Java SE 9: Continuing to
Thrive in the Cloud!

Bernard Traversat
Vice President of Engineering
Java SE Platform, Oracle

Nov 8th, 2016

ORACI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Who am I?

* VP of Engineering at Oracle - managing the Java SE
development team

— Everything delivered as part of the JDK/JRE
— Everything developed in OpenlJDK
* Previously at Sun, started to work on Java in 1998 on
the JavaOS project

 Before, | worked at NASA Ames on operating systems
for massively parallel supercomputers

®
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 3

Agenda

B ava Adoption

E» Javain the Cloud
B JavaSEQ

®
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java SE is #1 with Developers

RedMonk Q316 Programming Language Rankings

TIOBE Programming Community Index
Source: www.tiobe.com
30

saL
XML -
Visual B i
isual ﬂﬂ%m
25 Lol PowerShell
7 XS'ﬁ&sembly S Go
z Makefile B f‘é‘}o e
— Java g ColdFusion TypeScrip Clol
20 = 3 Cuda F#ASP —
C++ s ’X:,("ﬂi‘,?g"p' CoffeeScript
_ w— C#) Erlang
& == Python é AppleScript .
- == JavaScript 3 81
=3 oCaml .
£ 15 PHP g o Mathematica Frocessing Al Emacs Lisp
£ == Visual Basic .NET] XQuery
= Perl < . D Puppet
Objective-C < & Joia
0 H Autolt Pascal
2
B
E pot Vala
’ ‘ (WopAR S Scilab ' 16
2 N tend
ot éame l{akmﬁngum 5
0 e M SuperCollider LiveScript
2002 2004 2006 2008 2010 2012 2014 2016 NeNT;" ase o2 Logos »
Gosu VimL

s BlitzBasic

Popularity Rank on GitHub (by # of Projects)

. {javall_S demonstrated that we have overcome and reversed overall perception of Java
ecline

* Java 8 adoption is skyrocketing!

ORACLE

5 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java SE is #1 Runtime in the Cloud

pit * #1 Deployment runtime on
vt AWS and Google App Engine

e and #3 on MS Azure

B c# . . o

B Others * Java Runtime is the foundation
of the Cloud laaS, PaaS and
Saa$s

B using

|7 Primary Host

— . Am;azonWebServices Microsoft Azure Google Cloud Platform

ORACI—G 6 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Why Java Will Continue to Thrive in the Cloud

Security & Vulnerability

— Security built deep in the JVM runtime (bytecode verification, managed pointers & managed memory layout)
— Security built in the language (strong typing and APl encapsulation)

— Upcoming hardware security innovations (from pages to pointer addresses, encryption at memory speed)

Efficiency and ultimate performance

— Dynamic JIT compilation (optimize and de-optimization JVM machinery, profile driven optimization)
— Scalability (from 1 thread/core to 10,000s threads/cores, from a few GBs to multiple TBs)

— Cloud is all about utility computing (operating cost will soon dominate Cloud market!)

Increase deployment velocity

— The cloud is demanding an accelerated deployment cycle (hour/day/week vs month/year)

— Increase pressure to uptake new releases (security, critical fixes & performance) - manage backward compatibility!!!!
— Thrive towards an homogeneous and uniform software infrastructure (lower maintenance cost)

Manageability and serviceability at scale

— Expressibility & Readability

— Mature tooling ecosystems

— Dynamic patching (no service downtime, class redefinition, JVM safepoint redefine)

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenges to Evolving The Java Platform

* 2 Trillion lines of code in production

— Ensuring backward compatibility is a big deal to our users, to you and us :-)

* Decisions made 20 years ago may not apply anymore
— Duality between Object and Primitive type

* Foreseeing the future

— Many decisions made today may/will have profound impacts 10 years from now

* Maintaining the “look and feel” of Java

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Platform Feature Backlog

“1 have some paperwork to cateh up. If I'm not back
in two days, organize a search and rescue team!™

ORACLE

Understanding Java Developers Main Pain Points

Too verbose

Use too much memory
Too slow

Dynamically linked

* Etc.

