Practical Data Synchronization

&
CRDTs

Dmitry lvanov @idajantis

QCon

SAN FRANCISCO
2016

https://twitter.com/idajantis

TOMTOM

A comprehensive study of Convergent and Commutative
Replicated Data Types
Marc Shapiro, Nuno Preguica, Carlos Baquero, Marek Zawirski

. . . CRDTs: Consistency without concurrency control”
» To cite this version:

Marc Shapiro, Nuno Preguica, Carlos Baquero, Marel Mt b o1 .8
Convergent and Commutative Replicated Data Types Mihai Letia' , Nuno Preguica® , Marc Shapiro
Centre Paris-Rocquencourt; INRIA. 2011, pp.50. <inri Théme COM — Systémes communicants

Projet Regal

Rapport de recherche n* 6956 — Juin 2009 — 13 pages

Conflict-free Replicated Data Types *

Marc Shapiro, INRIA & LIP§, Paris, France
Nuno Preguiga, CITI, Universidade Nova de Lisboa, Portugal when they are ‘:"“lc“;’e“"
Mmcurrency conirol. As an
Carlos Baqm%ero3 Universidade do Minho, Portugal uffer called Treedoc. We
Marek Zawirski, INRIA & UPMC, Paris, France Ve discuss how the CRDT

HAL i a multiv

archive for the deposit Théme COM — Systémes communicants

entific research documer Projet Regal ive operations
lished or not. The do
teaching and research Rapport de recherche n® 7687 — Juillet 2011 — 18 pages

abroad, or from public o

NavCloud

Scalabl
ca..a ’ Legal Compliant

Available <seeeee

Secure

Reactive

TOMTOM

Who We Are

"Fool" stack developers hacking on:

e Backend services
e (Client libraries

e [nfrastructure && DevOps

TOMTOMWR

Backend stack

A& akka
WRabbit ’ Spray

sriak

admazon
webservices™

Client Libraries

NavCloud Nature

 Unstable connections
* Limited data plans & bandwidth
e Seamless edit/view in offline mode

 Concurrent changes with potential
conflicts

 No guarantee on updates order

e No data loss

 Data convergence to expected value

TOMTOMWR

How to Deal with this Nature?

Bad programmers worry about the
code. Good programmers worry
about data structures

— Linus Torvalds

CRDT

CRDT
DT: Data Type

CRDT is a data type with its own algebra

TOMTOMWR

;s
d 74\

11

CRDT
R: Replicated

CRDT is a family of data structures which
has been designed to be distributed

TomTOoMm 12

CRDT
C: Conflict Free

Resolving conflicts is done automatically

TOMTOMWR

13

How?

14

TOMTOMWR

Merge

15

What is Merge?

e A binary operation on two CRDTs
e Commutative: x ey =y e X
e Associative:(xey)ez=xe(yez)

 ldempotent: x e X = x

TOMTOMWR

16

How Does it Help?

In Distributed Systems:
e Order is not guaranteed:

e No Problem: Merge is Commutative and Associative
e Events can be delivered more than once:

e No problem: Merge is Idempotent

TOMTOMWR

17

What Does it Bring in Practice?

e Local updates
e Local merge of receiving data

e All local merges converge

TomTomMm 18

Examples

G-Counter

G-Counter

A:6 B0 C:0O A:0B:3C:0 A:0 B:0 C:9

Merge: Max of corresponding elements: A:6 B:3 C:9

TotalValue: Sum of all elements: 6 + 3+ 9 =18

TOMTOMWR

21

Max Function

e A binary operation on two CRDTs
e Commutative: x max y = y max X
e Associative: (x maxy)maxz=xmax(ymaxz)

e ldempotent: x max x = X

TOMTOMWR

22

Union Function

e A binary operation on two CRDTs

e Commutative: xuy=yux
e Associative: (xuy)uz=xu(yuz)

e Idempotent: x U x = X

TOMTOMWR

24

G-Set

A B
° °
|\ |\

Merge: Union of sets: { x,vy, z, a, b, c }

Total Value: The same as the merge result

TOMTOMWR

25

CRDT in NavCloud

>

Favorite Locations
Synchronization

TOMTOM

27

Naive Approach?

