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Four Kinds of Analytics

- On demand aggregation and pattern detection

- Clustering

- Forecasting

- Pattern detection on geo-temporal data



Two Ingredients

Geo/Spatial Time




Real-time aggregation and pattern matching



Complex Event Processing



Examples

How many cars enter and exit a INn past 5 minutes



CEP with full

Notify me if a partner completed her INn A given area



Patterns in the future

How many will be INn @ given area In the



Patterns in the future

How many will be INn @ given area In the
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It needs to be scalable
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It needs to be scalable
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It needs to be scalable

- Every hexagon

- Every driver/rider




CEP Pipeline Built on Samza

- No hard-coded CEP rules

- Applying CEP rules per individual entity: topic, driver,
rider, cohorts, and etc

- Flexible checkpointing and statement management
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We need to evolve our architecture for other analytics



Clustering



Manually Created Cluster
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Call for algorithmically created clusters

- Clustering based on



Call for algorithmically created cluster

- Clustering based on key performance metrics

- measure the clusters
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Call for algorithmically created clusters

- Clustering based on key performance metrics
- Continuously measure the clusters

- clustering for business needs
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Call for algorithmically created clusters

- Clustering based on key performance metrics

- Continuously measure the clusters

- Different clustering for different business needs
- Create clusters in minutes for all cities

- for other stream analytics



Home-grown Clustering Service
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Home-grown Clustering Service
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Home-grown Clustering Service

N - All cities under 3 minutes
- algorithms and measurements
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N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements

geo-temporal data for clustering
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Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
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Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering

Vi,

- Real-time geo-temporal data for measurement
- Shared optimizations. To put things in perspective:
- 70,000 hexagons in SF

- Naive distance function requires at least 70,000 x
70,000 = pairs!




Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering

Vi,

- Real-time geo-temporal data for measurement
- Shared optimizations

- Incremental updates

- Compact data representation

- Memoization

- Avoid anything more complex than




Forecasting

- Every decision is based on forecasting



Forecasting

- Forecasting based on both data and iInput



Forecasting

- Forecasting based on both data and




Forecasting

- Forecasting based on both data and

Anomaly,
or emerging demand? »
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Forecasting

- Spatially granular forecasting - down to every hexagon



Forecasting

Spatially granular forecasting - down to every hexagon

Predicated demand jobs for next period: 65.41

Demand jobs in last 45 seconds’ B}

Updated at August 12th 2016, 11:24:24 am (4 seconds ago)
Previous forecast residual: 0.41
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Forecasting

- Temporally granular forecasting - down to every minute



Forecasting

- Temporally granular forecasting - down to every minute

Predicated demand jobs for next period: 1.38
Demand jobs in last 60 seconds: 1
Updated at August 3rd 2016, 2:34:03 pm (2 seconds ago)

Previous forecast residual: -0.75
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Pattern Detection

Similarity of different metrics across geolocation and time
Metric outliers across geolocations and time

Frequent occurrences of certain patterns

Clustered behavior

Anomalies



Common Requirements in Pattern Detection

- Not just traditional time series analysis

- Incorporating insights on marketplace data

- Required both historical data and real-time input

- Spatially granular patterns - down to every hexagon

- Temporally granular patterns - down to every minute



Example: Anomaly Detection

- Simple time series analysis
- For a single geo area
- Can be noisy




A More Realistic Anomaly Detection

- /
L. -
SN ~ N \
- - (>()()‘/ )()<)‘{;)‘r)<1 /\‘(x
\c{‘\ P -
>

» “
: o TP . SN . ——c
< (1(’} N OO A ~ - > R -

- - <O
O o

L - _ - 3 > a2
- o = = ()‘,<>‘,‘,‘)()<)()()()(,"/‘ S " .~

[ - O O H B O .