TAKIP|

®
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

10

Maintaining Java Core Principles

© 2000 Randy Glasbergen.
www.glasbergen.com

*THE COMPUTER SAYS | NEED TO UPGRADE MY BRAIN
TO BE COMPATIBLE WITH ITS NEW SOFTWARE."

®
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserve

d.

Consistency
Predictability
Easy to read
Compatibility

11

Java SE Platform Investments

Security is our #1 priority
— Deliver the most secure Java runtime for the Cloud and next generation hardware
Improving Java developer productivity and compatibility

— Make Java developers more efficient and ensure easier path to uptake new releases quicker

— Program once for the Cloud and scale up as needed

Increasing density
— Reducing memory usage and share more data between JVM processes

— Largest impact to reducing our customers and our cloud operating cost
* Improving startup time
— Enabling lighter-weight services and containers (microservice and Cloud devops use cases)
* Improving predictability
— Lower, more predictable GC pauses, even for very large heaps (TB+)
» Simplifying serviceability and profiling
— Managing and tuning JVM deployments at scale

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java 9

“One Modular, Upgradeable Platform for the Cloud”

ORACI—E Copyright © 2016, , Oracle and, /or its affiliates. All rights reserved .

Java 9 JEPs

102: Process APl Updates

110: HTTP 2 Client

143: Improve Contended Locking
158: Unified JVM Logging

165: Compiler Control

193: Variable Handles

197 Ssgmgnlid&mgﬁghg

* The big ticket item for java 9 is

200: The Modular JDK

Modularization (aka Jigsaw) e

* Currently 121 enhancements (JEPs) 215 Lot Abuton (o e 5-2
— 114 integrated, completed and closed 220 Modular Run-Time Inages

— 7 in candidate, proposed to drop and T ——
targeted 226 T8 g s

* New EA build available every other 231 Rmove Launch-Tine I Version Selction

Week 235: Test Class-File Attributes Generated by javac

238: Multi-Release JAR Files
240: Remove the VM TI hprof Agent
241:

http://openjdk.java.net/projects/jdk9/ F

ORACLE Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 14

Java 9 Jigsaw Modularity

* Java SE & its implementations historically monolithic

— Cloud deployments most often don’t require the entire platform
* Backward compatibility requires strong APl encapsulation
* Modules will define amodule-info. java file

— Declares its dependencies (requires)

— Declares what packages it gives external access to (exports)
* Simple Example:

module com.foo.bar ({

requires com. foo.baz;

exports com.foo.bar.alpha;
exports com.foo.bar.beta;

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

15

JDK 9 Jigsaw Security:
Module boundaries enforced by the JVM

Encapsulate implementation---internal classes inside modules
Share them with other implementation modules only as needed
Massive maintainability improvement
Simpler compatibility upgrade path
* We and You can now hide and preclude access to unsupported internal APIs and
implementation
Will also significantly improve Security

* Enable developers to create customized runtime that removed unused security
sensitive APls

12 Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Java 9: Jigsaw New Linking Phase

* Introduce a new development phase: Linking

—After Javac compilation, but before packaging and deployment
—jlink linking tool to consume application classes
as well as platform modules

—Linker can produce custom runtime images in various formats
* Regular images (as today)
* JVM---specific memory images (CDS archives)
* “Fast executable binaries” (self---contained native executable code)

Demo

9 Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Java 9: Ahead of Time (AOT) Java Compiler

* The unification of static and dynamic compilation

— Static compilation - faster startup, lower memory usage, but limited in optimizing code
generation

— Dynamic profiling based compilation - slow startup but optimum code generation

. :_lgw AOT Compiler to statically compile Java classes to native shared
ibraries

—Reduces startup time and improve density to close the gap against native
service

* Compile Java packages to native shared libraries

* JVM was modified to load native shared libraries on startup

— JVM internal structures, which describe compiled code, are split to describe compiled code
in code cache and in a shared library

— AOT compiled code is dynamically linked to Java methods after its class is initialized

ORACI—G 18 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java 9: Ahead of Time (AOT) Java Compiler

* New JDK tool ‘jaotc’ is added as part of java installation. ‘jaotc’ is java static compiler which produces
native code for compiled java methods. It uses libelf for producing .so AOT libraries.

