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NavCloud
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Who We Are

"Fool" stack developers hacking on:

• Backend services

• Client libraries

• Infrastructure && DevOps
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Backend stack
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Client Libraries
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NavCloud Nature

• Unstable connec,ons

• Limited data plans & bandwidth

• Seamless edit/view in offline mode

• Concurrent changes with poten8al 
conflicts

• No guarantee on updates order

• No data loss

• Data convergence to expected value
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How to Deal with this Nature?

8



Bad programmers worry about the 
code. Good programmers worry 

about data structures
— Linus Torvalds
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CRDT
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CRDT
DT: Data Type

CRDT is a data type with its own algebra
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CRDT
R: Replicated

CRDT is a family of data structures which 
has been designed to be distributed
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CRDT
C: Conflict Free

Resolving conflicts is done automa2cally
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How?
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Merge
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What is Merge?
• A binary opera-on on two CRDTs

• Commuta've: x • y = y • x

• Associa've: ( x • y ) • z = x • ( y • z )

• Idempotent: x • x = x
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How Does it Help?

In Distributed Systems:

• Order is not guaranteed: 

• No Problem: Merge is Commuta-ve and Associa-ve

• Events can be delivered more than once: 

• No problem: Merge is Idempotent
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What Does it Bring in Prac1ce?

• Local updates

• Local merge of receiving data

• All local merges converge
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Examples
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G-Counter
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G-Counter

Merge: Max of corresponding elements: A:6 B:3 C:9 

TotalValue: Sum of all elements: 6 + 3 + 9 = 18
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Max Func)on
• A binary opera-on on two CRDTs

• Commuta've: x max y = y max x

• Associa've: ( x max y ) max z = x max ( y max z )

• Idempotent: x max x = x
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G-Set
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Union Func)on
• A binary opera-on on two CRDTs

• Commuta've: x ∪ y = y ∪ x

• Associa've: ( x ∪ y ) ∪ z = x ∪ ( y ∪ z )

• Idempotent: x ∪ x = x
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G-Set

Merge: Union of sets: { x, y, z, a, b, c }

Total Value: The same as the merge result
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CRDT in NavCloud
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Favorite Loca,ons 
Synchroniza,on
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Naive Approach?
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Last Write Wins
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Problems

• Unstable connec-ons

• Actual update -me < Sent -me

• Network latency

• Sent -me < Received -me

• Unreliable clocks
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Stale update may win!
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So What?
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CRDT
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NavCloud Nature vs CRDT

• Unstable connec,ons ✔

• Limited data plans & bandwidth ✔

• Seamless edit/view in offline mode ✔

• Concurrent changes with poten8al 
conflicts ✔

• No guarantee on updates order ✔

• No data loss ✔

• Data convergence to expected value ✔
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Same Data Model Everywhere

• Server

• Clients

• Data store 
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Merging Conflicts in Riak
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The data consistency is determined 
by 'the weakest link' in your pipeline
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Implemen'ng a CRDT Set
What do we want?

• Support for addi-on and removal opera-ons.

• Op-mized for element muta-ons.

• Footprint as compact as possible.
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2-Phase-Set

Supports addi,ons and removals.

• G-Set for added elements

• G-Set for removed elements aka Tombstones
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2-Phase-Set
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2-Phase-Set

Merge: [ Add { "cat", "dog", "ape" }; Rem { "ape" } ] 
Lookup: { "cat", "dog" }
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2-Phase-Set

Lookup

def lookup: Set[E] = addSet.diff(removeSet).lookup

Merge

def merge(anotherSet: TwoPSet[E]): TwoPSet[E] =
   new TwoPSet(    addset.merge(anotherSet.addSet), 
                removeSet.merge(anotherSet.removeSet))
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2-Phase-Set

Doesn't work for us:

• Removed element can't be added again

• Immutable elements: no updates possible

43



LWW-Element-Set

Supports addi,ons and removals, with !mestamps.

