
Frontend Frameworks
Introduction

Speakers

Lee Byron
React Core Team @ Facebook

@leeb

Rob Wormald
Angular Core Team @ Google

@robwormald

Taras Mankovski
Ember Contrib @ EmberSherpa

@tarasm

Started at Facebook in 2012

Created by Jordan Walke

Used for Comments, Chat,
Notifications, and Instagram

Release Date: May 26, 2013

Contributors: 846

License: BSD

React is different in many ways

Three primary differences

1. React is not MVC

MVC MVVM MVW

Models

Mutative
Models

Mutative
Models

React is
The “V” in MVC?

React is
Component-based UI

Just JavaScript

Templates

Kinda miss those Templates...

JSX
A Syntax Extension to JavaScript

Something changed?
Re-render everything!

Won’t that be slow?

Reconcile
Diff previous view and next view

// Imperative view operations
setProp(prev2, "class", "newValue")
removeElement(prev6)
addChild(prev4, next1)
addChild(prev4, next2)

Quite fast

2. React is for UIs, not Web Apps

HTML

HTML

Component:
(Data) => Element

Element:

Type

Attributes

Children

Elements
DOM
HTML

UI
Browser

Server

Elements
DOM
HTML
UIView
Android.View

UI
Browser

Server
iOS Apps

Android Apps

Elements
DOM
HTML
UIView
Android.View
3D Scene Graph

UI
Browser

Server
iOS Apps

Android Apps
Virtual Reality

Elements
DOM
HTML
UIView
Android.View
3D Scene Graph

React
React DOM

React Native

React VR

3. React is adopted incrementally

Great for whole applications

Or small portions of the screen

Introduce React “Bottom up”

Lifecycle Hooks:
componentDidMount()

componentWillReceiveProps()
componentWillUnmount()

React’s “Escape Hatch”

Use your existing
frameworks and code with React

1. React is not MVC
Component-based UI with functions instead of templates.

2. React is for UIs, not Web Apps
Elements model web, native apps, and VR.

3. React is adopted incrementally
Small areas bottom up, and escape hatch to use existing code.

1. React is not MVC
Component-based UI with functions instead of templates.

2. React is for UIs, not Web Apps
Elements model web, native apps, and VR.

3. React is adopted incrementally
Small areas bottom up, and escape hatch to use existing code.

4. React has a great community
Who provide education, tools, libraries, and services.

Release Date: September 14, 2014

Contributors: 357

License: MIT

Angular 1

Angular 2

Component Architecture

Application Composition

APP COMPONENT

PRODUCT COMPONENTS

SALE COMPONENT

NAV COMPONENT

Application Composition

PRODUCT COMPONENT

BUTTON COMPONENT

Application Composition

APP COMPONENT

PRODUCT COMPONENTS

SALE COMPONENT

NAV COMPONENT

BUTTON COMPONENTS

Components

=
HTML

< > + Class
{ }

Metadata

CSS
[]+

app/hero-list.component.html

<h2>Hero List</h2>

<p>Pick a hero from the list</p>

 <li *ngFor="let hero of heroes" (click)="selectHero(hero)">

 {{hero.name}}

<hero-detail *ngIf="selectedHero" [hero]="selectedHero></hero-detail>

Templates

HTML
Standard HTML

Angular 2 Templates: Will It Parse?

https://www.google.com/url?q=https://angularjs.blogspot.sk/2016/02/angular-2-templates-will-it-parse.html&sa=D&ust=1477327541267000&usg=AFQjCNFx5A7hFtQ4Lc5MdG6Cw94WwBGZ2w
https://www.google.com/url?q=https://angularjs.blogspot.sk/2016/02/angular-2-templates-will-it-parse.html&sa=D&ust=1477327541267000&usg=AFQjCNFx5A7hFtQ4Lc5MdG6Cw94WwBGZ2w
https://www.google.com/url?q=https://angularjs.blogspot.sk/2016/02/angular-2-templates-will-it-parse.html&sa=D&ust=1477327541267000&usg=AFQjCNFx5A7hFtQ4Lc5MdG6Cw94WwBGZ2w

app/hero-list.component.html

…

 <li *ngFor="let hero of heroes" (click)="selectHero(hero)">

 {{hero.name}}

…

<hero-detail *ngIf="selectedHero" [hero]="selectedHero></hero-detail>

Templates
{{expression}}

[propertyName] = “expression”

(eventName) = “statement”

[(ngModel)] = “property”
DOMComponent

Interpolation

One Way Binding

Event Binding

Two Way Binding

HTML

Property &
Event Binding

Structural

Attribute

HTML

Property &
Event Binding

Directives

app/hero-list.component.html

…

 <li *ngFor="let hero of heroes" (click)="selectHero(hero)">

 {{hero.name}}

…

<hero-detail *ngIf="selectedHero" [hero]="selectedHero></hero-detail>

app/hero-detail.component.html

<input [(ngModel)]="hero.name">

Templates

Templates

HTML

Property &
Event Binding

Directives

Component

Component Class

app/hero-list.component.html

<h2>Hero List</h2>

<p>Pick a hero from the list</p>

 <li *ngFor="let hero of heroes" (click)="selectHero(hero)">

 {{hero.name}}

app/hero-list.component.ts

export class HeroListComponent implements OnInit {

 heroes: Hero[];

 selectedHero: Hero;

 constructor (private service: HeroService) { }

 ngOnInit() {

 this.heroes = this.service.getHeroes();

