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Why?

- React more quickly to changes in interest
- Time-of-day effects
- Real-world events
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Trends Data

- What people browse: impressions
- What people watch: plays



Trends Data - Impressions

Appearance of a video in the viewport



Trends Data - Plays

Member plays a video



Why Spark Streaming?

- Existing Spark infrastructure
- Experience with Spark
- Batch and Streaming



Components
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Join Key

“Request Id” - a unique identifier of the source of a play or 
impression
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Output

Video Epoch Plays Impressions

Stranger Things 1 (00:00-00:30) 4 5

Stranger Things 1 (00:00-00:30) 3 6

House Of Cards 2 (00:30-01:00) 8 10

Marseille 2 (00:30-01:00) 3 3



- Instead of raw counts, output sets of request ids
- Count = cardinality of the set of request ids

- Idempotent counting

Output
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Programming with Spark Streaming



Streaming Joins



Streaming Joins - Time

- Time to browse and select a video
- Batched logging from client application
- Delays in data sources



- Window both plays and impressions by epoch duration
- Join the two windows together
- Slide by epoch duration

Streaming Joins - Attempt I

t

Plays

Impressions



Streaming Joins - Attempt I

- Easy to implement
- Tight coupling with processing time
- Does not mesh well with absolute time windows
- Failure can mean loss of all data for the entire window

Epoch 1

Window Start
00:15

Epoch 2

Window End
00:45

00:00 00:30 01:00



Streaming Joins - Attempt II

- Join using mapWithState
- Join key is the mapWithState key 
- State is the plays and impressions sharing the same join key
- Use timeouts to expire unjoined data



Streaming Joins - Attempt II

R1, I1
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Streaming Joins - Attempt II
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Streaming Joins - Attempt II
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Streaming Joins - Attempt II
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Streaming Joins - Attempt II

R1 => { I1, P1, I6 }
...

R3 => { I5 }

Plays & 
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MapWithStateRDD



Streaming Joins - Attempt II

- Make progress every batch
- Too much “uninteresting” data
- High memory usage
- Large checkpoints



Streaming Joins - An Observation
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Streaming Joins - An Observation

t

Plays

Impressions

Join incoming batch of plays to windowed impressions, and vice 
versa



Streaming Joins - An Observation
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Slide by batch interval...



Streaming Joins - An Observation

t

Plays

Impressions

Slide by batch interval again...



Streaming Joins - Attempt III

- Counts are updated every batch
- Uses Spark’s windowing 
- No checkpoints



mapWithState



mapWithState

- Can be used for more than sessionization



mapWithState

- Can be used for more than sessionization
- Be aware of cache evictions

- Lots of state may need to be recomputed



mapWithState

val input: DStream[(VideoId, RequestId)] = // ...

val spec: StateSpec[VideoId, RequestId,
                    Set[RequestId], 
                   (VideoId, Set[RequestId])] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
  input.
    mapWithState(spec)
}



mapWithState
val input: DStream[(VideoId, RequestId)] = // ...

val spec: StateSpec[VideoId, RequestId,
                    Set[RequestId], 
                   (VideoId, Set[RequestId])] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
 input.
    mapWithState(spec).
    groupByKey.
    mapValues(_.maxBy(_.size))
}



mapWithState
val input: DStream[(VideoId, RequestId)] = // ...

val spec: StateSpec[VideoId, Iterable[RequestId],
                    Set[RequestId], 
                   (VideoId, Set[RequestId])] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
  input.
    groupByKey.
    mapWithState(spec)
}



mapWithState
val input: DStream[(VideoId, RequestId)] = // ... 

val spec: StateSpec[VideoId, RequestId, 
                    Set[RequestId], Unit] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
  input.
    mapWithState(spec).
    stateSnapshots
}



Productionizing Spark Streaming



Metrics 

- Monitoring system health
- Aid in diagnosis of issues
- Needs to be performant and accurate



Metrics - Option I

- Use “traditional” stream processing metrics 
- Events/second, bytes/second, …

- Batching can make numbers hard to interpret
- Susceptible to recomputation



Metrics - Option II

- Spark Accumulators
- Used internally by Spark
- Susceptible to recomputation
- Unclear when to report the metric

- Can make use of SparkListener & StreamingListener



Metrics - Option III

- Explicit counts on RDDs
- Counts will be accurate
- Additional latency
- Use caching to prevent duplicate work*



Metrics

- Processing time < Batch interval
- Time the different parts of the job

- Spark is lazy - may require forcing evaluation
- Use Spark UI metrics



Error Handling

- What exceptions cause the streaming job to crash?



Error Handling

- What exceptions cause the streaming job to crash?
- Most seem to be caught to keep the job running

- Exception handling is application-specific
- Stop-gap: track the elapsed time since the batch started



Future Work
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- Red/Black deployment with zero data-loss
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Future Work

- Red/Black deployment with zero data-loss
- Auto-scaling
- Improved back pressure per topic
- Updating broadcast variables



Questions?

We’re hiring!

elliot@netflix.com


