
Prac%cal Data Synchroniza%on
 &

 CRDTs
Dmitry Ivanov @idajan0s

 2016

1

https://twitter.com/idajantis

2

NavCloud

3

Who We Are

"Fool" stack developers hacking on:

• Backend services

• Client libraries

• Infrastructure && DevOps

4

Backend stack

5

Client Libraries

6

NavCloud Nature

• Unstable connec,ons

• Limited data plans & bandwidth

• Seamless edit/view in offline mode

• Concurrent changes with poten8al
conflicts

• No guarantee on updates order

• No data loss

• Data convergence to expected value

7

How to Deal with this Nature?

8

Bad programmers worry about the
code. Good programmers worry

about data structures
— Linus Torvalds

9

CRDT

10

CRDT
DT: Data Type

CRDT is a data type with its own algebra

11

CRDT
R: Replicated

CRDT is a family of data structures which
has been designed to be distributed

12

CRDT
C: Conflict Free

Resolving conflicts is done automa2cally

13

How?

14

Merge

15

What is Merge?
• A binary opera-on on two CRDTs

• Commuta've: x • y = y • x

• Associa've: (x • y) • z = x • (y • z)

• Idempotent: x • x = x

16

How Does it Help?

In Distributed Systems:

• Order is not guaranteed:

• No Problem: Merge is Commuta-ve and Associa-ve

• Events can be delivered more than once:

• No problem: Merge is Idempotent

17

What Does it Bring in Prac1ce?

• Local updates

• Local merge of receiving data

• All local merges converge

18

Examples

19

G-Counter

20

G-Counter

Merge: Max of corresponding elements: A:6 B:3 C:9

TotalValue: Sum of all elements: 6 + 3 + 9 = 18
21

Max Func)on
• A binary opera-on on two CRDTs

• Commuta've: x max y = y max x

• Associa've: (x max y) max z = x max (y max z)

• Idempotent: x max x = x

22

G-Set

23

Union Func)on
• A binary opera-on on two CRDTs

• Commuta've: x ∪ y = y ∪ x

• Associa've: (x ∪ y) ∪ z = x ∪ (y ∪ z)

• Idempotent: x ∪ x = x

24

G-Set

Merge: Union of sets: { x, y, z, a, b, c }

Total Value: The same as the merge result
25

CRDT in NavCloud

26

Favorite Loca,ons
Synchroniza,on

27

Naive Approach?

28

Last Write Wins

29

Problems

• Unstable connec-ons

• Actual update -me < Sent -me

• Network latency

• Sent -me < Received -me

• Unreliable clocks

30

Stale update may win!

31

So What?

32

CRDT

33

NavCloud Nature vs CRDT

• Unstable connec,ons ✔

• Limited data plans & bandwidth ✔

• Seamless edit/view in offline mode ✔

• Concurrent changes with poten8al
conflicts ✔

• No guarantee on updates order ✔

• No data loss ✔

• Data convergence to expected value ✔

34

Same Data Model Everywhere

• Server

• Clients

• Data store

35

Merging Conflicts in Riak

36

The data consistency is determined
by 'the weakest link' in your pipeline

37

Implemen'ng a CRDT Set
What do we want?

• Support for addi-on and removal opera-ons.

• Op-mized for element muta-ons.

• Footprint as compact as possible.

38

2-Phase-Set

Supports addi,ons and removals.

• G-Set for added elements

• G-Set for removed elements aka Tombstones

39

2-Phase-Set

40

2-Phase-Set

Merge: [Add { "cat", "dog", "ape" }; Rem { "ape" }]
Lookup: { "cat", "dog" }

41

2-Phase-Set

Lookup

def lookup: Set[E] = addSet.diff(removeSet).lookup

Merge

def merge(anotherSet: TwoPSet[E]): TwoPSet[E] =
 new TwoPSet(addset.merge(anotherSet.addSet),
 removeSet.merge(anotherSet.removeSet))

42

2-Phase-Set

Doesn't work for us:

• Removed element can't be added again

• Immutable elements: no updates possible

43

LWW-Element-Set

Supports addi,ons and removals, with !mestamps.

