
Monkeys in Lab Coats
Automating Failure Testing Research at

The whole is greater than the sum of its parts.

- Aristotle
[Metaphysics]

The Professor vs The Practitioner

Peter Alvaro

Ex-Berkeley, Ex-Industry

Assistant Prof @ Santa Cruz

Misses the calm of PhD life

Likes prototyping stuff

Kolton Andrus

Ex-Netflix, Ex-Amazon

‘Chaos’ Engineer

Misses his actual pager

Likes breaking stuff

Measures of Success

Academic

H-Index

Grant warchest

Department ranking

Industry

Availability (i.e. 99.99% uptime)

Number of Incidents

Reduce Operational Burden

An Unlikely Team?

but ... it’s manual

Works Great!

Surely there is a better way ...

Free lunch?

The End?

(Academia + Industry)

Let’s build it
“Can we, pretty please?”

Freedom and Responsibility

Core Value

Responsibility

Academic Industry

Prove that it works

Show that it scales

Find real bugs

The Big Idea Lineage Driven
Fault Injection

What could possibly go wrong?

Consider computation
involving 100 services

Search Space:
2100 executions

“Depth” of bugs

Single Faults Search Space:
100 executions

“Depth” of bugs

Combination of 4 faults Search Space:
3M executions

“Depth” of bugs

Combination of 7 faults Search Space:
16B executions

Random Search

Search Space:
2100 executions

Engineer-guided Search

Search Space:
???

Fault-tolerance “is just” redundancy

How do we find the redundancy?

Could a bad ‘thing’ ever happen?

Why did a good ‘thing’ happen?

Lineage-driven fault injection

Why did a good thing happen?

Consider its lineage.

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Lineage-driven fault injection

Why did a good thing happen?

Consider its lineage.

What could have gone wrong?

Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Lineage-driven fault injection

Why did a good thing happen?

Consider its lineage.

What could have gone wrong?

Faults are cuts in the lineage graph.

Is there a cut that breaks all supports?

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

What would have to go wrong?

(RepA OR Bcast1)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast2

Client Client

Bcast1

What would have to go wrong?

(RepA OR Bcast1)

AND (RepA OR Bcast2)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

What would have to go wrong?

(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1

Client Client

Bcast2

What would have to go wrong?

(RepA OR Bcast1)

AND (RepA OR Bcast2)

AND (RepB OR Bcast2)

AND (RepB OR Bcast1)

The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Lineage-driven fault injection The write
is stable

Stored on
RepA

Stored on
RepB

Bcast1 Bcast2

Client Client

Hypothesis: {Bcast1, Bcast2}

Search Space Reduction

Each Experiment finds
a bug, OR

Reduces the
Search space

The prototype system “Molly”
Recipe:

1. Start with a successful
outcome. Work backwards.

2. Ask why it happened: Lineage
3. Convert lineage to a boolean

formula and solve
4. Lather, rinse, repeat

2. Lineage 3. CNF

Fail1. Success

Why?

Encode

Solve

4. REPEAT

The Big Idea Meets Production

1. Start with a successful outcome

2.
Lineage

3.
CNF

Fail1. Success

Why?

Encode

Solve

4. REPEAT

What is success?

“Start with the customer and work
backwards”

 Leadership Principle

Lesson 1

Work backwards from what you know

2. Ask why it happened

2.
Lineage

3.
CNF

Fail1. Success

Why?

Encode

Solve

4. REPEAT

Request Tracing

Request Tracing

Alternate Execution

Evolution over time

Redundancy through History

Lesson 2

Meet in the middle

3. Solve

2.
Lineage

3.
CNF

Fail1. Success

Why?

Encode

Solve

4. REPEAT

A “small” matter of code

4. Lather, Rinse, Repeat

2.
Lineage

3.
CNF

Fail1. Success

Why?

Encode

Solve

4. REPEAT

Turn the crank, right?

