
Real Time Recommendations
using Spark Streaming

Elliot Chow

Why?

- React more quickly to changes in interest
- Time-of-day effects
- Real-world events

Data Systems

Stream
Processing

Recommendation
Systems

UI

Feedback Loop

Trends Data

- What people browse: impressions
- What people watch: plays

Trends Data - Impressions

Appearance of a video in the viewport

Trends Data - Plays

Member plays a video

Why Spark Streaming?

- Existing Spark infrastructure
- Experience with Spark
- Batch and Streaming

Components

Join CassandraAggregate S3Transform

Filter

FilterConsume
Impressions

Consume
Plays

Design

Join CassandraAggregate
S3

Transform

Filter

FilterConsume
Impressions

Consume
Plays

Design

Join Key

“Request Id” - a unique identifier of the source of a play or
impression

Design

Join
CassandraAggregate S3Transform

Filter

FilterConsume
Impressions

Consume
Plays

Output

Video Epoch Plays Impressions

Stranger Things 1 (00:00-00:30) 4 5

Stranger Things 1 (00:00-00:30) 3 6

House Of Cards 2 (00:30-01:00) 8 10

Marseille 2 (00:30-01:00) 3 3

- Instead of raw counts, output sets of request ids
- Count = cardinality of the set of request ids

- Idempotent counting

Output

Join CassandraAggregate
S3Transform

Filter

FilterConsume
Impressions

Consume
Plays

Design

Programming with Spark Streaming

Streaming Joins

Streaming Joins - Time

- Time to browse and select a video
- Batched logging from client application
- Delays in data sources

- Window both plays and impressions by epoch duration
- Join the two windows together
- Slide by epoch duration

Streaming Joins - Attempt I

t

Plays

Impressions

Streaming Joins - Attempt I

- Easy to implement
- Tight coupling with processing time
- Does not mesh well with absolute time windows
- Failure can mean loss of all data for the entire window

Epoch 1

Window Start
00:15

Epoch 2

Window End
00:45

00:00 00:30 01:00

Streaming Joins - Attempt II

- Join using mapWithState
- Join key is the mapWithState key
- State is the plays and impressions sharing the same join key
- Use timeouts to expire unjoined data

Streaming Joins - Attempt II

R1, I1

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1 }
R1, I1

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1 }
R2, I8

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1 }
R2 => { I8 }R2, I8

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1 }
R2 => { I8 }R1, P1

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1, P1 }
R2 => { I8 }

R1, P1
R1, I1R1, P1

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1, P1 }
R2 => { I8 }R3, I5

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1, P1 }
R2 => { I8 }R3, I5
R3 => { I5 }

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1, P1 }
R1, I6

R3 => { I5 }

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1, P1, I6 }
R1, I6

R3 => { I5 }

R1, I6

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

R1 => { I1, P1, I6 }
...

R3 => { I5 }

Plays &
Impressions

MapWithStateRDD

Streaming Joins - Attempt II

- Make progress every batch
- Too much “uninteresting” data
- High memory usage
- Large checkpoints

Streaming Joins - An Observation

t

Plays

Impressions

Streaming Joins - An Observation

t

Plays

Impressions

Streaming Joins - An Observation

t

Plays

Impressions

Join incoming batch of plays to windowed impressions, and vice
versa

Streaming Joins - An Observation

t

Plays

Impressions

Slide by batch interval...

Streaming Joins - An Observation

t

Plays

Impressions

Slide by batch interval again...

Streaming Joins - Attempt III

- Counts are updated every batch
- Uses Spark’s windowing
- No checkpoints

mapWithState

mapWithState

- Can be used for more than sessionization

mapWithState

- Can be used for more than sessionization
- Be aware of cache evictions

- Lots of state may need to be recomputed

mapWithState

val input: DStream[(VideoId, RequestId)] = // ...

val spec: StateSpec[VideoId, RequestId,
 Set[RequestId],
 (VideoId, Set[RequestId])] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
 input.
 mapWithState(spec)
}

mapWithState
val input: DStream[(VideoId, RequestId)] = // ...

val spec: StateSpec[VideoId, RequestId,
 Set[RequestId],
 (VideoId, Set[RequestId])] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
 input.
 mapWithState(spec).
 groupByKey.
 mapValues(_.maxBy(_.size))
}

mapWithState
val input: DStream[(VideoId, RequestId)] = // ...

val spec: StateSpec[VideoId, Iterable[RequestId],
 Set[RequestId],
 (VideoId, Set[RequestId])] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
 input.
 groupByKey.
 mapWithState(spec)
}

mapWithState
val input: DStream[(VideoId, RequestId)] = // ...

val spec: StateSpec[VideoId, RequestId,
 Set[RequestId], Unit] = // ...

val output: DStream[(VideoId, Set[RequestId])] = {
 input.
 mapWithState(spec).
 stateSnapshots
}

Productionizing Spark Streaming

Metrics

- Monitoring system health
- Aid in diagnosis of issues
- Needs to be performant and accurate

Metrics - Option I

- Use “traditional” stream processing metrics
- Events/second, bytes/second, …

- Batching can make numbers hard to interpret
- Susceptible to recomputation

Metrics - Option II

- Spark Accumulators
- Used internally by Spark
- Susceptible to recomputation
- Unclear when to report the metric

- Can make use of SparkListener & StreamingListener

Metrics - Option III

- Explicit counts on RDDs
- Counts will be accurate
- Additional latency
- Use caching to prevent duplicate work*

Metrics

- Processing time < Batch interval
- Time the different parts of the job

- Spark is lazy - may require forcing evaluation
- Use Spark UI metrics

Error Handling

- What exceptions cause the streaming job to crash?

Error Handling

- What exceptions cause the streaming job to crash?
- Most seem to be caught to keep the job running

- Exception handling is application-specific
- Stop-gap: track the elapsed time since the batch started

Future Work

Future Work

- Red/Black deployment with zero data-loss

Future Work

- Red/Black deployment with zero data-loss
- Auto-scaling

Future Work

- Red/Black deployment with zero data-loss
- Auto-scaling
- Improved back pressure per topic

Future Work

- Red/Black deployment with zero data-loss
- Auto-scaling
- Improved back pressure per topic
- Updating broadcast variables

Questions?

We’re hiring!

elliot@netflix.com