To use ‘jaotc’ user have to specify .class, .jar files or java module name as input and resulting AOT library
name as output:

jaotc --output libHelloWorld.so HelloWorld.class
jaotc --output libjava.base.so --module java.base
* User can specify which methods to compile or exclude with —compile-commands flag
jaotc --output libjava.base.so —compile-commands base.txt —module java.base

* During JVM startup the AOT initialization code looks for shared libraries in (SJAVA_HOME/lib) or
libraries specified by -XX:AOTLibrary option. If shared libraries are found, these are loaded and used.

java -XX:AOTLibrary=./libHelloWorld.so,./libjava.base.so HelloWorld

ORACI—G 19 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JDK 9 - What is JShell?

* Tool providing a dynamic interaction with the Java™ programming
language in the Cloud

* Read-Evaluate-Print Loop (REPL) for the Java™ platform in the Cloud
—Type in a snippet of Java code, see the results

* Deeply integrated with JDK tool-set
— Stays current and compatible

* Also, an interactive API for use within other applications

°
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

20

What is JShell NOT?

* Not a new language
— “Snippets” of pure =2Java
—No new syntax

* Not a replacement for the compiler
°* Not an IDE

°
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

21

Who wants JShell?

* New to Java, new to programming
— Start with expressions vs classes
— Immediate feedback

* Exploring a new API or language feature
— Experiment and instantly see results

* Prototyping and interactivity
— Incrementally write complex code

°
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserve

22

With JShell

* Type in a “snippet” of code

* Immediately see its behavior

ORACLE

DEMO

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

23

Java 9 - G1 Garbage Collector as the Default

Eden regions
Survivor regions
Old generation regions
Humongous regions
- Available / Unused regions

ORACLE

* Multi-year effort to deliver next generation GC
improvements

* GC pause-times have the largest impact on application
performance, predictability and responsiveness

* @G1 uses one contiguous heap space divided into many
fixed size regions (analog to pages in VM 0OS’s)

— Per region scalable collection process
— Sizecanbe 1 MB-32 MB

— New architecture to scale up to multi-TB heap

Each region can be assigned a unique eviction/
compaction policy (Eden region, Survivor region,
Humongous or Old region)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What is AppCDS?

* Commercial feature to reduces physical memory usage for loaded classes
* Faster startup time due to pre-loaded class metadata.

* Shares of class metadata across JVM processes.

* AppCDS stores class metadata in a Java Shared Archive file (JSA)

— bytecodes, field tables, method tables, etc.

* JVM was modified to load more efficiently these Shared Archive files

* Multiple JVM processes can memory-map the same JSA file
— Memory in the JSA file is shared across processes
— Memory is split into Read-Only (shared) and Read-Write (Copy-on-Write)

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

AppCDS Architectural View

JVM Instance 1 JVM Instance 2

l Runtime Allocated M d Runtime Allocated
Java Heap Heap Objects emory-mappe Heap Objects

archive file
Space
T Mapped String Objects Shared Mapped String Objects
— Strings
Mapped Classes Shared Mapped Classes
Shareci Space RO, RW... Classes RO, RW...
T Shared :
Meta Space Runtime Class Metadata Memory Runtime Class Metadata

ORACLE Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Startup Time Improvements for Sample Oracle WeblLogic
Server Environment

Bl No AppCDS AppCDS
11.4s

11.5s

* About 30% startup time

improvement observed

with AppCDS for Oracle

7.7s WebLogic Server (WLS)
base domain

8.625s

5.75s 1

2.875s

Os -

WLS BaseDomain

®
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 27

Memory Footprint Saving for Sample Oracle WeblLogic

Server Environment
B No AppCDS AppCDS

500MB 477.9 463.3 1 0,000MB 4633740731 4651941374
375MB - —
250MB | — 100MB — — -
125MB - —
OMB - 1MB : . .
No AppCDS AppCDS Unique Shared Total
* With single JVM instance running WLS =+ With 10 JVM instances running WLS
base domain, using AppCDS improves base domain simultaneously, shared
memory footprint memory increases
* Memory footprint improved by * There is 11.06% saving in total
optimal layout and compaction of memory footprint with AppCDS

archived data

°
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 28

String Density

* The String Class stores characters using a UTF-16 encoding (use 2 bytes per
character)

