator::cleanup()

Invoke ‘DEL’ of the
CNI plugin with the
NET namespace
handle

Umount and remove
the NET namespace
handle

Shutdown Executor
or kill Task Destroy container

Container terminated

Agent Process

© 2016 Mesosphere, Inc. All Rights Reserved. 62

Mesos, as one of the most powerful container orchestrators, greatly simplifies the
deploy, provision and execution of containerized workloads. It automates the
distribution of preprovisioned container images, injection of configuration,
scheduling onto machines, life-cycle-management, and monitoring of applications,
microservices, and jobs in the cloud.

In this talk, Jie Yu will first give you an overview about Mesos and its powerful API
which allows users to easily deploy their stateless and stateful services. Then, Jie will
talk about how containers are managed in Mesos. In particular, Jie will provide a deep
dive into the unified containerizer which is first introduced in Mesos 1.0.

Jie will show some of the new container networking and storage features that are
built recently, and how they benefit from the pluggable and extensible architecture of
the unified containerizer. Finally, Jie will discuss the future of container support in
Mesos.