Last Write Wins

Problems

* Unstable connections

e Actual update time < Sent time
e Network latency

e Sent time < Received time

e Unreliable clocks

TOMTOMW? 30

Stale update may win!

So What?

CRDT

NavCloud Nature vs CRDT

 Unstable connections v/
e Limited data plans & bandwidth v/
e Seamless edit/view in offline mode v/

 Concurrent changes with potential
conflicts v/

 No guarantee on updates order v/
e No dataloss v/

e Data convergence to expected value v/

TOMTOMWR

34

Same Data Model Everywhere

e Server
e Clients

e Data store sriak

TOMTOMWR

35

TOMTOM?

Merging Conflicts in Riak

VC=3
VC =4

VC=5
VC=6

Write #1, VC = stale #1

-\ Write #2, VC = stale #2

Read & Resolve

Write #3, VC = 1

Write #4, VC = 2 il

Write #5, VC =3

Write #6, VC = 4 \

36

The data consistency Is determined
by 'the weakest link' in your pipeline

Implementing a CRDT Set

What do we want?

e Support for addition and removal operations.
e Optimized for element mutations.

e Footprint as compact as possible.

TOMTOMWR

38

2-Phase-Set

Supports additions and removals.
e G-Set for added elements

e G-Set for removed elements aka Tombstones

TOMTOMWR

39

TOMTOMWR

2-Phase-Set

Add { ucat", udogn }

Rem { uapeu }

40

2-Phase-Set

Add { “cat’, “dog” } Add { “cat’, “ape” }

Rem { “ape”} Rem {}

Merge: [Add { llcatll’ lldOgll’ llapell }; Rem { llapell }]
Lookup: { "cat", "dog" }

TOMTOMWR

41

2-Phase-Set

Lookup
def Llookup: Set[E] = addSet.diff(removeSet). lookup
Merge

def merge(anotherSet: TwoPSet[E]): TwoPSet[E] =
new TwoPSet(addset .merge(anotherSet.addSet),
removeSet.merge(anotherSet.removesSet))

TOMTOM?

42

2-Phase-Set

Doesn't work for us:
e Removed element can't be added again

 |mmutable elements: no updates possible

TOMTOMWR

43

LWW-Element-Set

Supports additions and removals, with timestamps.

e G-Set for added elements
e G-Set for removed elements aka Tombstones

e Each element has a timestamp

e Supports re-adding removed element using a higher timestamp

TOMTOMWR

44

TOMTOMWR

LWW-Element-Set

Add {(1, “cat”), (1, “dog”) }

Rem {(3, llcatll) }

Add {(5, "cat"), (1, "ape”)}

Rem { (1, llcatll) }

45

LWW-Element-Set

Add {(1, “cat”), (1, “dog") } Add {(5, “cat”), (1, "ape") }

Rem {(3, “cat”) } Rem {(1, “cat”)}

Merge
Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
Rem { (1, "cat"), (3, "cat") }

TOMTOMWR

46

LWW-Element-Set

Merge

Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
Rem { (1, "cat"), (3, "cat") }

Lookup

{ llcatll’ ll(jc)g : apell }

TOMTOMWR

47

LWW-Element-Set

Lookup

def Llookup: Set[E] = addSet.lookup.filter { addElem =>
lremoveSet.exists { removeElem =>
removeElem.value == addElem.value && removeElem.timestamp > addElem.timestamp

by
}.map(_.value)

Merge

def merge(LWWSet<E> anotherSet): LWWSet<E> =
new LWWSet(addset.merge(anotherSet.addSet),
removeSet.merge(anotherSet.removesSet))

TOMTOM?

48

LWW-Element-Set

Doesn't work for us:

 |mmutable elements: no updates possible.

