
SCALING INSTAGRAM INFRA
Lisa Guo— Nov 7th, 2016
lguo@instagram.com

mailto:lguo@instagram.com

INSTAGRAM HISTORY

2010

2011

14M users

2012/4/3

Android

release

2012/4/9

Facebook

acquisition

2014/1

INSTAGRAM EVERYDAY

300 Million Users

4.2 Billion likes

95 Million photo/video uploads

100 Million followers

SCALING MEANS

Scale out

Scale up

Scale dev team

SCALE OUT

SCALE OUT

“To scale horizontally means to add more nodes to a system, such
as adding a new computer to a distributed software application. An
example might involve scaling out from one Web server system to

three.”

- Wikipedia

MICROSERVICE

SCALING OUT

 —>

 —>

—> vertical partition

 horizontal sharding

SCALING OUT

INSTAGRAM STACK

Tuesday, June 25th, 2013

memcache

RabbitMQ

PostgreSQL

Cassandra

Celery

Other

ServicesDjango

STORAGE VS. COMPUTING

• Storage: needs to be consistent across data centers

• Computing: driven by user traffic, as needed basis

SCALE OUT: STORAGE

Tuesday, June 25th, 2013

-Masterless

-Async, low latency

-Multiple data center ready

-Tunable latency vs consistency trade-off

user feeds, stories, activities, and other logs

SCALE OUT: STORAGE

Tuesday, June 25th, 2013

user, media, friendship etc

• One master, replicas are in each region

• Reads are done locally

• Writes are cross region to the master.

COMPUTING

Tuesday, June 25th, 2013

Tuesday, June 25th, 2013

Django

RabbitMQ PostgreSQL

Cassandra
Celery

Django

RabbitMQPostgreSQL

Cassandra
Celery

memcacheDC1 DC2
memcache

MEMCACHE

Tuesday, June 25th, 2013

• Millions of reads/writes per second

• Sensitive to network condition

• Cross region operation is prohibitive

feed

get

Django

User R

DC1

Django

PostgreSQL memcache

User C
comment

setinsert

Django

memcache PostgreSQL

User C
comment

insertset

DC1

Django

memcachePostgreSQL

User R

feed

get

DC2

replication

Django

memcache PostgreSQL

User C
comment

insertset

DC1

Django

memcachePostgreSQL

User R

feed

set

DC2

replication

Cache
invalidate

Cache
invalidate

get

COUNTERS

select count(*) from
user_likes_media

where
media_id=12345;

100s ms

Tuesday, June 25th, 2013

COUNTERS

COUNTER

Tuesday, June 25th, 2013

select count from
media_likes where
media_id=12345;

10s us

Cache invalidated

All djangos try to access DB

MEMCACHE LEASE

d1 d2 memcache dbtime

lease-get

fill
lease-get

wait or use stale

read from DB

lease-set

lease-get

hit

INSTAGRAM STACK - MULTI REGION

Tuesday, June 25th, 2013

Django

RabbitMQ

PostgreSQL

Cassandra

Celery

memcache

Django

RabbitMQ

PostgreSQL

Cassandra

Celery

memcache

DC1 DC2

SCALING OUT

Tuesday, June 25th, 2013

• Capacity

• Reliability

• Regional failure ready

Requests/second

LOAD TEST

Servers

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24CPU instructions

Loaded

Regular

Load

Balancer

Django

Servers

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

User growth Server growth

“Don’t count the servers,
make the servers count”

SCALE UP

SCALE UP

Use as few CPU instructions as possible

Use as few servers as possible

SCALE UP

Use as few CPU instructions as possible

Use as few servers as possible

Scale up

CPU

Monitor

Optimize

Analyze

COLLECT

struct perf_event_attr pe;

pe.type = PERF_TYPE_HARDWARE;

pe.config = PERF_COUNT_HW_INSTRUCTIONS;

fd = perf_event_open(&pe, 0, -1, -1, 0);

ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
<code you want to measure>
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
read(fd, &count, sizeof(long long));

DYNOSTATS

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

Follow

Feed

Explore

REGRESSION

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

GRADUAL REGRESSION

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

With new feature

Without new feature

CPU

Monitor

Optimize

Analyze

PYTHON CPROFILE

import cProfile, pstats, StringIO
pr = cProfile.Profile()

pr.enable()
... do something ...
pr.disable()
s = StringIO.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print s.getvalue()

