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IOT & INDUSTRY VERTICALS



IOT MARKET GROWTH PREDICTION

Number of connected “things” 
• 2016 – about 6.4 B 
• 30% YoY growth, 5.5M activations per day
• 2020 – about 21 B

“By 2020 more than half of new major business processes and 
systems will incorporate some element of Internet of Things”



Let us get a second opinion





IoT Project Plan

• Investigate those “things” and figure out 
• What protocols they support (CoAP, MQTT, HTTP, …)
• What data they generate (temperature, humidity, location, speed, ...)

• Collect this data in our data center 
• Implement protocols and parsing routines
• Store into persistent storage (“Data Lake” architecture)

• Once stored in Data Lake 
• Analyze, summarize, “slice and dice”
• Predict, discover insights

• Declare a victory – make profit & go for IPO
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Not so fast, my friend.



What is wrong with “Data Lake” ?











AUTO INSURANCE - MICRO CASE STUDY

• One of top 5 auto insurance companies, appears in Fortune-500 list
• Above $10B in annual revenue, above $15B in assets
• About 20,000 employees and 50,000 insurance agents
• More than 19 million individual policies across all 50 states
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What is different special about IoT?
It is about the “things”… and more.





IOT - NETWORKING TECHNOLOGIES



Network Wish List

• Extreme Reliability
• Guaranteed Delivery
• End-to-End Low Latency
• Quality of Service
• Engineered Topology
• Committed Bandwidth (CIR)

• Fiber-optic network
• Dedicated Channel
• Strong Signal 
• Interference and Crosstalk Resistant 
• High SNR (Signal to Noise Ratio)
• Very Low BER (Bit Error Rate)



REALITY CHECK - LET US LOOK AGAIN



IoT & Network - Reality Check

• Wireless Technologies
• Shared Transmission Media
• Limited Bandwidth
• Mesh or Ad-hoc Topology
• Possible Signals Interference
• Mis-ordered or Lost packets

• Low cost hardware components 
• Low power radio transmitters
• Very small antennas 
• “Custom-made” firmware
• Constrained Application Protocol (CoAP)
• “Best Effort” QoS (“shoot and forget”)



IoT Data Categories

Category Description

Metadata
& Profiles

Devices Device info (model, SN, firmware, sensors, ..), configuration, owner, …

Users Personal info, preferences, billing info, registered devices, …

Time
Series

Ingested 
(“Raw”)

Measurements, statuses and events from devices

Aggregated
(“Derived”)

Calculated data - from devices & profiles
• Rollups – aggregate metrics from low resolution to higher ones (min - hour –

day) using min, max, avg, ...
• Aggregations – aggregate measurements, configuration and profiles (model, 

region, …) over time ranges





IoT is a Big Data - by definition.
Actually, lots and lots of Big Data.
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Complexity Usually poly-structured using simple schemas and simple relations (usually implicit). Some data is 
treated as unstructured (”opaque”) for speed or flexibility. 
Note: schema or structure changes without preliminary notice will occur. 



What architecture would work for IoT ?



ARCHITECTURAL BLUEPRINTS

• Lambda Architecture by Nathan Marz (ex-Twitter)
• Kappa Architecture by Jay Kpeps (Confluent)
• Zeta Architecture by Jim Scott (MapR)
• … and their variants  

Lambda
Kappa

Zeta



• Open Source technologies
• Combines two paradigms
• “Speed Layer” – pipeline for Stream Processing for “Data in Motion”
• “Serving Layer” – analytics for “Data in Motion” and “Data at Rest”

• Every component is “Distributed by Design”
• Collection Layer
• Message Queue
• Stream Processing
• Data Storage (Database, Object System, Data Warehouse)
• Query and Analytics Engines

DATA PROCESSING PARADIGM FOR IOT



Data Access Patterns

Category Description R:W

Metadata 
& Profiles

Devices
Users
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Aggregated
(“Derived”)

Mostly reads – users, platform services, reports. Writes are periodical on 
each time interval or from batch jobs. 80:20



Data store for IoT – “Wish list”

• Ingested (Raw) Time Series
• Very high write throughput
• Fast slice (time range) reads

• Aggregated (Derived) Time Series  
• Auto-distributed + time slice locality
• SQL-like queries, order, group, limit
• Aggregations, arithmetics
• Bulk queries (analytics)
• Secondary Indexes (Tags)

• Efficient Storage
• Auto Data Retention (TTL)
• Compression
• Hot Backups

• Profiles and Metadata
• Many concurrent reads with low latency 
• Reliable writes (ACID or conflict resolution)
• Unstructured or partially structured
• Secondary Indexes + Text Search 

• Scalability and Availability
• Distributed architecture, no SPoF
• Linearly scalable - up and down

• Operational simplicity
• Master-less architecture
• Build-in anti entropy
• Automatic rebalancing
• Rolling upgrades



What DB type is a good fit for TS use cases?