— But, the vast majority of Java apps really use only single byte characters

* Consequence
— Lots of wasted space / memory

* JDK 9 feature (JEP 254)

— Modify the JVM runtime, JIT, GC and String class to transparently optimize the
internal character encoding (use single vs multi-bytes)

— Requirements

* Reduce memory footprint, yet not sacrifice throughput performance

* No API change, no re-compilation or code modifications required by upstream FMW or Fusion Apps
to realize benefit

* Support on X86/x64, SPARC and Linux, Solaris, Windows, OS X

ORACI—G 29 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Density String

* Analyzed nearly 1,000’s heap profiles

— Vast majority of characters in Java Strings

are single byte chars

— 75% of Strings are smaller than 35

Characters

— 75% of Characters are in Strings of Length

<250

— 5% - 20% memory footprint reduction

opportunity per application
* Specjbb 2005

— 21% memory footprint reduction

— 27% less GCs

— 5% throughput improvement

ORACLE

8e+07

6e+07 1

4e+07

instances

2e+07

Qe+00

String frequency per character count (cumulatin

100+

75

cumulative % of total instance count
&

30 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Suing frequency per character count

. et
- "'"—a‘.’.. -
e e,
0 25 50 75 100

character count

50 75 100
character count

Space consumed by Strings of given size

6e+08+

Eer size

e+08- o

{1

total characte

E2e+087 |

Oe+00- =
0 250 500 750 1000
character count

Space consumed by Strings of given size (cumula
100-

75-

50-

cumulative % of all chars

25-

o 250 500 750 1000
character count

Flight Recorder Performance
Extremely Low Overhead

* Built into the JVM/JDK, by the people developing the JVM
* Less that 1% overhead in production deployment

* High performance flight recording engine and high
performance data collection

— Access to data already collected in the JVM runtime
— Thread local native buffers
— Invariant TSC for time stamping

— More accurate method profiling (method profiling data even from
outside safe-points)

— Faster and more accurate allocation profiling

°
ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Beyond 9

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The Next Big Challenge: Object Data layout

* Java is very good at optimizing code, less so at optimizing data
— Memory overhead, less than optimal performance, difficult to utilize modern hardware

* Java’s type system gives us primitives, objects, and arrays
— Very flexible! Can model almost anything.

* But flexibility is not exactly where we need it
— Primitives are very rigid
— Objects are more flexible than we always need

* The big problem: object identity

— Needed for polymorphism, mutability
— Not all objects need it, but all objects pay for it

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Improved Java/Native Interoperability

* Big Data Hadoop and Spark are highly dependent on native libraries
— These dependencies won’t go away
* 0S 1/0 entries, GPU BLAS/LAPACK, AVX/Crypto/CRC intrinsics
— Interacting with Native library from Java is hard at best
— INIis complex, slow and hard to secure - true for code, as well as for data

* Meanwhile, Java has significant technical debts in support of foreign calls
— APIs export data structure layouts (struct stat) which are hard to traverse
— The “cultural practices” (like safety) are different between Java and C

* Project Panama - provide an easier, safer and faster JNI

— Adding Foreign Function and foreign data support to Java (Frozen Arrays, Vector APl and Arrays 2.0)
— Automatic type translation (native vs. carrier/java types)
— No unsafe — provides safe APIs to access native data/functions

ORACI—G 34 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Summary

* Java SE adoption is thriving in the Cloud and will continue!

* Need your help on providing feedback on Java 9
— https://jdk9.java.net/download/

* Beyond 9, we have a solid technical roadmap

* Let’s continue to innovate and advance the Java SE Platform on OpenlJDK
together!

ORACI—G Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

