Stream Processing & Analytics with Flink

Danny Yuan, Engineer @ Uber

@g9yuayon

Four Kinds of Analytics

- On demand aggregation and pattern detection
- Clustering
- Forecasting
- Pattern detection on geo-temporal data

Two Ingredients

Geo/Spatial



Real-time aggregation and pattern matching

Complex Event Processing

How many cars enter and exit a user defined area in past 5 minutes

CEP with full historical context

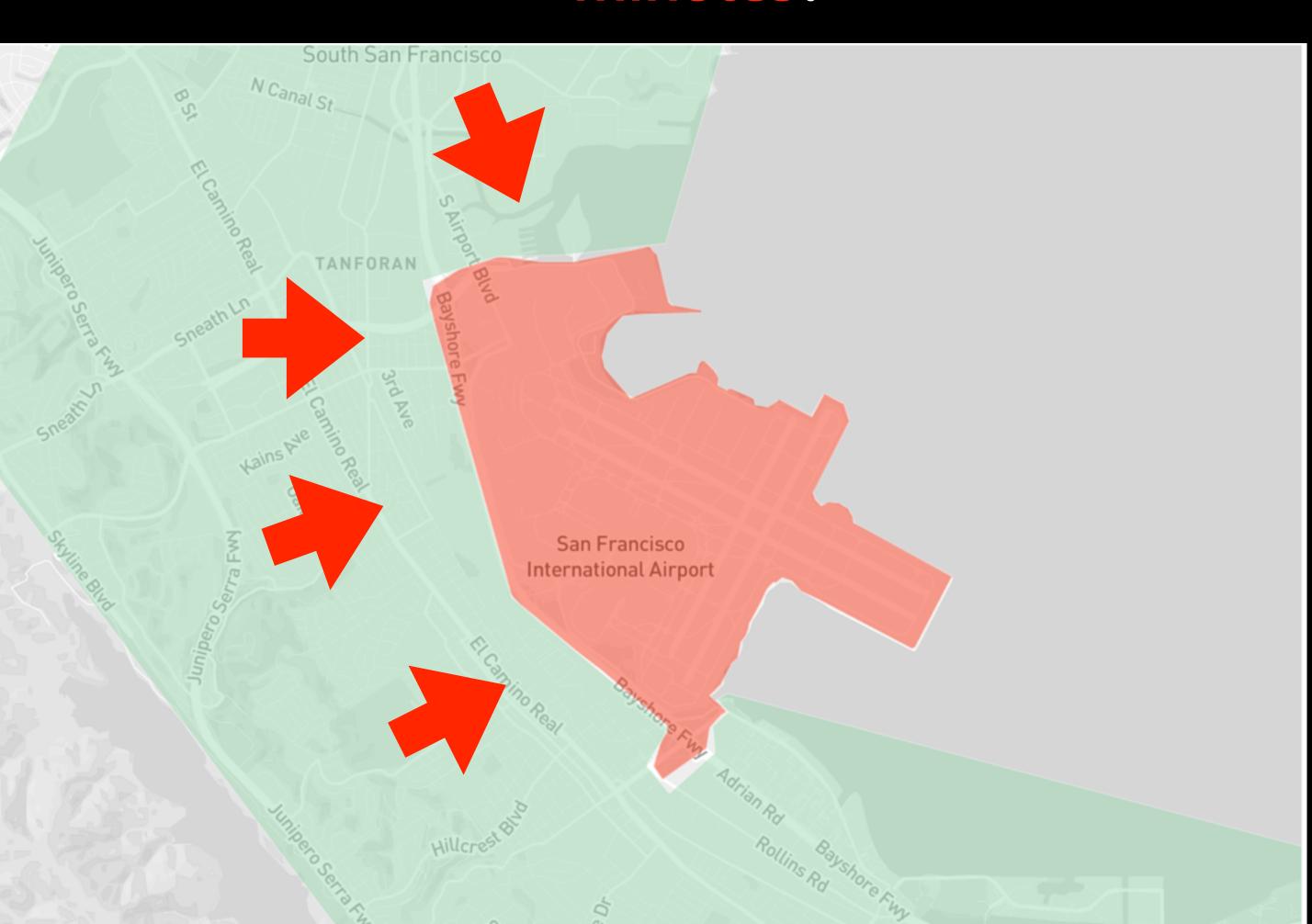
Notify me if a partner completed her 100th trip in a given area just now?

Patterns in the future

How many first-time riders will be dropped off in a given area in the next 5 minutes?

Patterns in the future

How many first-time riders will be dropped off in a given area in the next 5 minutes?