• G-Set for added elements

• G-Set for removed elements aka Tombstones

• Each element has a 3mestamp

• Supports re-adding removed element using a higher 3mestamp

44

LWW-Element-Set

45

LWW-Element-Set

Merge
 Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
 Rem { (1, "cat"), (3, "cat") }

46

LWW-Element-Set

Merge

Add { (1, "cat"), (5, "cat"), (1, "dog"), (1, "ape") }
Rem { (1, "cat"), (3, "cat") }

Lookup

{ "cat", "dog", "ape" }

47

LWW-Element-Set

Lookup
def lookup: Set[E] = addSet.lookup.filter { addElem =>
 !removeSet.exists { removeElem =>
 removeElem.value == addElem.value && removeElem.timestamp > addElem.timestamp
 }
 }.map(_.value)

Merge

def merge(LWWSet<E> anotherSet): LWWSet<E> =
 new LWWSet(addset.merge(anotherSet.addSet),
 removeSet.merge(anotherSet.removeSet))

48

LWW-Element-Set

Doesn't work for us:

• Immutable elements: no updates possible.

49

OR-Set

OR - Observed / Removed

Supports addi,ons and removals, with tags.

• G-Set for added elements

• G-Set for removed elements aka Tombstones

• Unique tag is associated with each element

• Supports re-adding removed elements

50

OR-Set

51

OR-Set

Merge
 Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
 Rem { (#a, "cat") }

52

OR-Set

Merge

Add { (#a, "cat"), (#c, "cat"), (#b, "dog"), (#d, "ape") }
Rem { (#a, "cat") }

Lookup

{ "cat", "dog", "ape" }

53

OR-Set

Lookup

E exists iff it has in AddSet a tag that is not in the RemoveSet.

def lookup(): Set<E> =
 addSet.filter { addElem =>
 !removeSet.exists { remElem =>
 addElem.value == remElem.value
 && remElem.tag.equals(addElem.tag) }
 }
 .map(_.value);

54

OR-Set

Merge

def merge(anotherSet: ORSet[E]): ORSet[E] =
 new ORSet(addset.merge(anotherSet.addSet),
 removeSet.merge(anotherSet.removeSet))

55

OR-Set

Doesn't work for us:

• Immutable elements: no updates possible.

56

OUR-Set

Our take on Observed-Updated-Removed Set

• Each element has a unique iden%fier

• Element can be changed if iden4fier remains the same

• Each element has a %mestamp

• Timestamp is updated on each element muta4on

 Iden%ty (immutable unique id) vs Value (mutable)

57

OUR-Set

Contains a single underlying set of elements with metadata:

• Each element has a unique id field (e.g. a UUID)

• Each element has a "removed" boolean flag

• Each element has a)mestamp

• Set can only contain one element with a par'cular id

58

OUR-Set

59

OUR-Set

Merge

 { (id1, 5, "*ger"), (id2, 2, "dog", removed), (id3, 1, "ape") }
60

OUR-Set

Merge:

 { (id1, 5, "*ger"), (id2, 2, "dog", removed), (id3, 1, "ape") }

Lookup

{ "$ger", "ape" }

61

OUR-Set

Merge

def merge(anotherSet: OURSet[E]]): OURSet[E] =
 OURSet[E](elements ++ anotherSet.elements)
 .groupBy (_.id)
 .map (group => group._2.maxBy(_.timestamp))
 .toSet)

Lookup

def lookup(ourSet: OURSet[E]): Set[E] =
 ourSet.filter (!_.removed)
 .map (_.value)

62

Implementa)on
NavCloud CRDT Model: Favorites

63

CRDT Model: Favorites

FavoriteState element:

• ID (to uniquely iden.fy a favorite)

• Timestamp (to indicate the last change .me)

• Removed flag (to indicate if favorite has been removed)

• Favorite data: (Name, Loca2on, ...)

64

Convergence in case of equal !mestamps
Compare func-on checks all the fields in order of priority:

• Timestamp

• Removed flag (Add or Delete bias)

• .. rest a6ributes ..

65

Using CRDT everywhere
• Use the same algorithm everywhere

As simple as calling the merge func8on

66

Using CRDT everywhere
Client <-> Server <-> Database

def update(fromClient: OURSet[E]): OURSet[E] = {
 val fromDatabase = database.fetch(...)
 val newSet = fromDatabase.merge(fromClient)
 database.store(..., newSet)

 newSet
}

67

68

Considera*ons & Limita*ons

69

"What about garbage?"

• CRDTs tend to grow because of tombstones.

