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data race detection



data races
“when two+ threads concurrently access a shared  memory 
location, at least one access is a write.” 
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!W W W

count = 1 count = 2 count = 2

!concurrent concurrent concurrent

// Shared variable 
var count = 0 

func incrementCount() { 
if count == 0 { 

count ++ 
} 

} 

func main() { 
// Spawn two “threads” 

  go incrementCount() 
  go incrementCount() 
} 

data race

“g2”
“g1”



data races
“when two+ threads concurrently access a shared  memory 
location, at least one access is a write.” 

Thread 1    Thread 2 

lock(l)     lock(l) 
count=1     count=2 
unlock(l)   unlock(l)

!data race

// Shared variable 
var count = 0 

func incrementCount() { 
if count == 0 { 

count ++ 
} 

} 

func main() { 
// Spawn two “threads” 

  go incrementCount() 
  go incrementCount() 
} 

data race



• relevant  
• elusive 
• have undefined consequences 
• easy to introduce in languages  

like Go

Panic messages from 
unexpected program 
 crashes are often reported 
on the Go issue tracker.  
An overwhelming number of 
these panics  
are caused by data races, 
and an  
overwhelming number of 
those reports  
centre around Go’s built in 
map type. 

— Dave Cheney



given we want to write multithreaded programs,  

how may we protect our systems from the  

unknown consequences of the  

difficult-to-track-down data race bugs…  

in a manner that is reliable and scalable?



read by goroutine 7

at incrementCount()

created at main()

race detectors



…but how?



• Go v1.1 (2013) 

• Integrated with the Go tool chain —  
> go run -race counter.go  

• Based on C/ C++ ThreadSanitizer 
dynamic race detection library 

• As of August 2015, 
1200+ races in Google’s codebase, 
~100 in the Go stdlib,  
100+ in Chromium, 
+ LLVM, GCC, OpenSSL, WebRTC, Firefox

go race detector



core concepts 

internals 

evaluation  

wrap-up



core concepts 



concurrency in go
 The unit of concurrent execution : goroutines 

 user-space threads 

 use as you would threads  
    > go handle_request(r) 

 Go memory model specified in terms of goroutines  
 within a goroutine: reads + writes are ordered 
 with multiple goroutines: shared data must be 
synchronized…else data races!



  channels  
     > ch <- value  

 mutexes, conditional vars, … 
     > import “sync”  
  > mu.Lock()  

  atomics 
     > import “sync/ atomic"  
  > atomic.AddUint64(&myInt, 1)

 The synchronization primitives:



“…goroutines concurrently access a shared  memory 
location,  at least one access is a write.” 

?
concurrency

var count = 0 

func incrementCount() { 
if count == 0 { 

count ++ 
} 

} 

func main() { 
  go incrementCount() 
  go incrementCount() 
} 

“g2”
“g1”

R R R

 W R R

R W W

W W W

count = 1 count = 2 count = 2

!concurrent concurrent concurrent



how can we determine 
“concurrent”  

memory accesses?



var count = 0 

func incrementCount() { 
if count == 0 { 
count++ 

} 
} 

func main() { 
  incrementCount() 
  incrementCount() 
} 

not concurrent — same goroutine 



not concurrent —  
lock draws a “dependency edge” 

var count = 0 

func incrementCount() { 
mu.Lock() 
if count == 0 { 
count ++ 

} 
mu.Unlock() 

} 

func main() { 
  go incrementCount() 
  go incrementCount() 
} 



happens-before

memory accesses  
i.e. reads, writes 

a := b 

synchronization  
via locks or lock-free sync 
      mu.Unlock() 

     ch <— a

X ≺ Y IF one of:  

— same goroutine 
— are a synchronization-pair 
— X ≺ E ≺ Y

across goroutines

IF X  not ≺ Y and Y not ≺ X , 
concurrent! 

orders events



A

B
C

D
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U
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U

R

W

R

g1 g2
A ≺ B  

same goroutine 

B ≺ C  
lock-unlock on same object 

A ≺ D  
transitivity



concurrent ?

var count = 0 

func incrementCount() { 
if count == 0 { 
count ++ 

} 
} 

func main() { 
  go incrementCount() 
  go incrementCount() 
} 



A ≺ B and  C ≺ D  
same goroutine 

but A ? C  and C ? A  
concurrent

A

B D

CR

W W

R

g1 g2



how can we implement 
happens-before?



vector clocks
means to establish happens-before edges 

0 1

lock(mu)

4 1

t1 = max(4, 0) 
t2 = max(0,1)

g1 g2

0 0

g1 g2

0 0

g1 g2

1 0
read(count)

2 0

3 0

4 0
unlock(mu)



(0, 0) (0, 0)
(1, 0)

(3, 0)
(4, 0)

(4, 1) C

(4, 2) D

A ≺ D ? 
(3, 0) < (4, 2) ? 

so yes.