Geo: user flexibility is important

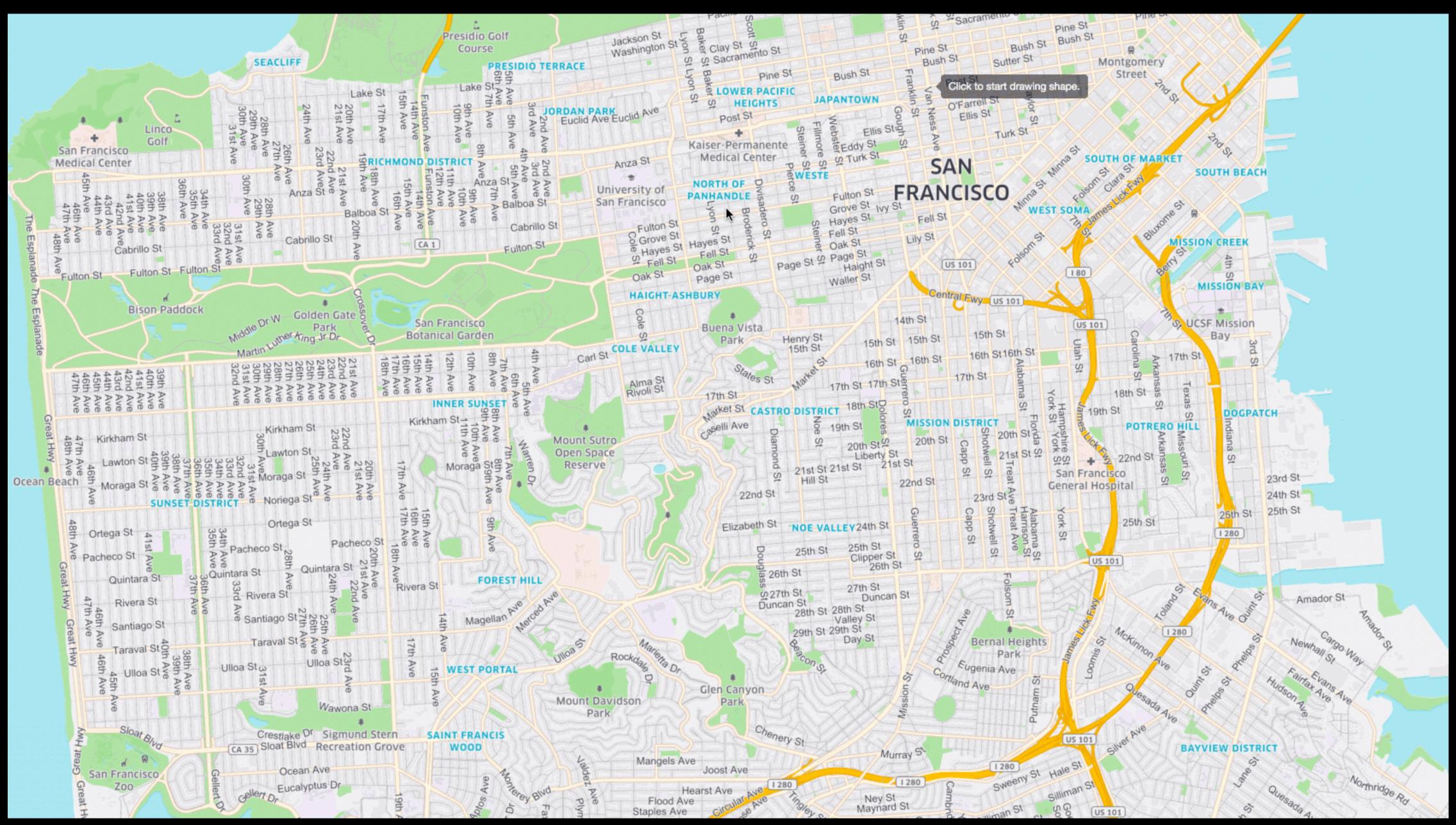
San Francisco **International Airport**

Adrian Rd

Rollins Rd

