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Who We Are

"Fool" stack developers hacking on:

e Backend services
e (Client libraries

e [nfrastructure && DevOps
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Backend stack
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NavCloud Nature

 Unstable connections
* Limited data plans & bandwidth
e Seamless edit/view in offline mode

 Concurrent changes with potential
conflicts

 No guarantee on updates order

e No data loss

 Data convergence to expected value

TOMTOMWR



How to Deal with this Nature?



Bad programmers worry about the
code. Good programmers worry
about data structures

— Linus Torvalds



CRDT



CRDT
DT: Data Type

CRDT is a data type with its own algebra
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CRDT
R: Replicated

CRDT is a family of data structures which
has been designed to be distributed
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CRDT
C: Conflict Free

Resolving conflicts is done automatically

TOMTOMWR
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How?
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TOMTOMWR

Merge
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What is Merge?

e A binary operation on two CRDTs
e Commutative: x ey =y e X
e Associative:(xey)ez=xe(yez)

 ldempotent: x e X = x

TOMTOMWR
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How Does it Help?

In Distributed Systems:
e Order is not guaranteed:

e No Problem: Merge is Commutative and Associative
e Events can be delivered more than once:

e No problem: Merge is Idempotent

TOMTOMWR
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What Does it Bring in Practice?

e Local updates
e Local merge of receiving data

e All local merges converge
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Examples



G-Counter



G-Counter

A:6 B0 C:0O A:0B:3C:0 A:0 B:0 C:9

Merge: Max of corresponding elements: A:6 B:3 C:9

TotalValue: Sum of all elements: 6 + 3+ 9 =18

TOMTOMWR
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Max Function

e A binary operation on two CRDTs
e Commutative: x max y = y max X
e Associative: (x maxy)maxz=xmax(ymaxz)

e ldempotent: x max x = X

TOMTOMWR
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Union Function

e A binary operation on two CRDTs

e Commutative: xuy=yux
e Associative: (xuy)uz=xu(yuz)

e Idempotent: x U x = X

TOMTOMWR
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G-Set

A B
° °
|\ |\

Merge: Union of sets: { x,vy, z, a, b, c }

Total Value: The same as the merge result

TOMTOMWR
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CRDT in NavCloud

>



Favorite Locations
Synchronization

TOMTOM

27



Naive Approach?



Last Write Wins




Problems

* Unstable connections

e Actual update time < Sent time
e Network latency

e Sent time < Received time

e Unreliable clocks

TOMTOMW? 30



Stale update may win!



So What?



CRDT



NavCloud Nature vs CRDT

 Unstable connections v/
e Limited data plans & bandwidth v/
e Seamless edit/view in offline mode v/

 Concurrent changes with potential
conflicts v/

 No guarantee on updates order v/
e No dataloss v/

e Data convergence to expected value v/

TOMTOMWR
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Same Data Model Everywhere

e Server
e Clients

e Data store sriak

TOMTOMWR
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TOMTOM?

Merging Conflicts in Riak

VC=3
VC =4

VC=5
VC=6

Write #1, VC = stale #1

-\ Write #2, VC = stale #2

Read & Resolve

Write #3, VC = 1

Write #4, VC = 2 il

Write #5, VC =3

Write #6, VC = 4 \
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The data consistency Is determined
by 'the weakest link' in your pipeline



Implementing a CRDT Set

What do we want?

e Support for addition and removal operations.
e Optimized for element mutations.

e Footprint as compact as possible.

TOMTOMWR
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2-Phase-Set

Supports additions and removals.
e G-Set for added elements

e G-Set for removed elements aka Tombstones

TOMTOMWR
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TOMTOMWR

2-Phase-Set

Add { ucat", udogn }

Rem { uapeu }
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2-Phase-Set

Add { “cat’, “dog” } Add { “cat’, “ape” }

Rem { “ape”} Rem {}

Merge: [Add { llcatll’ lldOgll’ llapell }; Rem { llapell } ]
Lookup: { "cat", "dog" }

TOMTOMWR
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2-Phase-Set

Lookup
def Llookup: Set[E] = addSet.diff(removeSet). lookup
Merge

def merge(anotherSet: TwoPSet[E]): TwoPSet[E] =
new TwoPSet( addset .merge(anotherSet.addSet),
removeSet.merge(anotherSet.removesSet))