TOMTOMWR

49

OR-Set

OR - Observed / Removed

Supports additions and removals, with tags.

e G-Set for added elements

o G-Set for removed elements aka Tombstones
e Unique tag is associated with each element

e Supports re-adding removed elements

TOMTOMWR

50

TOMTOMWR

OR-Set

Add { (#a, “cat”), (#b, “dog”)}

Rem { (#a, “cat”) }

Add {(#c, “cat”), (#d,"ape”)}

Rem { (#a, “cat”)}

51

OR-Set

Add { (#a, “cat”), (#b, “dog”)} Add { (#c, “cat”), (#d, "ape”)}

Rem { (#a, “cat”) } Rem { (#a, “cat”) }

Merge
Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
Rem { (#a, "cat") }

TOMTOMWR

52

OR-Set

Merge

Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
Rem { (#a, "cat") }

Lookup

{ llcatll’ ll(jc)g : apell }

TOMTOMWR

53

OR-Set

Lookup

E exists iff it has in AddSet a tag that is not in the RemoveSet.

def Lookup(): Set<E> =
addSet.filter { addElem =>
|l removeSet.exists { remElem =>
addElem.value == remkElem.value
&& remkElem.tag.equals(addElem.tag) }
J

.map(_.value);

TOMTOMWR

54

OR-Set

Merge

def merge(anotherSet: ORSet[E]): ORSet[E] =
new ORSet(addset.merge(anotherSet.addSet),
removeSet.merge(anotherSet.removeSet))

TOMTOM?

55

OR-Set

Doesn't work for us:

 |mmutable elements: no updates possible.

TOMTOMWR

56

OUR-Set

Our take on Observed-Updated-Removed Set

e Each element has a unique identifier

e Element can be changed if identifier remains the same
e Each element has a timestamp

e Timestamp is updated on each element mutation

Identity (immutable unique id) vs Value (mutable)

TOMTOMWR

57

OUR-Set

Contains a single underlying set of elements with metadata:
 Each element has a unique id field (e.g. a UUID)

e Each element has a "removed" boolean flag

e Each element has a timestamp

e Set can only contain one element with a particular id

TOMTOMWR

58

TOMTOMWR

{

J

OUR-Set

(id1, 1, “cat” removed),
(id2, 2, “dog’, removed)

59

OUR-Set

{

(id1, 1, “cat” removed),
(id2, 2, “dog’, removed)

}

Merge
{ (id1, 5, "tiger"), (id2, 2, "dog" removed), (id3, 1, "ape") }

TOMTOMWR

60

OUR-Set

Merge:
{ (id1, 5, "tiger"), (id2, 2, "dog" removed), (id3, 1, "ape") }

Lookup

{ "tiger", "ape" }

TOMTOMWR

61

OUR-Set

Merge

def merge(anotherSet: OURSet[E]]): OURSet[E] =
OURSet[E](elements ++ anotherSet.elements)
.groupBy (_.id)
.map (group => group._2.maxBy(_.timestamp))
.toSet)

Lookup

def lookup(ourSet: OURSet[E]): Set[E] =
ourSet.filter (! .removed)
.map (_.value)

TOMTOM?

62

Implementation
NavCloud CRDT Model: Favorites

CRDT Model: Favorites

FavoriteState element:

e ID (to uniquely identify a favorite)

 Timestamp (to indicate the last change time)
 Removed flag (to indicate if favorite has been removed)

e Favorite data: (Name, Location, ...)

TOMTOMWR

64

Convergence in case of equal timestamps

Compare function checks all the fields in order of priority:

e Timestamp

e Removed flag (Add or Delete bias)

e ..rest attributes ..

TOMTOMWR

65

Using CRDT everywhere

e Use the same algorithm everywhere

As simple as calling the merge function

SN N
M \ P\« Necve ¢ %(; nerse
] Moyt W—'ﬁ‘/
NP — —> >
/(“ - Ve ??4\5‘7 narye

TOMTOMWR

66

Using CRDT everywhere

Client <-> Server <-> Database

def update(fromClient: OURSet[E]): OURSet[E] = {
val fromDatabase = database.fetch(...)
val newSet = fromDatabase.merge(fromClient)
database.store(..., newSet)

newSet

TOMTOM?

67

TOMTOM?

imgflip.com

3 c n nTSnI

15,

& -
p

\«~ &
o

F

a
)

y

CROTS EVERYWHERE

..