 }

 selectHero(hero: Hero) { this.selectedHero = hero; }

}

Component Architecture

Just A Class
Service Composition

app/hero.service.ts

@Injectable()

export class HeroService {

 constructor (

 private http: Http,

 private errorHandler: HttpErrorHandler) { }

 getHeroes () {

 return this.http.get('app/heroes')

 .map(res => res.json().data)

 .catch(this.errorHandler.handle);

 }

}

Component Architecture

InjectorService Composition

Dependency Injection

app/hero-list.component.html

constructor(

 private heroService: HeroService

) { }

CrisisService HeroService PowerService VillianService

Injector

CrisisService HeroService PowerService VillianService

Component Architecture

Service Composition

Dependency Injection

app/hero-list.component.html

constructor(

 private heroService: HeroService

) { }

Injector

CrisisService HeroService PowerService VillianService

app/hero-list.component.html

constructor(

 private heroService: HeroService,

 private powerService: PowerService

) { }

Component Architecture

Service Composition

Dependency Injection

Component Architecture

Service Composition

Dependency Injection

Routing

app/app.module.ts

@NgModule({

 imports: [

 RouterModule.forRoot([

 { path: 'crisis-center', component: CrisisListComponent },

 { path: 'heroes', component: HeroListComponent }

])

 …

],

 …

};

app/app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'my-app',

 template: `

 <h1>Angular Router</h1>

 <nav>

 Crisis Center

 Heroes

 </nav>

 <router-outlet></router-outlet>

 `

})

export class AppComponent {}

Component Architecture

Service Composition

Dependency Injection

Routing

Component Architecture

Service Composition

Dependency Injection

Routing

Angular Everywhere

Scenarios

Progressive Web Apps Mobile Desktop

PWA

Server Scenarios

Server Scenarios

TypeScript

Superset of Javascript

Because Types!!

Readability

Familiarity

Tooling

HTML

CSS

JavaScript

Template
Compiler

Change
Detection Renderer

DI
Runtime

View
Runtime

Change
detection
Runtime

Angular 1: Interpreted Templates

HTML

CSS

JavaScript

Compiler Views

Angular 2: Compiler Generates Code

HTML

CSS

JavaScript

JIT
Compiler Views

Just In Time (JIT) Compilation

Optimized for JavaScript
Virtual Machines

Just In Time (JIT) Compilation

Change detection
10x faster!

Angular 2 Compiler Perf Improvement

1.5

0

4.5

3

6

Ra
tio

Angular 2

1.5

Angular 1

5.7

By Hand

1.0

Deep tree benchmark

Build Step

HTML

CSS

JavaScript

AoT
Compiler Views

Ahead of Time (AoT) Compilation

Optimized for JavaScript
Virtual Machines

Ahead of Time (AoT) Compilation

No in-browser parsing
or compilation

Ship less code

JIT vs AOT Compilation - Page Load Performance

100

0

300

200

400

Load time
(ms)

335

130

Size
(kb, gzipped)

144

49

JIT

AoT

Deep tree benchmark

Angular 2 editor Legacy editor

AOT
compiler

Ahead-of-time template compiler

AOT
compiler

Closure advanced
compilation

27KB Hello
World App!

Ahead-of-time template compiler

Angular 2 editor Legacy editor

Release Date: December 8, 2011

Contributors: 620

License: MIT

Created by Yehuda Katz and Tom Dale

Based on SproutCore

A framework for building ambitious web applications.

● created by many people

● maintained for a long time

● upgraded not rewritten

ambitious web applications

✅ Routing

✅ Component Architecture

✅ DOM Diffing

✅ One Way & Two Way Property binding

✅ HTML Templating

✅ Service Composition

Features

3 biggest strengths

1. Framework for large applications

● Participate in TC39

● Polyfill new features

● Provide feedback

Contributing to web standards

● Introduced 1st class URL based routing

● Introduced CLI development environment

● Adopted unidirectional data flow and re-render

everything from React

Contributing and adopting good ideas

● Strict adherence to Semantic Versioning

● 6 week releases for early adopters

● LTS releases for slower adopters

● Guide upgrades with deprecation warnings

Predictable Upgrade Path

2. Mature Ecosystem

Supported by many companies

● Ease integration

● Complete solutions

● Primitives

● Experimental & Deprecated features

3000+ addons

3. Comprehensive Tooling

● Standard development environment

● Codifies conventions

● Common build process

Ember CLI

● Server side rendering

● Speed up initial render

● Node.js server

Ember FastBoot

● Big app = many small apps

● Apps are addons

● Lazy load support

Ember Engines

ADOPT

If you are faced with building a single-page application (SPA) and trying to
choose a framework to build with, Ember.js has emerged as a leading choice....
The Ember CLI build tooling is a haven in the storm of JavaScript build tools,
and the Ember core team and community are highly active and responsive.

https://www.thoughtworks.com/radar/languages-and-frameworks/ember-js

http://emberjs.com/
https://www.thoughtworks.com/radar/languages-and-frameworks/ember-js
https://www.thoughtworks.com/radar/languages-and-frameworks/ember-js

Frontend Frameworks
Panel Discussion