TOMTOM?
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2-Phase-Set

Doesn't work for us:
e Removed element can't be added again

 |mmutable elements: no updates possible

TOMTOMWR
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LWW-Element-Set

Supports additions and removals, with timestamps.

e G-Set for added elements
e G-Set for removed elements aka Tombstones

e Each element has a timestamp

e Supports re-adding removed element using a higher timestamp

TOMTOMWR
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TOMTOMWR

LWW-Element-Set

Add {(1, “cat”), (1, “dog”) }

Rem {(3, llcatll) }

Add {(5, "cat"), (1, "ape”)}

Rem { (1, llcatll) }

45



LWW-Element-Set

Add {(1, “cat”), (1, “dog") } Add {(5, “cat”), (1, "ape") }

Rem {(3, “cat”) } Rem {(1, “cat”)}

Merge
Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
Rem { (1, "cat"), (3, "cat") }

TOMTOMWR
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LWW-Element-Set

Merge

Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
Rem { (1, "cat"), (3, "cat") }

Lookup

{ llcatll’ ll(jc)g : apell }

TOMTOMWR
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LWW-Element-Set

Lookup

def Llookup: Set[E] = addSet.lookup.filter { addElem =>
lremoveSet.exists { removeElem =>
removeElem.value == addElem.value && removeElem.timestamp > addElem.timestamp

by
}.map(_.value)

Merge

def merge(LWWSet<E> anotherSet): LWWSet<E> =
new LWWSet( addset.merge(anotherSet.addSet),
removeSet.merge(anotherSet.removesSet))

TOMTOM?
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LWW-Element-Set

Doesn't work for us:

 |mmutable elements: no updates possible.

TOMTOMWR

49



OR-Set

OR - Observed / Removed

Supports additions and removals, with tags.

e G-Set for added elements

o G-Set for removed elements aka Tombstones
e Unique tag is associated with each element

e Supports re-adding removed elements

TOMTOMWR
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TOMTOMWR

OR-Set

Add { (#a, “cat”), (#b, “dog”)}

Rem { (#a, “cat”) }

Add {(#c, “cat”), (#d,"ape”)}

Rem { (#a, “cat”)}
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OR-Set

Add { (#a, “cat”), (#b, “dog”)} Add { (#c, “cat”), (#d, "ape”)}

Rem { (#a, “cat”) } Rem { (#a, “cat”) }

Merge
Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
Rem { (#a, "cat") }

TOMTOMWR
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OR-Set

Merge

Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
Rem { (#a, "cat") }

Lookup

{ llcatll’ ll(jc)g : apell }

TOMTOMWR
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OR-Set

Lookup

E exists iff it has in AddSet a tag that is not in the RemoveSet.

def Lookup(): Set<E> =
addSet.filter { addElem =>
|l removeSet.exists { remElem =>
addElem.value == remkElem.value
&& remkElem.tag.equals(addElem.tag) }
J

.map(_.value);

TOMTOMWR
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OR-Set

Merge

def merge(anotherSet: ORSet[E]): ORSet[E] =
new ORSet( addset.merge(anotherSet.addSet),
removeSet.merge(anotherSet.removeSet))

TOMTOM?
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OR-Set

Doesn't work for us:

 |mmutable elements: no updates possible.

TOMTOMWR
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OUR-Set

Our take on Observed-Updated-Removed Set

e Each element has a unique identifier

e Element can be changed if identifier remains the same
e Each element has a timestamp

e Timestamp is updated on each element mutation

Identity (immutable unique id) vs Value (mutable)

TOMTOMWR
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OUR-Set

Contains a single underlying set of elements with metadata:
 Each element has a unique id field (e.g. a UUID)

e Each element has a "removed" boolean flag

e Each element has a timestamp

e Set can only contain one element with a particular id

TOMTOMWR
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TOMTOMWR

{

J

OUR-Set

(id1, 1, “cat” removed),
(id2, 2, “dog’, removed)
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OUR-Set

{

(id1, 1, “cat” removed),
(id2, 2, “dog’, removed)

}

Merge
{ (id1, 5, "tiger"), (id2, 2, "dog" removed), (id3, 1, "ape") }

TOMTOMWR
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OUR-Set

Merge:
{ (id1, 5, "tiger"), (id2, 2, "dog" removed), (id3, 1, "ape") }

Lookup

{ "tiger", "ape" }

TOMTOMWR
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OUR-Set

Merge

def merge(anotherSet: OURSet[E]]): OURSet[E] =
OURSet[E]( elements ++ anotherSet.elements)
.groupBy (_.id)
.map (group => group._2.maxBy(_.timestamp))
.toSet)