68

Considerations & Limitations

Limitations =¥ |

"What about garbage?"

e CRDTs tend to grow because of tombstones.
e Deleted Element in the Set == Tombstone.

e A potentially unbounded growth.

TOMTOM?

Prune deleted elements

But when?

Requirement:

All nodes holding a CRDT Set replica should have seen a deleted
element before it can be pruned.

Otherwise deleted elements can be resurrected.

TOMTOMWR

71

Time-To-Live for tombstones

Prune tombstones once TTL exceeded.

if ((DateTime.now() - tombstone.timestamp) > TimeToLive) {
crdtSet.remove(tombstone)

J

Requirement: all nodes holding a CRDT set should apply the same
TTL rule independently.

TOMTOM W 72

Prune deleted elements

Problem

Synchronization between all replicas is needed for correctness.

TOMTOMWR

73

R — e S Al
LT .
<
3 -
[P, — _—
" J‘n»,""
y. 3 g
.
O o T i
‘w‘ '_-, . S ol /
P » i

transactions

.
.
N

TOMTOM?

- Academia, help!

TOMTOM?

ZIINRIA

ROCQUENCOURT

An Optimized Conflict-free Replicated Set *

Annette Bieniusa, INRIA & UPMC, Paris, France
Marek Zawirski, INRIA & UPMC, Paris, France
Nuno Preguiga, CITI, Universidade Nova de Lisboa, Portugal
Marc Shapiro, INRIA & LIP6, Paris, France
Carlos Baquero, HASLab, INESC TEC & Universidade do Minho, Portugal
Valter Balegas, CITI, Universidade Nova de Lisboa, Portugal
SéI‘giO Duarte CITI, Universidade Nova de Lisboa, Portugal

Théme COM — Systémes communicants
Projet Regal

Rapport de recherche n° 8083 — Octobre 2012 — 9 pages

Abstract: Eventual consistency of replicated data supports concurrent updates, reduces
latency and improves fault tolerance, but forgoes strong consistency. Accordingly, several
cloud computing platforms implement eventually-consistent data types.

The set is a widespread and useful abstraction, and many replicated set designs have been
proposed. We present a reasoning abstraction, permutation equivalence, that systematizes
the characterization of the expected concurrency semantics of concurrent types. Under
this framework we present one of the existing conflict-free replicated data types, Observed-
Remove Set.

Furthermore, in order to decrease the size of meta-data, we propose a new optimization
to avoid tombstones. This approach that can be transposed to other data types, such as
maps, graphs or sequences.

Key-words: Data replication, optimistic replication, commutative operations

76

Optimized OR-Set

Introduces replica awareness

Optimized OR-Set

Additional metadata is added to every transferred state.
{ (replica_1id -> seqg nr) }

where:

- replica_id - is a unique & stable replica identifier.
- seq_nr - monotonically growing (after each op) local counter.

TOMTOMWR

78

Optimized OR-Set

Each local state maintains a map:

{ replica A: 1, replica B: 1, replica C: 3 }

If a received state has a seq_nr lower than the corresponding local
value -> ignore.

TOMTOMWR

79

Optimized OR-Set

No Tombstones, yay! &

(Slightly) more complicated API: stable replica_id needed. &

TOMTOMWR

80

Update & Reply with a Diff

Client modifies and sends only updated elements (Diff).

Before: Server responds with a full merge result.

%m Server
) [A'B'] 1/ |
: ’?’C ——> 182 45y pes”

KB _ & [A,B.C] L/

TOMTOM?

Update & Reply with a Diff

We introduced a 'Scoped Diff"
Server responds only with the elements which have won against
those sent by the client.

Clicnt Server
AI’?”C =, ?’B’C A>4 B<8”
e 3”/ < [_B_”J b

TOMTOM?

Server -> Client Diff

Clico s

> Suferite
. Clock =@
4 B.C , |
l etoei 5 [B"]+ctox@
4G

L/'

TOMTOM?

[,,_]-&ceodc@

S@" ver

83

- Academia, help?..

TOMTOM?