L

U

R

WA

B
L

R

U

g1 g2



CR

W W

R

g1 g2

(1, 0)A

(2, 0)B

(0, 1)

(0, 2) D

B ≺ C ? 
(2, 0) < (0, 1) ? 

no. 

C ≺ B ? 
no. 

so, concurrent



pure happens-before detection

Determines if the accesses to a memory location can be 
ordered by happens-before, using vector clocks.

This is what the Go Race Detector does! 



internals 



go run -race
to implement happens-before detection, need to:

 create vector clocks for goroutines 
…at goroutine creation 

 update vector clocks based on memory access,  
synchronization events 
…when these events occur 

 compare vector clocks to detect happens-before  
relations. 
…when a memory access occurs



program

spawn

lock

read
race

race detector

state

race detector state machine



do we have to modify  
our programs then,  

to generate the events?

memory accesses 
synchronizations 

goroutine creation

nope.



var count = 0 

func incrementCount() { 
if count == 0 { 

count ++ 
} 

} 

func main() { 
  go incrementCount() 
  go incrementCount() 
} 



-race

var count = 0 

func incrementCount() { 
  raceread() 

if count == 0 {  
  racewrite() 

count ++ 
}  
racefuncexit() 

} 

func main() { 
    go incrementCount() 
    go incrementCount() 



memory access events

the gc compiler instruments memory accesses 
adds an instrumentation pass over the IR.

go tool compile -race

func compile(fn *Node) 
{ 
  ... 

  order(fn) 

  walk(fn) 

  if instrumenting { 
    instrument(Curfn) 
  } 

... 
}



This is awesome. 
We don’t have to modify our programs to track memory accesses.

package sync 

import “internal/race" 

func (m *Mutex) Lock() { 
  if race.Enabled { 
    race.Acquire(…) 
  } 
 ... 

} 

raceacquire(addr)

mutex.go

package runtime 

func newproc1() { 
  if race.Enabled { 
    newg.racectx =  
      racegostart(…) 
 } 
 ... 

}

proc.go

What about synchronization events, and goroutine creation?



 runtime.raceread()

ThreadSanitizer (TSan) library
C++ race-detection library  

(.asm file because it’s calling into C++)

program
TSan



TSan implements the happens-before race detection: 
  

creates, updates vector clocks for goroutines -> ThreadState 

 keeps track of memory access, synchronization events -> 
Shadow State, Meta Map 

 compares vector clocks to detect data races.

threadsanitizer



go incrementCount()

struct ThreadState { 
  ThreadClock clock; 
}

contains a fixed-size vector clock  
(size == max(# threads))

func newproc1() { 
  if race.Enabled { 
    newg.racectx =  
      racegostart(…) 
 } 
 ... 

} 
proc.go

count == 0

raceread(…)

by compiler instrumentation

1. data race with a previous access? 
2. store information about this access  

for future detections



stores information about memory accesses.

8-byte shadow word for an access:

TID clock pos wr

TID: accessor goroutine ID 

clock: scalar clock of accessor , 
optimized vector clock 

pos: offset, size in 8-byte word 

wr: IsWrite bit

shadow state

directly-mapped:

0x7fffffffffff

0x7f0000000000

0x1fffffffffff

0x180000000000

application

shadow



N shadow cells per application word (8-bytes)

gx read

When shadow words are filled,  evict one at random.