CPU - ANALYZE
continuous profiling

generate_profile explore --start <start-time> --duration <minutes>

CPU - ANALYZE
continuous profiling

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

Caller

Callee

CPU - ANALYZE
decorator

def get_photos():
 ……

def feed():
 get_photos()

@log_stats
def get_follows():
 ……

def follow():
 get_follows()

@log_stats

get_follows get_photos

feed follow

log_stats

get_followsget_photos

feed follow

Keeping Demand in Check

CPU

Monitor

Optimize

Analyze

igcdn-photos-d-a.akamaihd.net/hphotos-ak-xpl1/t51.2885-19/
s300x300/12345678_1234567890_987654321_a.jpg

igcdn-photos-d-a.akamaihd.net/hphotos-ak-xpl1/t51.2885-19/
s150x150/12345678_1234567890_987654321_a.jpg

igcdn-photos-d-a.akamaihd.net/hphotos-ak-xpl1/t51.2885-19/
s400x600/12345678_1234567890_987654321_a.jpg

igcdn-photos-d-a.akamaihd.net/hphotos-ak-xpl1/t51.2885-19/
s200x200/12345678_1234567890_987654321_a.jpg

igcdn-photos-d-a.akamaihd.net/hphotos-ak-xpl1/t51.2885-19/
s300x300/12345678_1234567890_987654321_a.jpg

CPU - OPTIMIZE

igcdn-photos-d-a.akamaihd.net/hphotos-ak-xpl1/t51.2885-19/
s300x300/12345678_1234567890_987654321_a.jpg

150x150

400x600

200x200

CPU - OPTIMIZE

C is really faster

• Candidate functions:

• Used extensively

• Stable

• Cython or C/C++

CPU - CHALLENGE

cProfile is not free

False positive alerts

Better automation

Use as few CPU instructions as possible

Use as few servers as possible

Scale up

SCALE UP: MEMORY

(memory budget /process) X (# of processes) < system memory

Less memory budget/process

 ===> Dies sooner

 ===> More processes

LOAD TEST

Servers

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24CPU instructions

Loaded

Regular

Load

Balancer

Django

Servers

SCALE UP: MEMORY

Code

Large configuration

SCALE UP: MEMORY

• Run in optimized mode (-O)

• Use shared memory

• NUMA

• Remove dead code

SCALE UP: LATENCY

Synchronous Processing model

 ===> All user experience impacted

 ===> Worker starvation

Single service degradation

 ===> Fewer CPU instr executedLonger latency

Stories

Feed
Django

Feed

Stories

Suggested

Users

ASYNC IO

Use as few CPU instructions as possible

Use as few servers as possible

Scale up

SCALE DEV TEAM

SCALING TEAM

30% engineers joined in last 6 months

Bootcampers - 1 week

Hack-A-Month - 4 weeks

Intern - 12 weeks

Comment Filtering

Self-harm Prevention

Windows App

Story Viewer Ranking

Video View
Notification

Save Draft

First Story
Notification

Which server?

NewTable
or New Column?

What Index?
Should

I cache it?

Will
I lock up DB?

Will I bring down
Instagram?

WHAT WE WANT

• Automatically handle cache

• Define relations, not worry about implementations

• Self service by product engineers

• Infra focuses on scale this service

TAO

USER1

USER2

USER3media
posted

posted bylikes

liked by

likes

liked by

SCALE DEV - END OF POSTGRES

SHIPPING LOVE

60-80 daily diffs

>120 engineers committed code last month

RELEASE

• Master, no branch

• All features developed on master

gated by configuration

• Continuous integration • No branch integration overhead

• No surprises

• Iterate fast, collaborate easily

• Fast bisect and revert

Once a week?

40-50 rollouts per day

Once a day?Once a diff!!

CHECKS AND BALANCES

Code review

unittest

Code accepted

committed Canary To the Wild

Dark launch

Load test

TAKEAWAYS

Scaling is a continuous effort

Scaling is multi-dimensional

Scaling is everybody’s responsibility

QUESTIONS?