• G-Set for added elements

• G-Set for removed elements aka Tombstones

• Each element has a 3mestamp

• Supports re-adding removed element using a higher 3mestamp
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LWW-Element-Set
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LWW-Element-Set

Merge
 Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
 Rem { (1, "cat"), (3, "cat") }
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LWW-Element-Set

Merge

Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
Rem { (1, "cat"), (3, "cat") }

Lookup

{ "cat", "dog", "ape" }
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LWW-Element-Set

Lookup
def lookup: Set[E] = addSet.lookup.filter { addElem =>
    !removeSet.exists { removeElem =>
      removeElem.value == addElem.value && removeElem.timestamp > addElem.timestamp
    }
  }.map(_.value)

Merge

def merge(LWWSet<E> anotherSet): LWWSet<E> = 
   new LWWSet(   addset.merge(anotherSet.addSet), 
              removeSet.merge(anotherSet.removeSet))
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LWW-Element-Set

Doesn't work for us:

• Immutable elements: no updates possible.
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OR-Set

OR - Observed / Removed

Supports addi,ons and removals, with tags.

• G-Set for added elements

• G-Set for removed elements aka Tombstones

• Unique tag is associated with each element

• Supports re-adding removed elements
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OR-Set
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OR-Set

Merge 
 Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
 Rem { (#a, "cat") } 
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OR-Set

Merge

Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
Rem { (#a, "cat") }

Lookup

{ "cat", "dog", "ape" }
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OR-Set

Lookup

E exists iff it has in AddSet a tag that is not in the RemoveSet.

def lookup(): Set<E> = 
  addSet.filter { addElem => 
        !removeSet.exists { remElem => 
            addElem.value == remElem.value 
            && remElem.tag.equals(addElem.tag) }
        }
        .map(_.value);
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OR-Set

Merge

def merge(anotherSet: ORSet[E]): ORSet[E] = 
   new ORSet(   addset.merge(anotherSet.addSet), 
             removeSet.merge(anotherSet.removeSet))
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OR-Set

Doesn't work for us:

• Immutable elements: no updates possible.
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OUR-Set

Our take on Observed-Updated-Removed Set

• Each element has a unique iden%fier

• Element can be changed if iden4fier remains the same

• Each element has a %mestamp

• Timestamp is updated on each element muta4on

 Iden%ty (immutable unique id) vs Value (mutable)
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OUR-Set

Contains a single underlying set of elements with metadata:

• Each element has a unique id field (e.g. a UUID)

• Each element has a "removed" boolean flag

• Each element has a )mestamp

• Set can only contain one element with a par'cular id
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OUR-Set
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OUR-Set

Merge

 { (id1, 5, "*ger"), (id2, 2, "dog", removed), (id3, 1, "ape") }
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OUR-Set

Merge: 

 { (id1, 5, "*ger"), (id2, 2, "dog", removed), (id3, 1, "ape") }

Lookup

{ "$ger", "ape" }
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OUR-Set

Merge

def merge(anotherSet: OURSet[E]]): OURSet[E] =
  OURSet[E]( elements ++ anotherSet.elements)
              .groupBy (_.id)
              .map     (group => group._2.maxBy(_.timestamp)) 
              .toSet)

Lookup

def lookup(ourSet: OURSet[E]): Set[E] =
   ourSet.filter (!_.removed)
         .map    (_.value) 
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Implementa)on
NavCloud CRDT Model: Favorites
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CRDT Model: Favorites

FavoriteState element:

• ID (to uniquely iden.fy a favorite)

• Timestamp (to indicate the last change .me)

• Removed flag (to indicate if favorite has been removed)

• Favorite data: ( Name, Loca2on, ... )
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Convergence in case of equal !mestamps
Compare func-on checks all the fields in order of priority:

• Timestamp

• Removed flag (Add or Delete bias)

• .. rest a6ributes ..
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Using CRDT everywhere
• Use the same algorithm everywhere

As simple as calling the merge func8on
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Using CRDT everywhere
Client <-> Server <-> Database

def update(fromClient: OURSet[E]): OURSet[E] = {
  val fromDatabase = database.fetch(...)
  val newSet = fromDatabase.merge(fromClient)
  database.store(..., newSet)

  newSet
}
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Considera*ons & Limita*ons
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"What about garbage?"

• CRDTs tend to grow because of tombstones.

• Deleted Element in the Set == Tombstone.

• A poten?ally unbounded growth.
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Prune deleted elements
But when?