’jy()_(y"‘()()()‘->()(>~<>()()()()()4 RO 5 O
/ Y L A

o & N
- e / . - N x . =
— 7 et
> < > < >

‘y"*‘(\( LA A A I I A Al eI AL et Il Il Il el E OO
e \)

N
o e - o
- N /)
L -

> )t\/xi"(“"k()()o(
L)(—’) \XO‘Y‘,/H/ \)d‘/\

- y()(ru<)<)({

/\t)()(’(\\)
)_(/\ D(/ -~ =
L - >

()<J\()()O()(’,L_>O(>.(><Y‘JU \)()O( S T e T o & P -
. :’A\)()

O €O OOy (‘Dp

VA AN

2 ﬁl\)(:r( . -

HYOQY)I) <>

T d

R S R S T e = =




Example: Anomaly Detection
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Example: Anomaly Detection




What's the right architecture to support the analytics use cases?



Shared abstraction: multi-dimensional geo-temporal data
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Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
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Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
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Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

- Flexible - tumbling, sliding, conditionally triggered



Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible - tumbling, sliding, conditionally triggered

- e.g8. event-based triggers



Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

- Flexible - tumbling, sliding, conditionally triggered
- e.g. event-based triggers
- e.g., triggers of computation results



Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing
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Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

Y(t)=aX(t)+ (1 —a)Y(t—1)
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Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

Y(t)=aX(t)+ (1 —a)Y(t—1)



Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

V() = aX(t) + (1—afY(t— 1)

State



Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

- Stateful processing

stream
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Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

- Stateful processing
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Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

- Stateful processing

stream

- Real-time streams: streams
- Batch: streams
- s/lambda/kappa



Apache Flink

- Ordering by event time
- Flexible windowing with watermark and triggers
- Exactly-once semantics

- Built-in state management and checkpointing
- Nice data flow APIs



Mental Picture for Processing Geo-temporal Data
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Mental Picture for Processing Geo-temporal Data
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Mental Picture for Processing Geo-temporal Data
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A Simple Example: simple prediction

o] = ] = o] o [ o [ o [ ) e [+
Sources

. fromKafka()

.config(config)

.cluster(aCluster)

.topics(topiclList)



A Simple Example

Extract/decode Kev bv cit Window by Spatial Key by Stateful
timestamp A event time Smoothing hex prediction

assignTimestampsAndiWatermarks



A Simple Example

Extract/decode Kev by Ci Window by Spatial Key by Stateful
timestamp y by city event time Smoothing hex prediction

keyBy(...)



A Simple Example

Extract/decode Kev bv cit Window by Spatial Key by Stateful
timestamp A event time Smoothing hex prediction

. timeWindow(...)



A Simple Example

Extract/decode Rerhy cit Window by Spatial Key by Stateful
timestamp gy 1ty event time Smoothing hex prediction

.flatMap(...)

S




A Simple Example

Extract/decode Kev by Ci Window by Spatial Key by Stateful
timestamp y by city event time Smoothing hex prediction

.keyBy(...)



A Simple Example

Extract/decode Kev bv cit Window by Spatial Key by Stateful
timestamp A event time Smoothing hex prediction

.apply(statefulFn)



A Simple Example

Extract/decode Kev by Ci Window by Spatial Key by Stateful
timestamp y by city event time Smoothing hex prediction

.addSink(...)
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High Level Data Flow
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High Level Data Flow
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High Level Data Flow
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High Level Data Flow
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Geotemporal API for efficiency
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Geotemporal API for efficiency
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Geotemporal API for productivity

private static ForkJoinPool fjPool new ForkJoinPool

public void postProcessResult(QueryResult
Immwtab\eMap<HexagonCoord, BucketWrapper> hexagons HexagonAggregationUtility.bul ldHexagonMap( t, hexField);

List<BucketWrapper> buckets Lists.newArraylList hexagons.values

fiPool. invoke(new KRingProcessor (SEQUENTIAL THRESHOLD, hexagons, buckets, @, buckets.size

private class KRingProcessor extends RecursiveTask<List<BucketWrapper>>
private int sequentialThreshold;
private int low;
private int high;

private ImmutableMap<HexagonCoord, BucketWrapper> data;
private List<BucketWrapper> buckets;