Idempotence

Bins and Balls

Request

Class 1

Class 2

Class 3

Class n

[...]

r’ r

Class n

Predicting Request Graphs

Request

Class n

Predicting Request Graphs

Request

Some function f:
Requests → Classes

F() =
Class n

Request

Predicting Request Graphs

Solve the Machine Learning problem?
or the Failure Testing one?

Simplest thing that will work?

["bookmarks”, “recent”]

["playlist", 0, “name”]

["ratings"]

Falcor Path Mapping

=>

“bookmarks,playlist,ratings”

Lesson 3

Adapt the theory to the reality

Many moons passed...

Does it work? YES!

Case study: “Netflix AppBoot”

Services ~100

Search space (executions) 2100 (1,000,000,000,000,000,000,000,000,000,000)

Experiments performed 200

Critical bugs found 11

Future Work

Richer device metrics

Request class creation

Better experiment selection

Search prioritization

Richer lineage collection

Exploring temporal
interleavings

Lessons

Work backwards from what you know

Meet in the middle

Adapt the theory to the reality

Academia + Industry

Academia + Industry

Academia Industry

Thank You!

Peter Alvaro

@palvaro

palvaro@ucsc.edu

Kolton Andrus

@KoltonAndrus

kolton@gremlininc.com

References
● Netflix Blog on ‘Automated Failure Testing’

http://techblog.netflix.com/2016/01/automated-failure-testing.html

● Netflix Blog on ‘Failure Injection Testing’
techblog.netflix.com/2014/10/fit-failure-injection-testing.html

● ‘Lineage Driven Fault Injection’
http://people.ucsc.edu/~palvaro/molly.pdf

● ‘Automating Failure Testing Research at Scale’
https://people.ucsc.edu/~palvaro/socc16.pdf

http://techblog.netflix.com/2016/01/automated-failure-testing.html
http://techblog.netflix.com/2016/01/automated-failure-testing.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://techblog.netflix.com/2014/10/fit-failure-injection-testing.html
http://people.ucsc.edu/~palvaro/molly.pdf
http://people.ucsc.edu/~palvaro/molly.pdf
https://people.ucsc.edu/~palvaro/socc16.pdf
https://people.ucsc.edu/~palvaro/socc16.pdf

Photo Credits
● http://etc.usf.edu/clipart/4000/4048/children_7_lg.gif
● http://cdn.c.photoshelter.com/img-get2/I0000MIN8fL0q8AA/fit=1000x750/taiw

an-hiking-river-tracing-walking.jpg
● http://i.imgur.com/iWKad22.jpg
● https://blogs.endjin.com/2014/05/event-stream-manipulation-using-rx-part-2/
● http://youpivot.com/category/features/
● https://www.cloudave.com/33427/boards-need-evolve-time/
● https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ram

prakash-veluchamy

http://etc.usf.edu/clipart/4000/4048/children_7_lg.gif
http://etc.usf.edu/clipart/4000/4048/children_7_lg.gif
http://cdn.c.photoshelter.com/img-get2/I0000MIN8fL0q8AA/fit=1000x750/taiwan-hiking-river-tracing-walking.jpg
http://cdn.c.photoshelter.com/img-get2/I0000MIN8fL0q8AA/fit=1000x750/taiwan-hiking-river-tracing-walking.jpg
http://cdn.c.photoshelter.com/img-get2/I0000MIN8fL0q8AA/fit=1000x750/taiwan-hiking-river-tracing-walking.jpg
http://i.imgur.com/iWKad22.jpg
http://i.imgur.com/iWKad22.jpg
https://blogs.endjin.com/2014/05/event-stream-manipulation-using-rx-part-2/
https://blogs.endjin.com/2014/05/event-stream-manipulation-using-rx-part-2/
http://youpivot.com/category/features/
http://youpivot.com/category/features/
https://www.cloudave.com/33427/boards-need-evolve-time/
https://www.cloudave.com/33427/boards-need-evolve-time/
https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ramprakash-veluchamy
https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ramprakash-veluchamy
https://www.linkedin.com/pulse/amelia-packager-missing-data-imputation-ramprakash-veluchamy