Requirement: 
All nodes holding a CRDT Set replica should have seen a deleted 
element before it can be pruned.

Otherwise deleted elements can be resurrected.
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Time-To-Live for tombstones

Prune tombstones once TTL exceeded.

if ((DateTime.now() - tombstone.timestamp) > TimeToLive) {
    crdtSet.remove(tombstone)
}

Requirement: all nodes holding a CRDT set should apply the same 
TTL rule independently.
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Prune deleted elements
Problem

Synchroniza+on between all replicas is needed for correctness.
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Distributed 
transac.ons
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- Academia, help!
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Op#mized OR-Set
Introduces replica awareness
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Op#mized OR-Set

Addi$onal metadata is added to every transferred state.

{ (replica_id -> seq_nr) }

where:
- replica_id - is a unique & stable replica iden5fier.
- seq_nr - monotonically growing (a=er each op) local counter.
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Op#mized OR-Set

Each local state maintains a map:

{ replica_A: 1, replica_B: 1, replica_C: 3 }

If a received state has a seq_nr lower than the corresponding local 
value -> ignore.
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Op#mized OR-Set
No Tombstones, yay! ☺

(Slightly) more complicated API: stable replica_id needed. ☹
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Update & Reply with a Diff

Client modifies and sends only updated elements (Diff).

Before: Server responds with a full merge result.

81



Update & Reply with a Diff

We introduced a 'Scoped Diff':
Server responds only with the elements which have won against 
those sent by the client.
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Server -> Client Diff
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- Academia, help?..
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δ-CRDT
Builds on replica awareness

Introduces a Causal Context: 
 map of (replica_id -> seq_nr).

Introduces a Dot Store: CRDT state (No tombstones).
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δ-CRDT
A formalized way to compute a minimal δ-CRDT instances 

 against a target replica.
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δ-CRDT

Adrian Colyer (The Morning Paper) wrote a great paper review:

blog.acolyer.org/2016/04/25/delta-state-replicated-data-types
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https://blog.acolyer.org/2016/04/25/delta-state-replicated-data-types/


Trouble With Time
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There is no such thing as reliable (me*.
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Tracking *me is actually 
tracking causality.

— Jonas Bonér, "Life Beyond the Illusion of Present"
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Causality & Ordering of events.
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Time can be just good enough.
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Ordering updates within a single node

Timestamp field as a logical clock.

Absolute value is not important, 
but it should always grow monotonically.
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Ordering updates within a single node

"+1 Strategy" (aka ensure monotonicity):

Long resolveNewTimestamp(ElementState<E> state) {
    return Math.max( retrieveTimestamp(), 
                     state.lastModified() + 1 );
}
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Ordering updates from different nodes

If GPS clock is available -> use it (mainly Naviga&on Devices case).

Prefer the server &me to a client's local 0me.

96



Edge case

Mul$ple Clients modify the same element 
 (concurrently || without a reliable clock).
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One "merge" to rule them all
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Clients & Server MUST have same 'merge' 
behaviour.

==

Given the same input, their 'merge' func/ons 
emit the same results.
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Divergence may lead to endless synchroniza1on loops!
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Lazy (data) loading
OURSet Element

• Metadata: UUID, $mestamp, "removed" flag

• Data: <Value>
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Lazy (data) loading
New OURSet Element

• Metadata: UUID, $mestamp, "removed" flag, + tag / hash

• (Op(onal) Data: <Value>

Flexible synchroniza1on strategy

Eager || Lazy Fetch
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What have we learned?
• Academia is not as scary as it some-mes seems to pragma,c devs.

• We need be2er and simpler abstrac-ons to develop 

 Offline-friendly apps.

• CRDTs give a great value, but there are some caveats.

• Things like Lasp (lasp-lang.org) also could be the answer (?).
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http://lasp-lang.org


Show me the code

github.com/ajan/s/{scala | java}-crdt
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https://github.com/ajantis/scala-crdt


Thanks!

Slides: h*p://bit.ly/2fBlroS

Dmitry Ivanov  @idajan0s
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https://speakerdeck.com/ajantis/practical-data-synchronization-with-crdts-strangeloop-2016