• Deleted Element in the Set == Tombstone.

• A poten?ally unbounded growth.

70

Prune deleted elements
But when?

Requirement:
All nodes holding a CRDT Set replica should have seen a deleted
element before it can be pruned.

Otherwise deleted elements can be resurrected.

71

Time-To-Live for tombstones

Prune tombstones once TTL exceeded.

if ((DateTime.now() - tombstone.timestamp) > TimeToLive) {
 crdtSet.remove(tombstone)
}

Requirement: all nodes holding a CRDT set should apply the same
TTL rule independently.

72

Prune deleted elements
Problem

Synchroniza+on between all replicas is needed for correctness.

73

Distributed
transac.ons

74

- Academia, help!

75

76

Op#mized OR-Set
Introduces replica awareness

77

Op#mized OR-Set

Addi$onal metadata is added to every transferred state.

{ (replica_id -> seq_nr) }

where:
- replica_id - is a unique & stable replica iden5fier.
- seq_nr - monotonically growing (a=er each op) local counter.

78

Op#mized OR-Set

Each local state maintains a map:

{ replica_A: 1, replica_B: 1, replica_C: 3 }

If a received state has a seq_nr lower than the corresponding local
value -> ignore.

79

Op#mized OR-Set
No Tombstones, yay! ☺

(Slightly) more complicated API: stable replica_id needed. ☹

80

Update & Reply with a Diff

Client modifies and sends only updated elements (Diff).

Before: Server responds with a full merge result.

81

Update & Reply with a Diff

We introduced a 'Scoped Diff':
Server responds only with the elements which have won against
those sent by the client.

82

Server -> Client Diff

83

- Academia, help?..

84

85

δ-CRDT
Builds on replica awareness

Introduces a Causal Context:
 map of (replica_id -> seq_nr).

Introduces a Dot Store: CRDT state (No tombstones).

86

δ-CRDT
A formalized way to compute a minimal δ-CRDT instances

 against a target replica.

87

δ-CRDT

Adrian Colyer (The Morning Paper) wrote a great paper review:

blog.acolyer.org/2016/04/25/delta-state-replicated-data-types

88

https://blog.acolyer.org/2016/04/25/delta-state-replicated-data-types/

Trouble With Time

89

There is no such thing as reliable (me*.

90

Tracking *me is actually
tracking causality.

— Jonas Bonér, "Life Beyond the Illusion of Present"

91

Causality & Ordering of events.

92

Time can be just good enough.

93

Ordering updates within a single node

Timestamp field as a logical clock.

Absolute value is not important,
but it should always grow monotonically.

94

Ordering updates within a single node

"+1 Strategy" (aka ensure monotonicity):

Long resolveNewTimestamp(ElementState<E> state) {
 return Math.max(retrieveTimestamp(),
 state.lastModified() + 1);
}

95

Ordering updates from different nodes

If GPS clock is available -> use it (mainly Naviga&on Devices case).

Prefer the server &me to a client's local 0me.

96

Edge case

Mul$ple Clients modify the same element
 (concurrently || without a reliable clock).

97

One "merge" to rule them all

98

Clients & Server MUST have same 'merge'
behaviour.

==

Given the same input, their 'merge' func/ons
emit the same results.

99

Divergence may lead to endless synchroniza1on loops!

100

Lazy (data) loading
OURSet Element

• Metadata: UUID, $mestamp, "removed" flag

• Data: <Value>

101

Lazy (data) loading
New OURSet Element

• Metadata: UUID, $mestamp, "removed" flag, + tag / hash

• (Op(onal) Data: <Value>

Flexible synchroniza1on strategy

Eager || Lazy Fetch

102

What have we learned?
• Academia is not as scary as it some-mes seems to pragma,c devs.

• We need be2er and simpler abstrac-ons to develop

 Offline-friendly apps.

• CRDTs give a great value, but there are some caveats.

• Things like Lasp (lasp-lang.org) also could be the answer (?).

103

http://lasp-lang.org

Show me the code

github.com/ajan/s/{scala | java}-crdt

104

https://github.com/ajantis/scala-crdt

Thanks!

Slides: h*p://bit.ly/2fBlroS

Dmitry Ivanov @idajan0s

105

https://speakerdeck.com/ajantis/practical-data-synchronization-with-crdts-strangeloop-2016