Optimization 1

clock_1 0:2 0gx

gy write

clock_2 4:8 1gy



Optimization 2

TID clock pos wr

scalar clock, not full vector clock.

gx gy

3 23

gx access:



g1: count == 0

raceread(…)

by compiler instrumentation

g1: count++

racewrite(…)

g2: count == 0

raceread(…)

and check for race

g1 0 0:8 0

0 0

g1 1 0:8 1

1 0

g2 0 0:8 0

0 0



race detection
compare: 
 <accessor’s vector clock,  
new shadow word>                                                                

g2 0 0:8 0

0 0

“…when two+ threads concurrently access a shared  
memory location, at least one access is a write.” 

g1 1 0:8 1

with:   each existing shadow word



race detection
compare: 
 <accessor’s vector clock,  
new shadow word>                                                                

do the access locations overlap? 
are any of the accesses a write?  
are the TIDS different? 
are they concurrent (no happens-before)?

g2’s vector clock:                       (0, 0) 
existing shadow word’s clock: (1, ?)

g1 1 0:8 1g2 0 0:8 0

0 0

✓
✓
✓
✓

with:   each existing shadow word



do the access locations overlap? 
are any of the accesses a write?  
are the TIDS different? 
are they concurrent (no happens-before)?

race detection

g1 1 0:8 1g2 0 0:8 0

compare (accessor’s threadState, new shadow word) with  
each existing shadow word:

0 0

RACE!

✓
✓
✓
✓



g1 g2

0 0

g1 g2

0 0

g1 g2

1 0

2 0

3 0
unlock(mu)

3 1

lock(mu)
g1 = max(3, 0) 
g2 = max(0,1)

TSan must track synchronization events

synchronization events



sync vars
mu := sync.Mutex{} struct SyncVar { 

}

stored in the meta map region.

struct SyncVar { 
  SyncClock clock; 
}

contains a vector clock 

SyncClock

mu.Unlock()

3 0

g1 g2

mu.Lock() max(                           , 

SyncClock)

0 1



TSan tracks file descriptors, memory allocations etc. too 

TSan can track your custom sync primitives too, via dynamic 
annotations!

a note (or two)…



evaluation



evaluation
“is it reliable?” “is it scalable?”

program slowdown = 5x-15x 
memory usage = 5x-10x

no false positives 
(only reports “real races”, 
but can be benign) 

can miss races! 
depends  on execution trace 
 
As of August 2015, 
1200+ races in Google’s codebase, 
~100 in the Go stdlib, 
100+ in Chromium, 
+ LLVM, GCC, OpenSSL, WebRTC, Firefox



with 
go run -race = 

gc compiler instrumentation + 
TSan runtime library for

data race detection 

happens-before using 
vector clocks
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alternatives
I. Static detectors 
analyze the program’s source code. 

• typically have to augment the source with race annotations (-) 
• single detection pass sufficient to determine all possible  

races (+) 
• too many false positives to be practical (-) 

II.  Lockset-based dynamic detectors 
uses an algorithm based on locks held 

• more performant than pure happens-before (+) 
• may not recognize synchronization via non-locks, 

like channels (would report as races) (-)



III. Hybrid dynamic detectors 
combines happens-before + locksets. 
(TSan v1, but it was hella unscalable) 

• “best of both worlds” (+)  
• false positives (-) 
• complicated to implement (-) 
 
 



requirements
I. Go specifics 
v1.1+ 
gc compiler  
gccgo does not support as per:  
https://gcc.gnu.org/ml/gcc-patches/2014-12/msg01828.html 
x86_64 required 
Linux, OSX, Windows 

II. TSan specifics 
LLVM Clang 3.2, gcc 4.8 
x86_64 
requires ASLR, so compile/ ld with -fPIE, -pie 
maps (using mmap but does not reserve) virtual address space; 
tools like top/ ulimit may not work as expected.

https://gcc.gnu.org/ml/gcc-patches/2014-12/msg01828.html


fun facts
TSan 

maps (by mmap but does not reserve) tons of virtual address  
space; tools like top/ ulimit may not work as expected. 

need: gdb -ex 'set disable-randomization off' --args ./a.out 
due to ASLR requirement. 
 
Deadlock detection? 
Kernel TSan?



goroutine 1 

obj.UpdateMe() 
mu.Lock() 
flag = true 
mu.Unlock()

goroutine 2 

mu.Lock() 
var f bool = flag 
mu.Unlock () 
if (f) { 
obj.UpdateMe()  

} 

{ {

a fun concurrency example


