Monkeys in Lab Coats

Automating Failure Testing Research at

NETFLIX

The whole is greater than the sum of its parts.

- Avristotle
[Metaphysics]

The Professor The Practitioner

Peter Alvaro Kolton Andrus

Ex-Berkeley, Ex-Industry Ex-Netflix, Ex-Amazon
Assistant Prof @ Santa Cruz ‘Chaos’ Engineer
Misses the calm of PhD life Misses his actual pager

Likes prototyping stuff Likes breaking stuff

Measures of Success

Academic Industry
H-Index Availability (i.e. 99.99% uptime)
Grant warchest Number of Incidents

Department ranking Reduce Operational Burden

An Unlikely Team?

Works Great!

but ... it's manual

Surely there is a better way ...

= Yol

Lineage-driven fault injection

Goal top-down testing that
« finds all of the fault-tolerance bugs. or
« certifies that none exist

RICON 2014: Keynote 2 Day 2: Peter Alvaro - Outwards from the Middle of the
Maze
Basho Technologies
©
TS A

Published on Oct 31, 2014
Peter Alvaro, PhD candidate at UC Berkeley.
Outwards from the middle of the maze
Wednesday, October 29th

SHOWNORE

O$ HL 2 @Z B Mn252PM Q
| Kotton
Q0o =

80 Ot Bookmarks

wel| 0 @

Autoplay © @D
RICON 2014: Jayadev Chandrasekhar,
'YAHOO! Cloud Infrastructure
Biho Techokophs

See What You Mean’ by Peter Alvaro
Suange Loop
18378 views

Diarted Syt Artclogy (Vichas!
Bernstein) - RICON Wast
Basho Technologies

i LI
RICON 2014: David Greenborg, Two Sigma -
Mesos: The Operating System for your
Basho Technologies
2814views

0N 2014 Keynot: Siyt: A Systom fo
cale Machine Learning at Google"
by

Grand Prix Pittsburgh Round 8
ecommanded (ot you

RICON 2014: Aysylu Groenberg, Google
n e e gl

Wicked Good Ruby 2013 - Bloom: A
Langusge o Oisordary Disiruted
(sl

and Concentration - Best of Bach -Classical
Clossial Musc
354765 vews

ﬂ 24 HOURS 7 Classical Music for Studying

1.Day 2: Dave

1 pewreszo -l o) retiiogo-smang - (@) Neutix oganul - | (3] Nettix Logopg

HDmI 1080

Free lunch?

The End?

(Academia + Industry)

Let’'s build it

“Can we, pretty please?”

Freedom and Responsibility

N ETFLIX Core Value

Responsibility

Academic Industry

Prove that it works
Show that it scales

Find real bugs

The B|g Idea Lineage.Drlyen
Fault Injection

What could possibly go wrong?

Consider computation

_ _ _ Search Space:
involving 100 services

2100 executions

“Depth” of bugs

Single Faults Search Space:

100 executions

“Depth” of bugs

Combination of 4 faults Search Space:

3M executions

“Depth” of bugs

Combination of 7 faults Search Space:

16B executions

Random Search

Search Space:
2100 executions

Engineer-guided Search

Search Space:
27?7

Fault-tolerance

(1%
|

s just” redundancy

Lineage-driven Fault Injection

Peter Alvaro
UC Berkeley
palvaro@cs.berkeley.edu

ABSTRACT

Failure is always an option; in large-scale data management sys-
tems, it is practically a certainty. Fault-tolerant protocols and com-
ponents are notoriously difficult to implement and debug. Worse
still, choosing existing fault-tolerance mechanisms and integrating
them correctly into complex systems remains an art form, and pro-
grammers have few tools to assist them.

‘We propose a novel approach for discovering bugs in fault-tolerant
data t systems: Ji driven fault injection. A lineage-
driven fault injector reasons backwards from correct system out-
comes to determine whether failures in the execution could have
prevented the outcome. We present MOLLY, a prototype of lineage-
driven fault injection that exploits a novel combination of data lin-
eage techniques from the database literature and state-of-the-art
satisfiability testing. If fault-tolerance bugs exist for a particular
configuration, MOLLY finds them rapidly, in many cases using an
order of magnitude fewer executions than random fault injection.
Otherwise, MOLLY certifies that the code is bug-free for that con-
figuration.