KRingProcessor(int . ’
ImmutableMap<HexagonCoord, BucketWrapper
List<BucketWrapper
int /, int

sequentialThreshold
data 3
buckets

Low

high

protected List<BucketWrapper> compute
if (high low <= sequentialThreshold
for (int i low; 1 < high; |
BucketwWrapper bucket buckets.get
Map<String, Object> values bucke? » 1By 3 getValues
Af (values.containsKey hexField alues.containsKey metric
processBucket (data, bucke?

return buckets;
else
int mid Low high Low 2;
KRingProcessor left new KRingProcessor sequentialThreshold, data, buckets, low, mid);
KRingProcessor right new KRingProcessor sequentialThreshold, data, buckets, mid, high);
left. fork();
right.compute
left.joinl);

return buckets;

private void processBucket(Map<Hexag BucketWrapper , BucketWrapper

Havananl anerd havlCnaned ' narlCaned

YesuuLnG .
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private List<BucketWrapper> buckets;

KRingProcessor(int . ’
ImmutableMap<HexagonCoord, BucketWrapper
List<BucketWrapper
int /, int

sequentialThreshold
data 3
buckets

Low

high

protected List<BucketWrapper> compute
if (high low <= sequentialThreshold
for (int i low; 1 < high; |
BucketwWrapper bucket buckets.get
Map<String, Object> values bucke? » 1By 3 getValues
Af (values.containsKey hexField alues.containsKey metric
processBucket (data, bucke?

return buckets;
else
int mid Low high Low 2;
KRingProcessor left new KRingProcessor sequentialThreshold, data, buckets, low, mid);
KRingProcessor right new KRingProcessor sequentialThreshold, data, buckets, mid, high);
left. fork();
right.compute
left.joinl);

return buckets;
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Geotemporal API for productivity

private static ForkJoinPool fjPool new ForkJoinPool

public void postProcessResult(QueryResult
Immwtab\eMap<HexagonCoord, BucketWrapper> hexagons HexagonAggregationUtility.bul ldHexagonMap( t, hexField);

List<BucketWrapper> buckets Lists.newArraylList hexagons.values

fiPool. invoke(new KRingProcessor (SEQUENTIAL THRESHOLD, hexagons, buckets, @, buckets.size

private class KRingProcessor extends RecursiveTask<List<BucketWrapper>>
private int sequentialThreshold;
private int low;
private int high;

private ImmutableMap<HexagonCoord, BucketWrapper> data;
private List<BucketWrapper> buckets;

KRingProcessor(int . ’
ImmutableMap<HexagonCoord, BucketWrapper
List<BucketWrapper
int /, int

sequentialThreshold
data 3
buckets

Low

high

protected List<BucketWrapper> compute
if (high low <= sequentialThreshold
for (int i low; 1 < high; |
BucketwWrapper bucket buckets.get
Map<String, Object> values bucke? » 1By 3 getValues
Af (values.containsKey hexField alues.containsKey metric
processBucket (data, bucke?

return buckets;
else
int mid Low high Low 2;
KRingProcessor left new KRingProcessor sequentialThreshold, data, buckets, low, mid);
KRingProcessor right new KRingProcessor sequentialThreshold, data, buckets, mid, high);
left. fork();
right.compute
left.joinl);

return buckets;

return hexag ntext.mapGeoArea
private void processBucket(Map<Hexag BucketWrapper , BucketWrapper x ntext rea >

double incrementalValue Q;
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Forecasting as an example
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Lessons Learned

- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters

- Ensure exactly-once by proper data modeling
- Use external state store to avoid too much snapshotting

- Standardize monitoring and data validation
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Choose a Stream Processing Platform
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