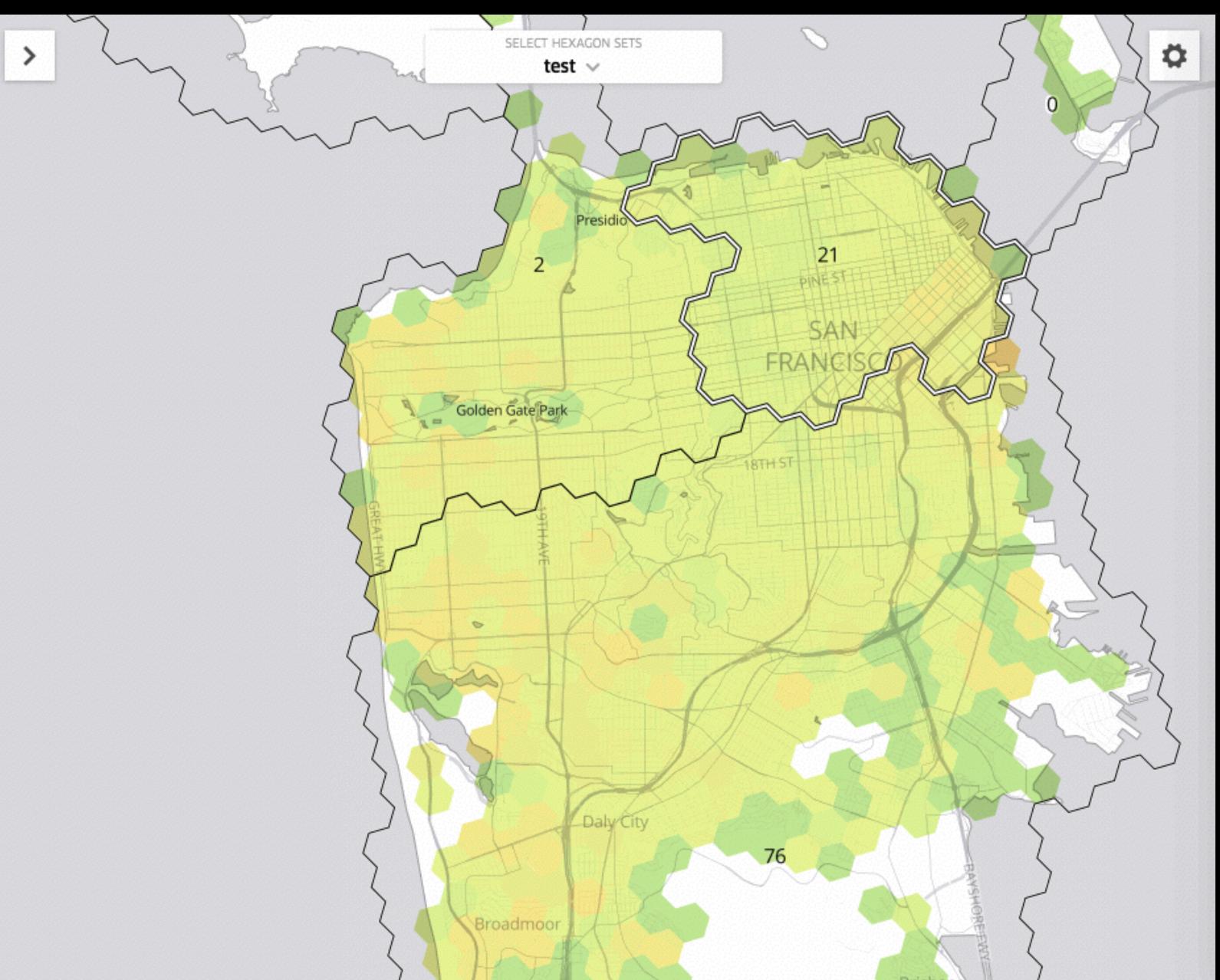
Bayshore Fwy

Geo: user flexibility is important

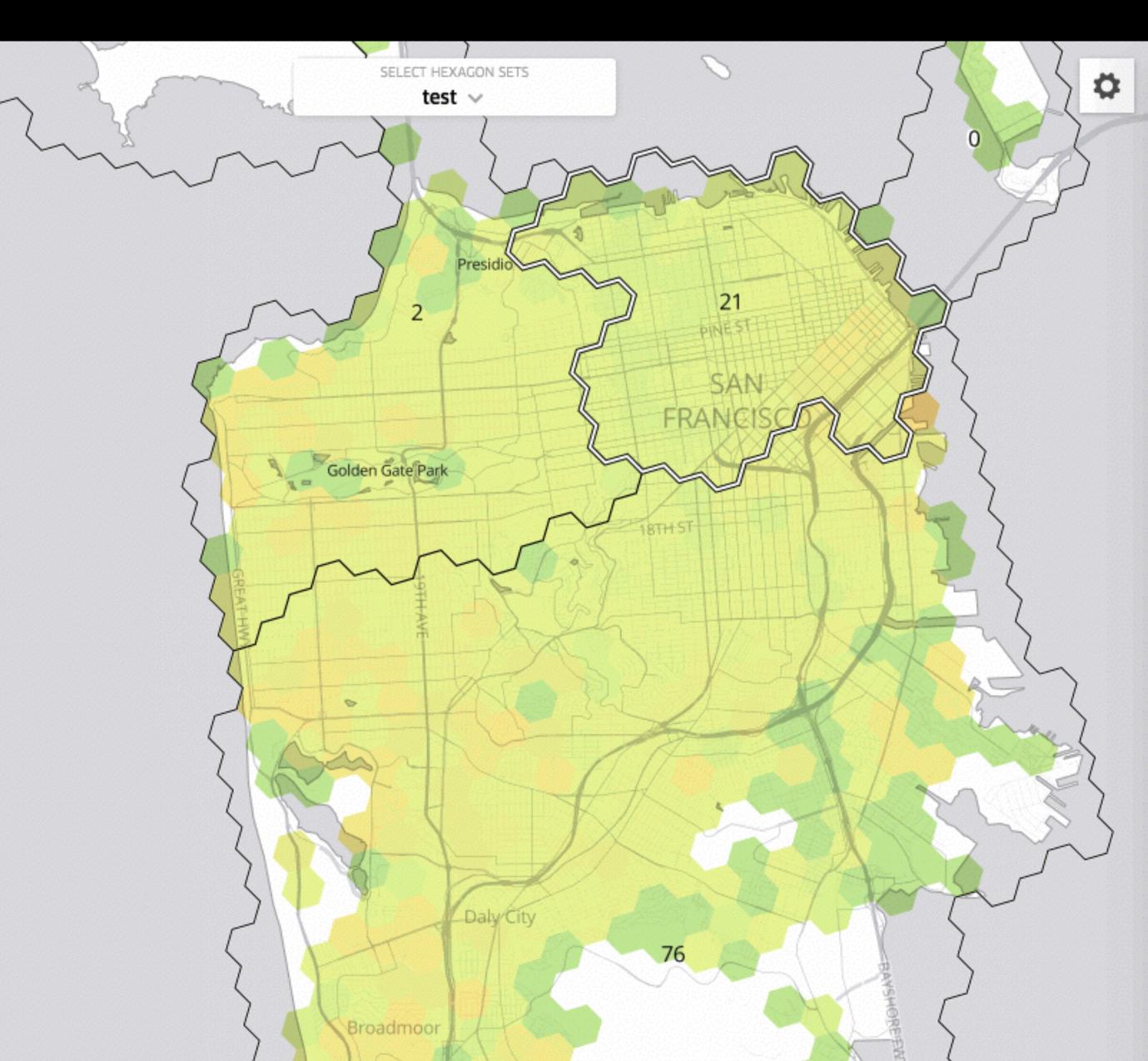


It needs to be scalable

It needs to be scalable