Joshua Rosen
UC Berkeley
rosenville@gmail.com

Joseph M. Hellerstein
UC Berkeley
hellerstein@cs.berkeley.edu

enriching new system architectures with well-understood fault tol-
erance mechanisms and henceforth assuming that failures will not
affect system outcomes. Unfortunately, fault-tolerance is a global
property of entire systems, and guarantees about the behavior of
individual components do not necessarily hold under composition.
1t is difficult to design and reason about the fault-tolerance of indi-
vidual components, and often equally difficult to assemble a fault-
tolerant system even when given fault-tolerant components, as wit-
nessed by recent data management system failures [16, 57] and
bugs [36,49].

Top-down testing approaches—which perturb and observe the
behavior of complex systems—are an attractive alternative to veri-
fication of individual components. Fault injection [1,26,36,44,59]
is the dominant top-down approach in the software engineering
and dependability communities. With minimal programmer in-
vestment, fault injection can quickly identify shallow bugs caused
by a small number of independent faults. Unfortunately, fault in-
jection is poorly suited to discovering rare counterexamples in-
volving complex combinations of multiple instances and types of
faults (e.g., a network partition followed by a crash failure). Ap-

How do we find the redundancy?
Could a bad—thing r happen?

Why did a good ‘thing’ happen?

Lineage-driven fault injection The write

is stable
Why did a good thing happen? /\
Consider its lineage. StgeeSAon St%fsﬁson

>

Bcast1 Bcast?2

Client Client

Lineage-driven fault injection

Why did a good thing happen?
Consider its lineage.

What could have gone wrong?
Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

~

Stored on
RepB

Bcast?2

Client

Client

Lineage-driven fault injection

Why did a good thing happen?
Consider its lineage.

What could have gone wrong?
Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

N

Stored on
RepA

Stored on
RepB

Client

Client

What would have to go wrong? The write

is stable

(RepA OR Bcast1) _7 N

Stored on Stored on
RepA RepB

A

Bcast1 Bcast?2

)

Client Client

What would have to go wrong?

(RepA OR Bcast1)
AND (RepA OR Bcast2)

The write
is stable

VMRS

Stored on Stored on

RepA RepB

i

Bcast1 Bcast?2

)

Client Client

What would have to go wrong?
(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

The write
is stable

N

Stored on
RepA

Stored on

RepB

v

Bcast1

Bcast?2

)

Client

Client

What would have to go wrong?

(RepA OR Bcast1)
AND (RepA OR Bcast2)
AND (RepB OR Bcast2)
AND (RepB OR Bcast1)

The write
is stable

N

Stored on
RepA

Stored on

Bcast1

RepB

=<l

Bcast?2

)

Client

Client

Lineage-driven fault injection

Hypothesis: {Bcast1, Bcast2}

The write
is stable

N

Stored on
RepA

Stored on
RepB

Client

Client

Search Space Reduction

Each Experiment finds
a bug, OR

Reduces the
Search space

The prototype system “Molly”

Sl
Recipe: !ﬁ

1. Start with a successful 4. REPEAT

outcome. Work backwards.
2. Ask why it happened: Lineage
3. Convert lineage to a boolean
formula and solve
4. Lather, rinse, repeat Why? Solve

1. Success [———— Fail

Encode
2. Lineage 3. CNF

The Big Idea Meets Production

1. Start with a successful outcome

F
4. REPEAT
1. Success Fail
r
Why? Solve
2 Encode 3

Lineage CNF

What is success?

HBIII_‘IL‘_IIS dil

“Start with the customer and work
backwards”’

aMazon Leadership Principle

NETFLIX

FLIX

Lesson 1

Work backwards from what you know

2. Ask why It happened

W
4. REPEAT
1. Success Fail
T
Why? Sol
2 Encod 3

Request Tracing

Request Tracing

€3
CEIRCIDFC _ 3D

Alternate Execution

w @ GetBookmarkFallback

Evolution over time

Redundancy through History

Redundancy
@ GetBookmarkFallback

Lesson 2

Meet in the middle

3. Solve

3al

AF

4. REPEAT

1. Success Fail

Why? Solve

2 Encode | 3
Lineage CNF

4. Lather, Rinse, Repeat

3al

AF

4. REPEAT

Why? Solve

Lineage | CNF

Turn the crank,

s,

f (]
f 1’ ‘M‘// f/’/f%/’if

ldempotence

Bins and Balls

Request

Class 1

Class 2

Class 3

[.]

Class n

Predicting Request Graphs

Request

Class n

@ s

Predicting Request Graphs

Request

AN

/!