Database Type For IoT or Time Series

Relational Key Value Document Wide Column Graph

MySQL Riak KV MongoDB Cassandra Neo4J

PostgreSQL DynamoDB CouchBase HBase Titan

Oracle Voldemort RethinkDB Accumulo Infinite Graph



Database Type For IoT or Time Series

Relational Key Value Document Wide Column Graph

MySQL Riak KV MongoDB Cassandra Neo4J

PostgreSQL DynamoDB CouchBase HBase Titan

Oracle Voldemort RethinkDB Accumulo Infinite Graph

Time Series
InfluxDB Riak TS Blueflood

KairosDB Prometeus Druid

OpenTSDB Dalmatiner Graphite



OSS TECHNOLOGIES FOR IOT APPS

Component Open Source Technologies

Load Balancer Ngnix, HA Proxy

Ingestion Kafka, RabbitMQ, ZeroMQ, Flume

Stream Computing Spark Streaming,  Apache Flink, Kafka Streams, Samza

Time Series Store InfluxDB, KairosDB, Riak, Cassandra, OpenTSDB

Profiles Store CouchBase, Riak, MySQL, Postgres, MongoDB

Search Solr, Elastic Search

Object Storage HDFS (Hadoop), Minio, Riak S2, Ceph

Analytics Framework Apache Spark, MapReduce, Hive

SQL Query Engine Spark SQL, Presto, Impala, Drill

Cluster Manager Mesosphere DC/OS or Mesos, Kubernetes, Docker Swarm



Check-List for IoT Technology Stack

❑Is it vendor lock-in or open source software? Are APIs open and documented?
❑Can it be deployed in cloud? In the edge? In a data center? Hybrid approach?
❑Can it be used it for free or low cost (no big upfront investment)?
❑Can you develop your app on your laptop? How many “moving parts”?
❑Can you easily scale each component in this architecture by 10x? 20x? 50x?
❑Are the components pre-integrated or can be easily integrated together? 
❑Are there metrics to monitor all the performance angles for each component? 
❑Is there a roadmap, actively worked on, which is aligned with your vision?
❑Is there a company behind the technology to provide 24x7 support?



Hot and Cold Economics of Time Series Data



Time Series Data – “Hot n’ Cold”

Temp Purpose Description Immutable?

Boiling 
Hot 

App usage Last known value(s) and/or for last N minutes, useful for 
immediate responses, frequently accessed

No

Hot Operational 
dataset 

Last 24 hours to several days (rarely weeks), frequenly 
accessed, dashboards and online analytics Almost*

Warm Historical data Older data, less frequently accessed, used mostly for 
offline analytics and historical analysis

Yes

Cold Archives Used only in rare situations, kept in long term storage 
for regulatory or unpredicted purposes

Yes



Time Series Data – from Hot to Cold

Temp Purpose Storage Products Immutable?
Boiling 
Hot 

App usage Internal app cache, Redis or Memcached No

Hot Operational 
dataset 

NoSQL Database (preferably Time Series DB) 
Riak TS, OpenTSDB, KairosDB, Cassandra, HBase Almost*

Warm Historical data Object storage – HDFS (Hadoop),  Ceph,  Minio, 
Riak S2 or AWS S3

Yes

Cold Archives Various Yes

RAM→ Database (TSDB) → Object Storage → Archive



STORAGE TIERS – REALITY CHECK

Temp AWS Service Storage price, GB per month

Boiling Hot Elastic Cache (Redis) ?

Hot DynamoDB
RDS (Postgres)

?

Warm Simple Storage Service (S3) ?

Cold Glacier ?

RAM→ Database (TSDB) → Object Storage → Archive

Elastic Cache (Redis) → Database (Postgres, DynamoDB) → AWS S3→ Glacier



STORAGE TIERS – REALITY CHECK

Temp AWS Service Storage price, GB per month

Boiling Hot Elastic Cache (Redis) $15-45

Hot DynamoDB
RDS (Postgres)

$ 0.25-0.35 (SSD) 
from $0.1 (Magnetic) 

Warm Simple Storage Service (S3) $0.024 to $0.030

Cold Glacier $0.007

RAM→ Database (TSDB) → Object Storage → Archive

Elastic Cache (Redis) → Database (Postgres, DynamoDB) → AWS S3→ Glacier



QUESTIONS ?



Come to Basho booth to learn about
• Riak TS (Time Series) - highly scalable NoSQL database for IoT and Time Series

… and more 
• Riak Spark Connector for Apache Spark
• Riak Integrations with Redis and Kafka 
• Riak Mesos Framework (RMF) for DC/OS