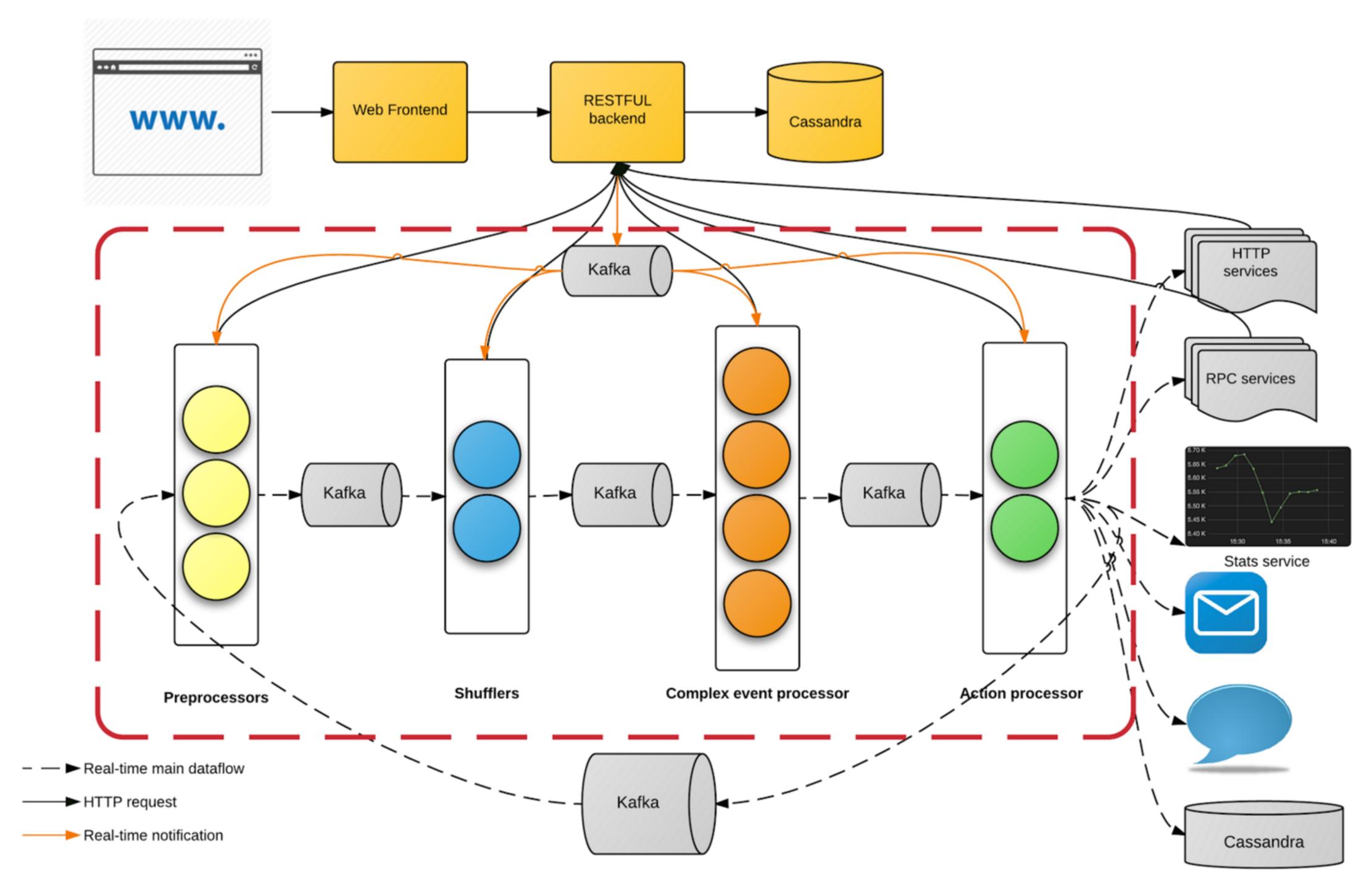
It needs to be scalable

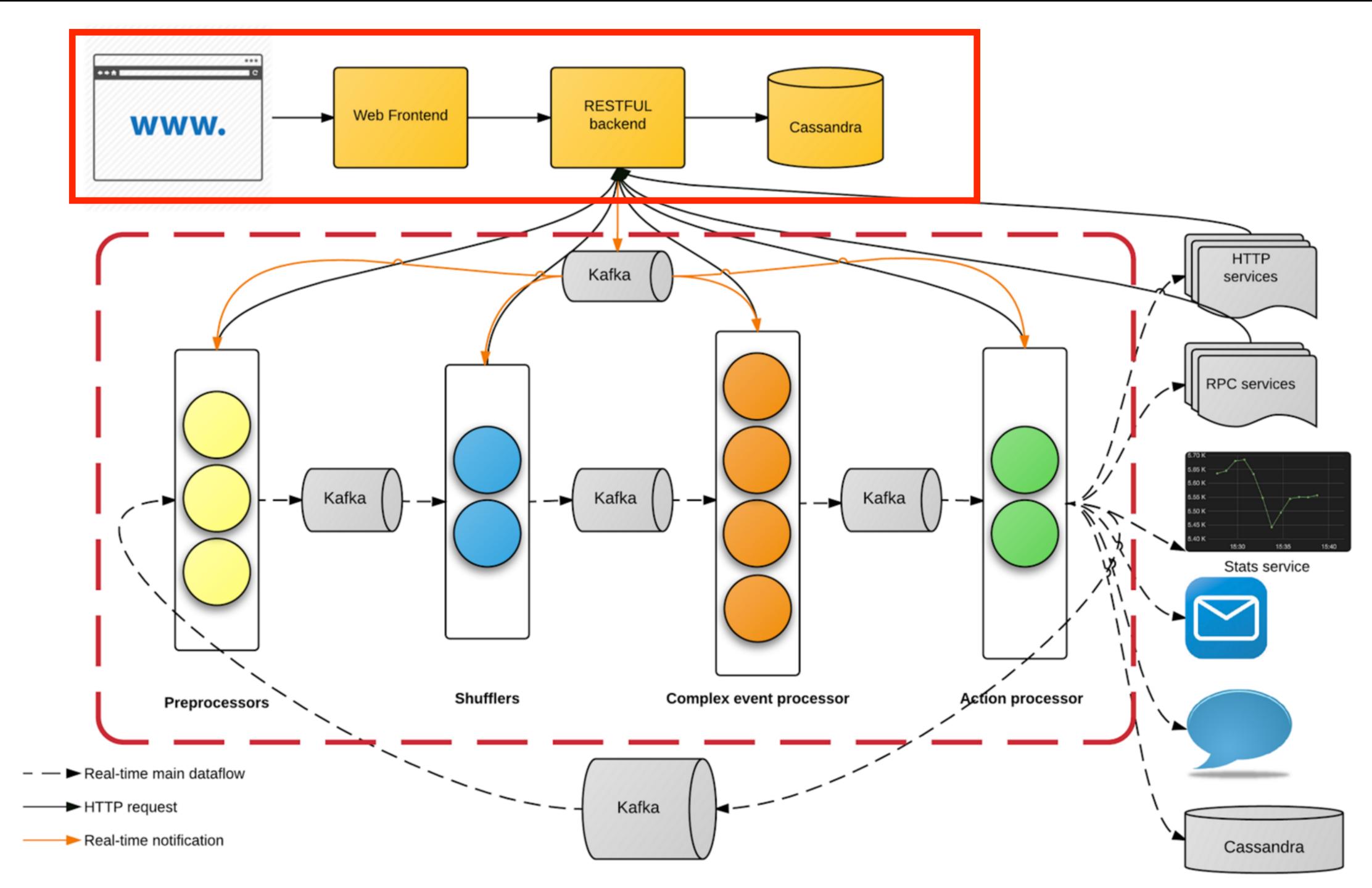


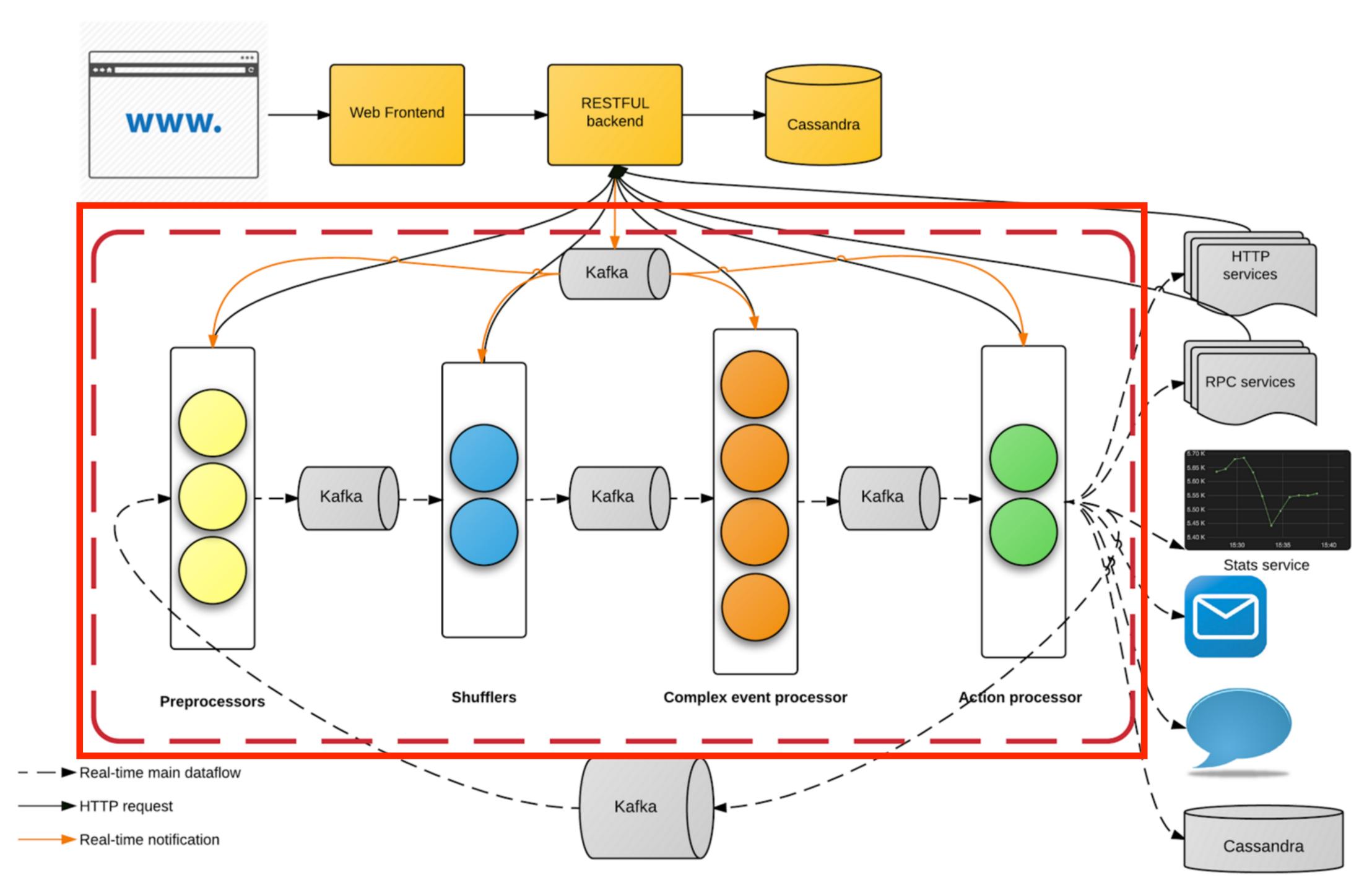