Some function f:
Requests — Classes

Class n

Predicting Request Graphs

=(

Request

Class n

Solve the Machine Learning problem?
or the Failure Testing one?

Simplest thing that will work?

Falcor Path Mapping

["bookmarks”, “recent”]

FALCOR

["playlist", @, “name”]

["ratings"]

=>

“bookmarks,playlist,ratings”

Lesson 3

Adapt the theory to the reality

Many moons passed...

Does it work? YES!

Case study: “Netflix AppBoot”

Services ~100
Search space (executions) 2190 (1.000,000,000,000,000,000,000,000,000,000)
Experiments performed 200

Critical bugs found 11

Future Work

Search prioritization Richer device metrics
Richer lineage collection Request class creation
Exploring temporal Better experiment selection

interleavings

DISORDERLY

&

LABS

Peter Alvaro rrincipal investigator

Peter Alvaro is an Assistant Professor of Computer
Science at UC Santa Cruz. He earned his PhD at UC
Berkeley, where he was advised by Joe Hellerstein.

Kamala Aspiring MI Wizard

Kamala started her PhD at UCSC in Fall, 2015. Her
interests include reasoning about large scale distributed
systems and applied machine learning, specifically how

and when we might be able to apply machine learning
effectively to understand complex systems better.

Nikhil Kini raut Injector

Operator on the intersection of logic, statistical
relational learning, and distributed systems.

Tuan kohd Wizard In Training

Tuan is a CS Ph.D student at UCSC, whose interests
are in distributed systems and machine learning

® ©@® Pictxt

A N

Kathryn Dahlgren Resident koder Kat

Kathryn is a PhD student in Computer Science at UCSC.
Her interests orbit research and developments in
databases and distributed systems.

Ashutosh code wrangler

Ashutosh is a M.S. student at U.C. Santa Cruz,
interested in databases, distributed computing and
machine learning.

Read more about Ashutosh.

g

GREMLIN INC.

Breaking Things on Purpose

root@@a3037ae2bb6:/src/install# which gremlin
/usr/bin/gremlin

root@@a3037ae2bb6:/src/install# gremlin help
Usage: gremlin COMMAND [command-specific-options]

Type "gremlin help COMMAND" for more details:

attack # Run a new gremlin attack

help # List commands and display help

rollback # Interrupt an active attack, or revert the last impact.
status # Show the status of all gremlins or a specific attack.
syscheck # Run a system check.

version # Show version information for the gremlin binary.

root@a3037ae2bbb: /src/install# gremlin help attack
Usage: gremlin attack TYPE [type-specific-options]

Type "gremlin help attack TYPE" for more details:

blackhole # An attack which drops all matching network traffic

cpu # An attack which consumes CPU resources
latency # An attack which adds latency to all matching network traffic
memory # An attack which consumes memory

packet_loss # An attack which introduces packet loss to all matching network traffic

root@a3037ae2bb6:/src/install# gremlin attack cpu

Running cpu gremlin with guid 'b571bf6@-7fa9-11e6-b029-a21b8ed525eb"’ for 15 seconds on 1 core
Attack on cpu_l completed successfully

Attack successfully completed

root@@a3037ae2bb6: /src/install# ||

DELETE

BOOEBERAH:
K %

/attacks

[attacks
[attacks/active
/attacks/completed
/attacks/new
/attacks/{guid}
/attacksKguid}

/attacks/{guid}/executions

Show/Hide

List Operations

Expand Operations

ERROR m

ATTACKS CLIENTS kolton (= Halt All

P LN - =
@ v =7
Create Attack Active Attacks Schedules

Create a new attack. View active attacks. View scheduled attacks.

P /f, 4

Engagement Red Team vs. Blue Team DiRT

Test your pager and alerts. The Red Team attacks, the Blue team defends! Run a large scale Disaster Recovery Test.

Gremlin Inc. COPYRIGHT 2016 GREMLIN, INC.

ATTACKS CLIENTS USERS kolton (% Halt All

CR EATE ATTACK Create or schedule a new attack.

Step 1: When will this attack run?

Now () Later @ Randomly

Start: 9:00 am End: 5:00 pm
Runs at most 1 per day.

M T W Th F S Su
Days:

Step 2: Choose your Gremlin

@ blackhole
O & latency

<2 packet_loss An attack which adds latency to all matching network traffic
cpu
&L memory

Gremlin Inc. COPYRIGHT 2016 GREMLIN, INC.