Delta State Replicated Data Types

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero

HASLab/INESC TEC and Universidade do Minho, Portugal

Abstract. CRDTs are distributed data types that make eventual con-
sistency of a distributed object possible and non ad-hoc. Specifically,
state-based CRDTs ensure convergence through disseminating the en-
tire state, that may be large, and merging it to other replicas; whereas
operation-based CRDTs disseminate operations (i.e., small states) as-
suming an exactly-once reliable dissemination layer. We introduce Delta
State Conflict-Free Replicated Data Types (§-CRDT) that can achieve
the best of both worlds: small messages with an incremental nature,
as in operation-based CRDTSs, disseminated over unreliable communi-
cation channels, as in traditional state-based CRDTs. This is achieved
by defining d-mutators to return a delta-state, typically with a much
smaller size than the full state, that to be joined with both local and
remote states. We introduce the §-CRDT framework, and we explain it
through establishing a correspondence to current state-based CRDTs. In
addition, we present an anti-entropy algorithm for eventual convergence,
and another one that ensures causal consistency. Finally, we introduce
several -CRDT specifications of both well-known replicated datatypes
and novel datatypes, including a generic map composition.

85

TOMTOMWR

0-CRDT

Builds on replica awareness

Introduces a Causal Context:
map of (replica _id -> seqg nr).

Introduces a Dot Store: CRDT state (No tombstones).

86

0-CRDT

A formalized way to compute a minimal 8-CRDT instances
against a target replica.

TOMTOMWR

87

o0-CRDT

Adrian Colyer (The Morning Paper) wrote a great paper review:

blog.acolyer.org/2016/04/25/delta-state-replicated-data-types

((ausok) S -CRDOT = Causeh Conere X [Dor Srore

/ \
veoson veckol dOA’D\ hﬁoﬂ

S()QQ)\X\L oA

TOMTOM?

88

https://blog.acolyer.org/2016/04/25/delta-state-replicated-data-types/

Trouble With Time

There is no such thing as reliable time™.

TOMTOMWR

920

Tracking time is actually
tracking causality.

— Jonas Bonér, "Life Beyond the lllusion of Present”

Causality & Ordering of events.

Time can be just good enough.

Ordering updates within a single node

Timestamp field as a logical clock.

Absolute value is not important,
but it should always grow monotonically.

TOMTOMWR

94

Ordering updates within a single node

"+1 Strategy" (aka ensure monotonicity):

Long resolveNewTimestamp(ElementState<E> state) {
return Math.max(retrieveTlimestamp(),
state.lastModified() + 1);

TOMTOM?

95

Ordering updates from different nodes

If GPS clock is available -> use it (mainly Navigation Devices case).

Prefer the server time to a client's local time.

TOMTOMWR

926

TOMTOMWR

Edge case

Multiple Clients modify the same element
(concurrently || without a reliable clock).

97

TOMTOMWR

One "merge" to rule them all

98

Clients & Server MUST have same 'merge’
behaviour.

Given the same input, their 'merge' functions
emit the same results.

Divergence may lead to endless synchronization loops!

TOMTOM? 100

Lazy (data) loading
OURSet Element

e Metadata: UUID, timestamp, "removed" flag

e Data: <Value>

TOMTOM? 101

Lazy (data) loading
New OURSet Element

e Metadata: UUID, timestamp, "removed" flag, + tag / hash

e (Optional) Data: <Value>

Flexible synchronization strategy

Eager || Lazy Fetch

TOMTOM W 102

What have we learned?

e Academia is not as scary as it sometimes seems to pragmatic devs.
e We need better and simpler abstractions to develop
Offline-friendly apps.

e CRDTs give a great value, but there are some caveats.

e Things like Lasp (lasp-lang.org) also could be the answer (?).

TOMTOM? 103

http://lasp-lang.org

Show me the code

)

github.com/ajantis/{scala | java}-crdt

https://github.com/ajantis/scala-crdt

Thanks!

Nami Nasserazad ¥ @namiazad

a Didier Liauw

Slides: http:/bit.ly/2fBlroS

Dmitry lvanov y @idajantis

TOMTOM W 105

https://speakerdeck.com/ajantis/practical-data-synchronization-with-crdts-strangeloop-2016

