
Keep Calm and Carry On:
Scaling Your Org To Deliver Great Software

Charity Majors, @mipsytipsy

Keep Calm and Carry On:
Scaling Your Org To Deliver Great Software

Charity Majors, @mipsytipsy

How to fail at microservices
And life in general. Before you ever even start!

Growing up is hard to do

The latest parenting trend for software engineering teams

Failing failures and fail-ers who fail at them
With software.

@mipsytipsy
engineer, cofounder, CTO

Some predictable organizational effects
of microservices:

Conway’s Law
Swap tech problems for political
Multiple repos
On-call burnout
Distributed monoliths
Software engineers responsible for services

“Dear Twitter …”

“Software deploys … that take days to run, when they run.”

“I’m responsible for it, but I can’t log in to it.”

Hard things are hard.

you probably can’t. and I probably
don’t know how to listen.

Give me stories. and tools.

Don’t try and tell me how to solve
my people problems…

~me
“What’s a microservice?”

What are microservices?

• Monorepo — sometimes

• Independently deployable, small modular services

• Decentralized governance

• Small teams, up to maybe a dozen people

• Operating independently, interacting with other teams via APIs

Microservices are about
changes.

Microservices are our latest experiment to recreate the terrific
speed, autonomy, and productivity of early startup teams … at

big and growing companies.

• Team structure (Conway’s
Law?)

• Communication pathways

• “Smarter Edges”: For
individual contributors

• “Dumb Pipes”: for managers

• Transitions are hard

can i haz microservices?

YAS! Has microservices: just the good parts

• Don’t get religious. It’s not all or nothing.

• What are your team’s strengths? What are
their weaknesses?

• Account for the operational cost

How many engineers do you have?

How good are they at operations?
** you need to be REALLY GOOD at operations to do microservices.

How many products/services do you really have?

Use a big fat service if it helps, plus some smaller ones

Don’t microservice your shared libs, storage, or registry

screenshot of databases, stateless

Don’t reinvent too many wheels.

new wheels have too many unknown-unknowns

(“choose boring technology”: still applies)

Operability / Teams.

• The mission

• Build a cult (j/k) (no really)

• Let your team innovate.

and from a DBA at a different company … …

We *must* pair responsibility with
empowerment.

Have you considered … valuing non generalist
SWEs and their work?

networking: common theme

Conway’s
“Law”

Conway’s Law, post-Jobs

“Conway’s Law” is not a law

 Deploys

On-Call

Pull requests, arch reviews

Observability

Communication channels

Deploys

Deploys must be:

• Fast. Rolling. Roll-back-able.

• Reliable. Breaks rarely.

• Draws a tagged vertical line in graphs.

• *Anyone* should be able to invoke deploy

• For bonus points: canarying or automated

Revisit these tools regularly.

part of every post mortem.

(what the actual fuck? do it anyway.)

most outages are triggered by “events”,
 from humans. draw a line.

On Call

On call questions

• Who is on call? Is it a necessary part of being an engineer?

• How many rotations are there?

• How often do people get woken up? *who* gets woken up?

• How do you know? Who keeps track?

• Are there different rotations for stateful and stateless services,
front-end and backend?

• Is there an escalation path?

seek feedback

move forward <3

change is the only constant

What should leaders know?

Managers, tech leads, and engineers

smart nodes, dumb pipes

provision automatedly

Managers’ job is primarily facilitating nodes

Things about leadership

• Leadership is not a zero sum game. The best leaders try to empower literally
everyone to perform a leadership role in at least some areas.

• Create guard-rails, not walls.

• Be conventional in the big things (salary, org), unconventional in the small.

• If you give a shit about diversity, don’t wait til you’re “ready” to hire them … look
for ways to support underrepresented groups now. Make friends. Help people.
Diversify your friend groups and personal networks. Be creative.

Management

• Put the humans first, and the mission a close second

• Be an enabler. Don’t starve your tech leads of growth opportunities by
sucking all oxygen.

• Reward intentionally.

• Leadership is not zero-sum, encourage leadership everywhere

• Managers, be friends with each other! Tolerance is not enough

The most powerful weapon in your arsenal
is always cause and effect.

Engineers should be on call
for their own services.

• Guard your people’s time and sleep

• No hero complexes. No martyrs.

• Don’t over-page. Align engineering pain with customer pain

• Roll up non-urgent alerts for daytime hours

• Your most valuable paging alerts are end-to-end checks on

critical code paths.

Corollary: on-call must not be hell.

Probe every software engineering candidate
for their ops experience & attitude.

… yep, even FE/mobile devs!

“Operations is valued here.”

you are signaling …

Senior software engineers should be reasonably good at these things.
So if they are not, don’t promote them.

Operations engineering is about making systems
maintainable, reliable, and comprehensible.

Choose the problems you are not
going to solve, or they will choose you.

Get buy-in from *all* stakeholders.

 Tech leads, senior ICs

Making decisions:

Get ready to talk to people a lot more about microservices.
Sorry!

accountability: still a bitch

#truestory

Yes but ….

Yes, microservices helps you drift a little bit and innovate independently …

BUT, not as much as you might think.

You all still share a fabric, after all.

Stateful still gonna ruin your party. (and IPC, sec discovery, caching, cd
pipelines, databases etc.)

#truestory

• I don’t think anyone should approach management as a thing they move in to
permanently. It’s psychologically disfiguring.

• Nor is the maturation process one way. New teams within the company
should be springing up. Hackathons can be a great way, esp if it involves
dogfooding. Empathy needs constant renewal.

• Practice making mistakes together. Practice cheerful apologies, asking
questions, giving awkward feedback. It gets easier.

Unit tests for your org
• What is your mission as an org? Does everyone have a similar

answer? (No, they don’t.)

• One-on-ones. With your reports, your peers, your skip levels up and
down, with key partners elsewhere. No replacement.

• Ask the same questions periodically of everyone in your team. Ask
a creative, brand new question once a week.

• Ask your team how you will know if they are unhappy, bored, or
frustrated. Watch for those things.

• Sit there quietly so they have to ask you questions.

• Sit there in silence until they answer things, don’t fill in the answers.

• Look for the uncomfortable places. Be happy when you find them.

There is no fairy-tale answer

Leadership means engaging creatively with the process
and constant experimentation and change.

• April 2012 @ VMware

Charity Majors
@mipsytipsy