Lookup

def lookup(ourSet: OURSet[E]): Set[E] =
ourSet.filter (! .removed)
.map (_.value)

TOMTOM?
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Implementation
NavCloud CRDT Model: Favorites



CRDT Model: Favorites

FavoriteState element:

e ID (to uniquely identify a favorite)

 Timestamp (to indicate the last change time)
 Removed flag (to indicate if favorite has been removed)

e Favorite data: ( Name, Location, ... )

TOMTOMWR
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Convergence in case of equal timestamps

Compare function checks all the fields in order of priority:

e Timestamp

e Removed flag (Add or Delete bias)

e ..rest attributes ..

TOMTOMWR
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Using CRDT everywhere

e Use the same algorithm everywhere

As simple as calling the merge function

SN N
M \ P\« Necve ¢ %(; nerse
] Moyt W—'ﬁ‘/
NP — —> >
/(“ - Ve ??4\5‘7 narye
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Using CRDT everywhere

Client <-> Server <-> Database

def update(fromClient: OURSet[E]): OURSet[E] = {
val fromDatabase = database.fetch(...)
val newSet = fromDatabase.merge(fromClient)
database.store(..., newSet)

newSet

TOMTOM?
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TOMTOM?
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Considerations & Limitations

Limitations =¥ |




"What about garbage?"

e CRDTs tend to grow because of tombstones.
e Deleted Element in the Set == Tombstone.

e A potentially unbounded growth.

TOMTOM?




Prune deleted elements

But when?

Requirement:

All nodes holding a CRDT Set replica should have seen a deleted
element before it can be pruned.

Otherwise deleted elements can be resurrected.

TOMTOMWR
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Time-To-Live for tombstones

Prune tombstones once TTL exceeded.

if ((DateTime.now() - tombstone.timestamp) > TimeToLive) {
crdtSet.remove(tombstone)

J

Requirement: all nodes holding a CRDT set should apply the same
TTL rule independently.

TOMTOM W 72



Prune deleted elements

Problem

Synchronization between all replicas is needed for correctness.

TOMTOMWR
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- Academia, help!



TOMTOM?

ZIINRIA

ROCQUENCOURT

An Optimized Conflict-free Replicated Set *

Annette Bieniusa, INRIA & UPMC, Paris, France
Marek Zawirski, INRIA & UPMC, Paris, France
Nuno Preguiga, CITI, Universidade Nova de Lisboa, Portugal
Marc Shapiro, INRIA & LIP6, Paris, France
Carlos Baquero, HASLab, INESC TEC & Universidade do Minho, Portugal
Valter Balegas, CITI, Universidade Nova de Lisboa, Portugal
SéI‘giO Duarte CITI, Universidade Nova de Lisboa, Portugal

Théme COM — Systémes communicants
Projet Regal

Rapport de recherche n° 8083 — Octobre 2012 — 9 pages

Abstract: Eventual consistency of replicated data supports concurrent updates, reduces
latency and improves fault tolerance, but forgoes strong consistency. Accordingly, several
cloud computing platforms implement eventually-consistent data types.

The set is a widespread and useful abstraction, and many replicated set designs have been
proposed. We present a reasoning abstraction, permutation equivalence, that systematizes
the characterization of the expected concurrency semantics of concurrent types. Under
this framework we present one of the existing conflict-free replicated data types, Observed-
Remove Set.

Furthermore, in order to decrease the size of meta-data, we propose a new optimization
to avoid tombstones. This approach that can be transposed to other data types, such as
maps, graphs or sequences.

Key-words: Data replication, optimistic replication, commutative operations
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Optimized OR-Set

Introduces replica awareness



Optimized OR-Set

Additional metadata is added to every transferred state.
{ (replica_1id -> seqg nr) }

where:

- replica_id - is a unique & stable replica identifier.
- seq_nr - monotonically growing (after each op) local counter.

TOMTOMWR
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Optimized OR-Set

Each local state maintains a map:

{ replica A: 1, replica B: 1, replica C: 3 }

If a received state has a seq_nr lower than the corresponding local
value -> ignore.

TOMTOMWR
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Optimized OR-Set

No Tombstones, yay! &

(Slightly) more complicated API: stable replica_id needed. &

TOMTOMWR
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Update & Reply with a Diff

Client modifies and sends only updated elements (Diff).