- Every hexagon
- Every driver/rider

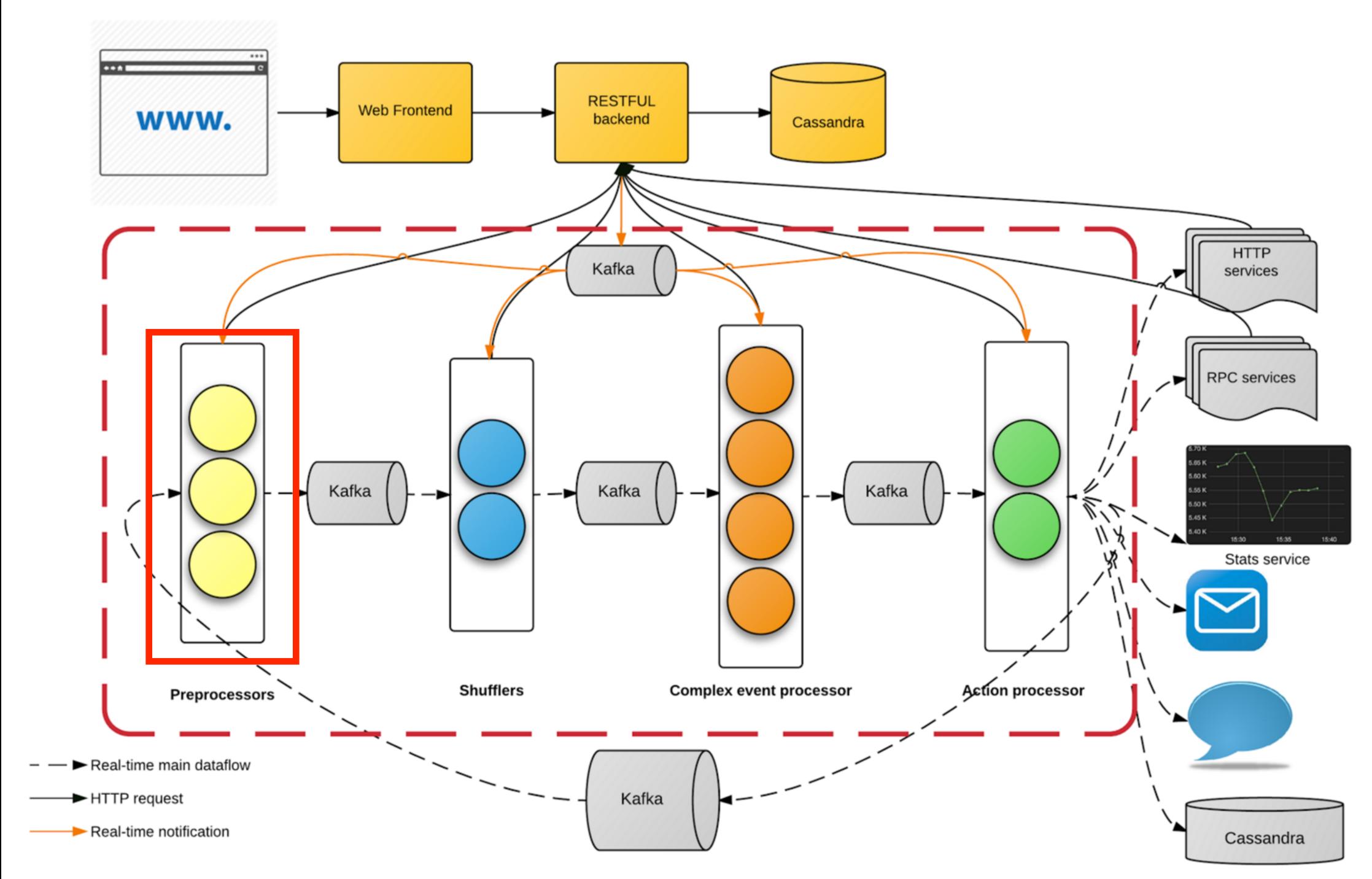
CEP Pipeline Built on Samza

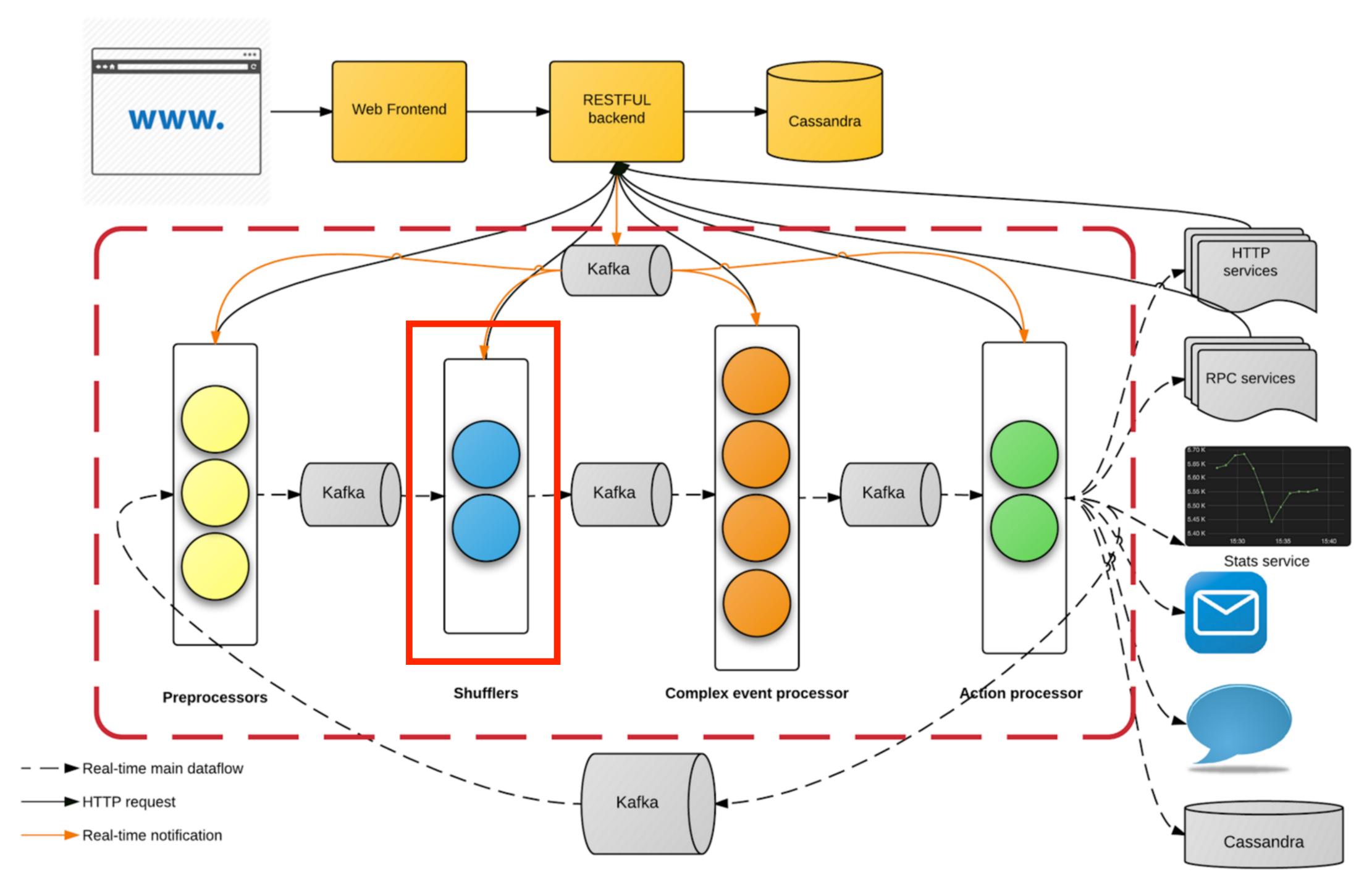
- No hard-coded CEP rules
- Applying CEP rules per individual entity: topic, driver, rider, cohorts, and etc
- Flexible checkpointing and statement management