* ATTACKS CLIENTS USERS kolton Halt All

Step 3: Customize the impact

RN | ms How long to delay ingress packets (millis)
‘;E, | port | Only impact traffic on this port
EL?E device Impact traffic over this network interface
™ | www.google.com Only impact traffic to these hostnames
% ipaddress(es) Only impact traffic to these IP addresses
@ length The length of the attack (seconds)

Step 4: Target Selection

() Exact © Match ©) Random

The failure will be experienced on these hosts.
Regular Expression: | foo-service.*

Cancel Attack
Gremlin Inc. COPYRIGHT 2016 GREMLIN, INC.

CLIENTS

USERS

kolton (%

View all active and completed attacks. Halt active attacks. Re-run completed attacks.

* ATTACKS
ATTACKS
Active Attacks
Automatically refresh
Gremlin Stage Started

cpu

o Running

Completed Attacks

Gremlin Stage

cpu ° Successful
I latency ° Successful
r latency ° Successful
@ blackhole [Aborted

<> packet_loss o Successful

2 minutes ago

Ended

4 minutes ago

a day ago

a day ago

2 days ago

2 days ago

Length

5 minutes

Length

2 minutes

30 seconds

15 seconds

2 minutes

15 seconds

Target

i-0aa77114902991cd4

Target

i-0aa77114902991cd4

172.31.36.163,172.31.30.111

172.31.30.111,172.31.36.163

172.31.36.163

172.31.36.163

Search

Search

www.google.com

www.google.com

service.gremlininc.com

50 & www.google.com

Halt All

Lessons

Work backwards from what you know
Meet in the middle
Adapt the theory to the reality

Academia + Industry

Academia+ Industry

Academia & Industry

Thank Youl!

Peter Alvaro Kolton Andrus

@palvaro @KoltonAndrus

palvaro@ucsc.edu kolton@gremlininc.com

References

e Netflix Blog on ‘Automated Failure Testing’
http://techblog.netflix.com/2016/01/automated-failure-testing.html

e Netflix Blog on ‘Failure Injection Testing’
techblog.netflix.com/2014/10/fit-failure-injection-testing.html

e ‘Lineage Driven Fault Injection’
http://people.ucsc.edu/~palvaro/molly.pdf

e ‘Automating Failure Testing Research at Scale’
https://people.ucsc.edu/~palvaro/socc16.pdf

http://techblog.netflix.com/2016/01/automated-failure-testing.html
http://techblog.netflix.com/2016/01/automated-failure-testing.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://people.ucsc.edu/~palvaro/molly.pdf
http://people.ucsc.edu/~palvaro/molly.pdf
https://people.ucsc.edu/~palvaro/socc16.pdf
https://people.ucsc.edu/~palvaro/socc16.pdf

Photo Credits

e http://etc.usf.edu/clipart/4000/4048/children_7 _lg.qif
http://cdn.c.photoshelter.com/img-get2/10000MIN8fL0g8AA/fit=1000x750/taiw
an-hiking-river-tracing-walking.jpg

http://i.imgur.com/iWKad22.ipg
https://blogs.endjin.com/2014/05/event-stream-manipulation-using-rx-part-2/
http://youpivot.com/category/features/
https://www.cloudave.com/33427/boards-need-evolve-time/
https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ram
prakash-veluchamy

http://etc.usf.edu/clipart/4000/4048/children_7_lg.gif
http://etc.usf.edu/clipart/4000/4048/children_7_lg.gif
http://cdn.c.photoshelter.com/img-get2/I0000MIN8fL0q8AA/fit=1000x750/taiwan-hiking-river-tracing-walking.jpg
http://cdn.c.photoshelter.com/img-get2/I0000MIN8fL0q8AA/fit=1000x750/taiwan-hiking-river-tracing-walking.jpg
http://cdn.c.photoshelter.com/img-get2/I0000MIN8fL0q8AA/fit=1000x750/taiwan-hiking-river-tracing-walking.jpg
http://i.imgur.com/iWKad22.jpg
http://i.imgur.com/iWKad22.jpg
https://blogs.endjin.com/2014/05/event-stream-manipulation-using-rx-part-2/
https://blogs.endjin.com/2014/05/event-stream-manipulation-using-rx-part-2/
http://youpivot.com/category/features/
http://youpivot.com/category/features/
https://www.cloudave.com/33427/boards-need-evolve-time/
https://www.cloudave.com/33427/boards-need-evolve-time/
https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ramprakash-veluchamy
https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ramprakash-veluchamy
https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ramprakash-veluchamy