Before: Server responds with a full merge result.

%m Server
) [A'B'] 1/ |
: ’?’C ——> 182 45y pes”

KB _ & [A,B.C] L/
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Update & Reply with a Diff

We introduced a 'Scoped Diff"
Server responds only with the elements which have won against
those sent by the client.

Clicnt Server
AI’?”C =, ?’B’C A>4 B<8”
e 3”/ < [_B_”J b
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Server -> Client Diff
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- Academia, help?..



TOMTOM?

Delta State Replicated Data Types

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero

HASLab/INESC TEC and Universidade do Minho, Portugal

Abstract. CRDTs are distributed data types that make eventual con-
sistency of a distributed object possible and non ad-hoc. Specifically,
state-based CRDTs ensure convergence through disseminating the en-
tire state, that may be large, and merging it to other replicas; whereas
operation-based CRDTs disseminate operations (i.e., small states) as-
suming an exactly-once reliable dissemination layer. We introduce Delta
State Conflict-Free Replicated Data Types (§-CRDT) that can achieve
the best of both worlds: small messages with an incremental nature,
as in operation-based CRDTSs, disseminated over unreliable communi-
cation channels, as in traditional state-based CRDTs. This is achieved
by defining d-mutators to return a delta-state, typically with a much
smaller size than the full state, that to be joined with both local and
remote states. We introduce the §-CRDT framework, and we explain it
through establishing a correspondence to current state-based CRDTs. In
addition, we present an anti-entropy algorithm for eventual convergence,
and another one that ensures causal consistency. Finally, we introduce
several -CRDT specifications of both well-known replicated datatypes
and novel datatypes, including a generic map composition.
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TOMTOMWR

0-CRDT

Builds on replica awareness

Introduces a Causal Context:
map of (replica _id -> seqg nr).

Introduces a Dot Store: CRDT state (No tombstones).
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0-CRDT

A formalized way to compute a minimal 8-CRDT instances
against a target replica.

TOMTOMWR
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o0-CRDT

Adrian Colyer (The Morning Paper) wrote a great paper review:

blog.acolyer.org/2016/04/25/delta-state-replicated-data-types

((ausok) S -CRDOT = Causeh Conere X [Dor Srore

/ \
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S()QQ)\X\L oA
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Trouble With Time




There is no such thing as reliable time™.

TOMTOMWR
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Tracking time is actually
tracking causality.

— Jonas Bonér, "Life Beyond the lllusion of Present”



Causality & Ordering of events.



Time can be just good enough.



Ordering updates within a single node

Timestamp field as a logical clock.

Absolute value is not important,
but it should always grow monotonically.

TOMTOMWR
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Ordering updates within a single node

"+1 Strategy" (aka ensure monotonicity):

Long resolveNewTimestamp(ElementState<E> state) {
return Math.max( retrieveTlimestamp(),
state.lastModified() + 1 );

TOMTOM?
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Ordering updates from different nodes

If GPS clock is available -> use it (mainly Navigation Devices case).

Prefer the server time to a client's local time.

TOMTOMWR
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TOMTOMWR

Edge case

Multiple Clients modify the same element
(concurrently || without a reliable clock).
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TOMTOMWR

One "merge" to rule them all
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Clients & Server MUST have same 'merge’
behaviour.

Given the same input, their 'merge' functions
emit the same results.



Divergence may lead to endless synchronization loops!
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Lazy (data) loading
OURSet Element

e Metadata: UUID, timestamp, "removed" flag

e Data: <Value>
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Lazy (data) loading
New OURSet Element

e Metadata: UUID, timestamp, "removed" flag, + tag / hash

e (Optional) Data: <Value>

Flexible synchronization strategy

Eager || Lazy Fetch

TOMTOM W 102



What have we learned?

e Academia is not as scary as it sometimes seems to pragmatic devs.
e We need better and simpler abstractions to develop
Offline-friendly apps.

e CRDTs give a great value, but there are some caveats.

e Things like Lasp (lasp-lang.org) also could be the answer (?).
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http://lasp-lang.org

Show me the code

)

github.com/ajantis/{scala | java}-crdt


https://github.com/ajantis/scala-crdt

Thanks!

Nami Nasserazad ¥ @namiazad

a Didier Liauw

Slides: http:/bit.ly/2fBlroS

Dmitry lvanov y @idajantis
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