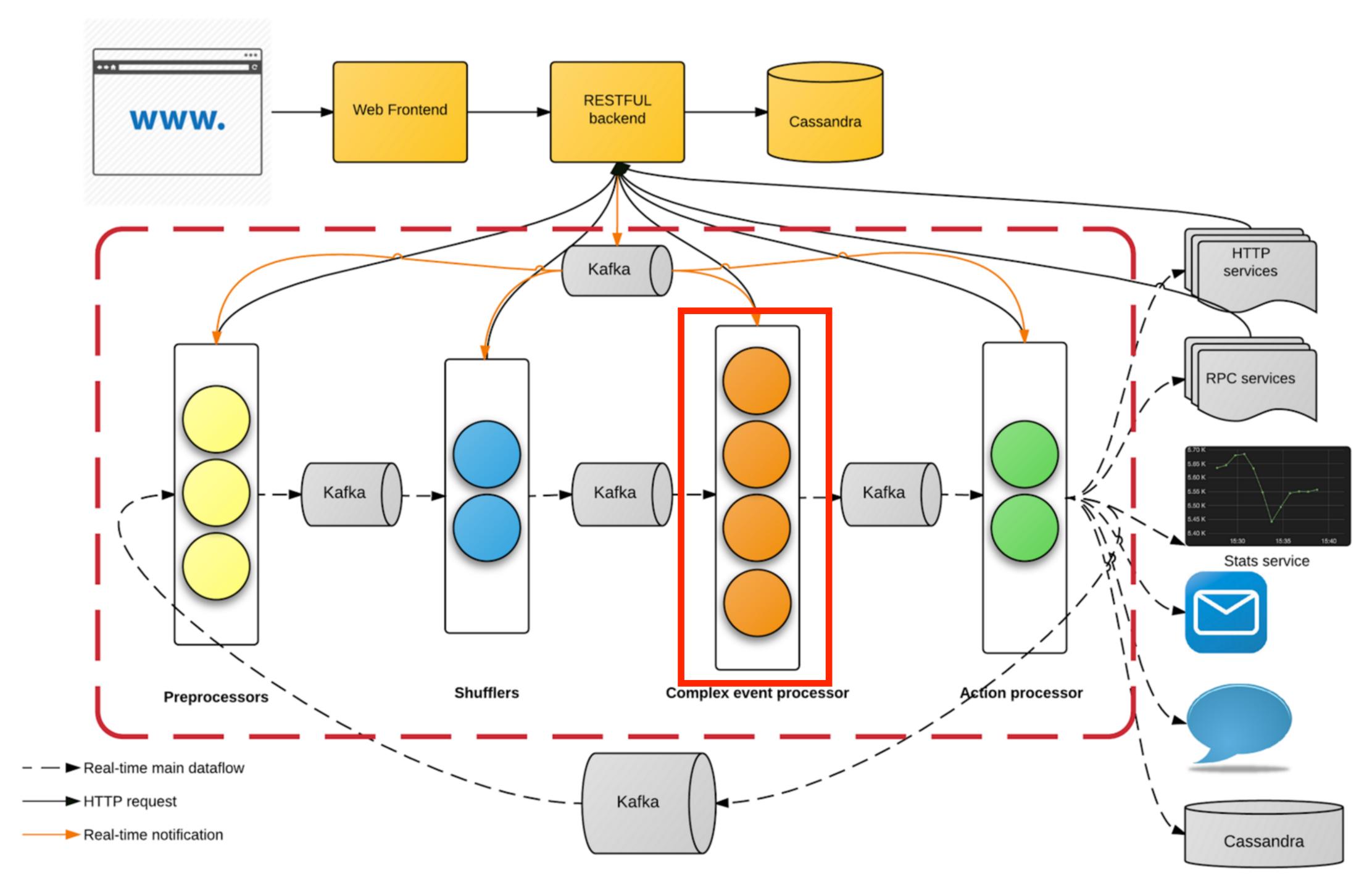


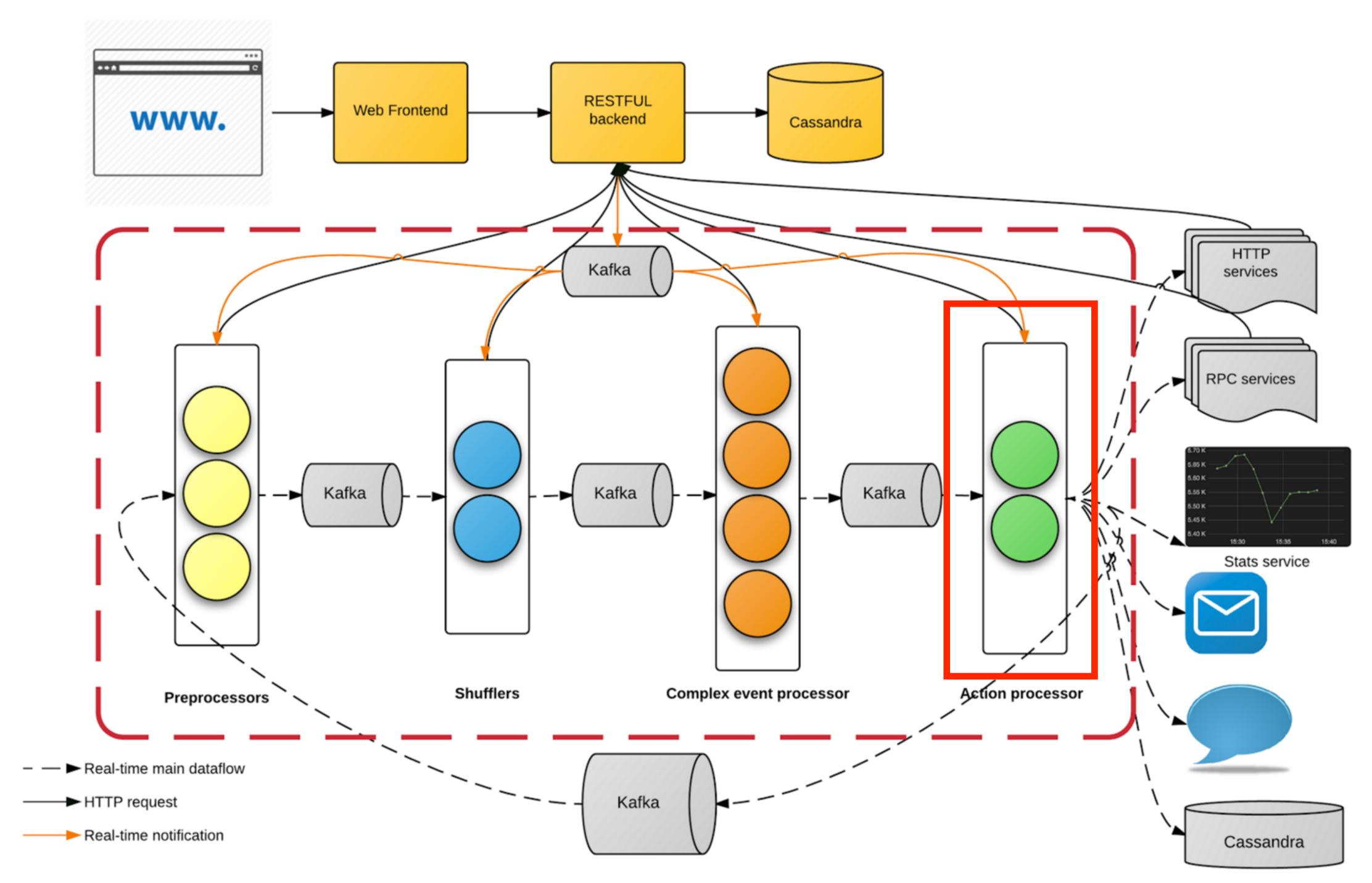


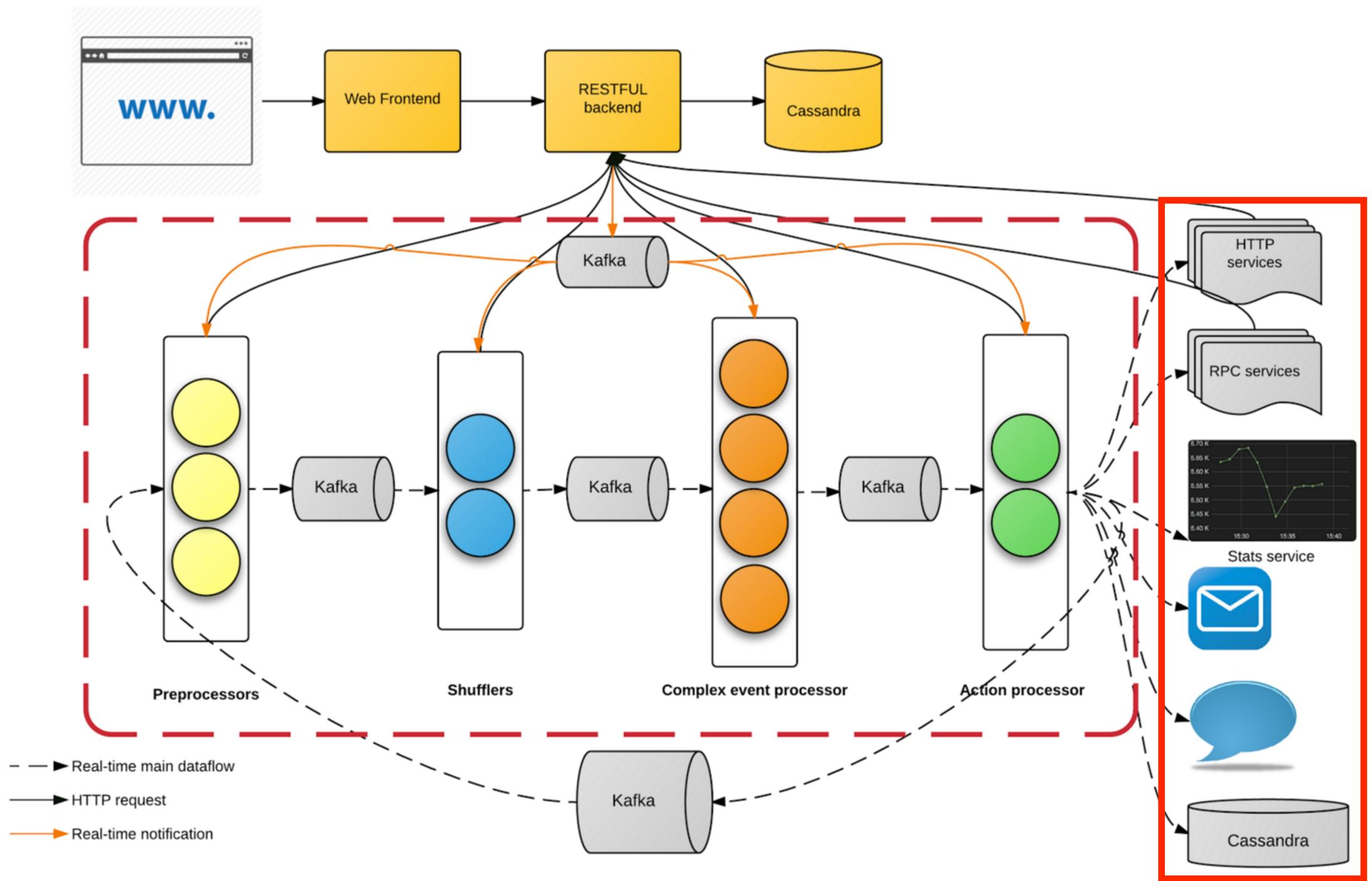








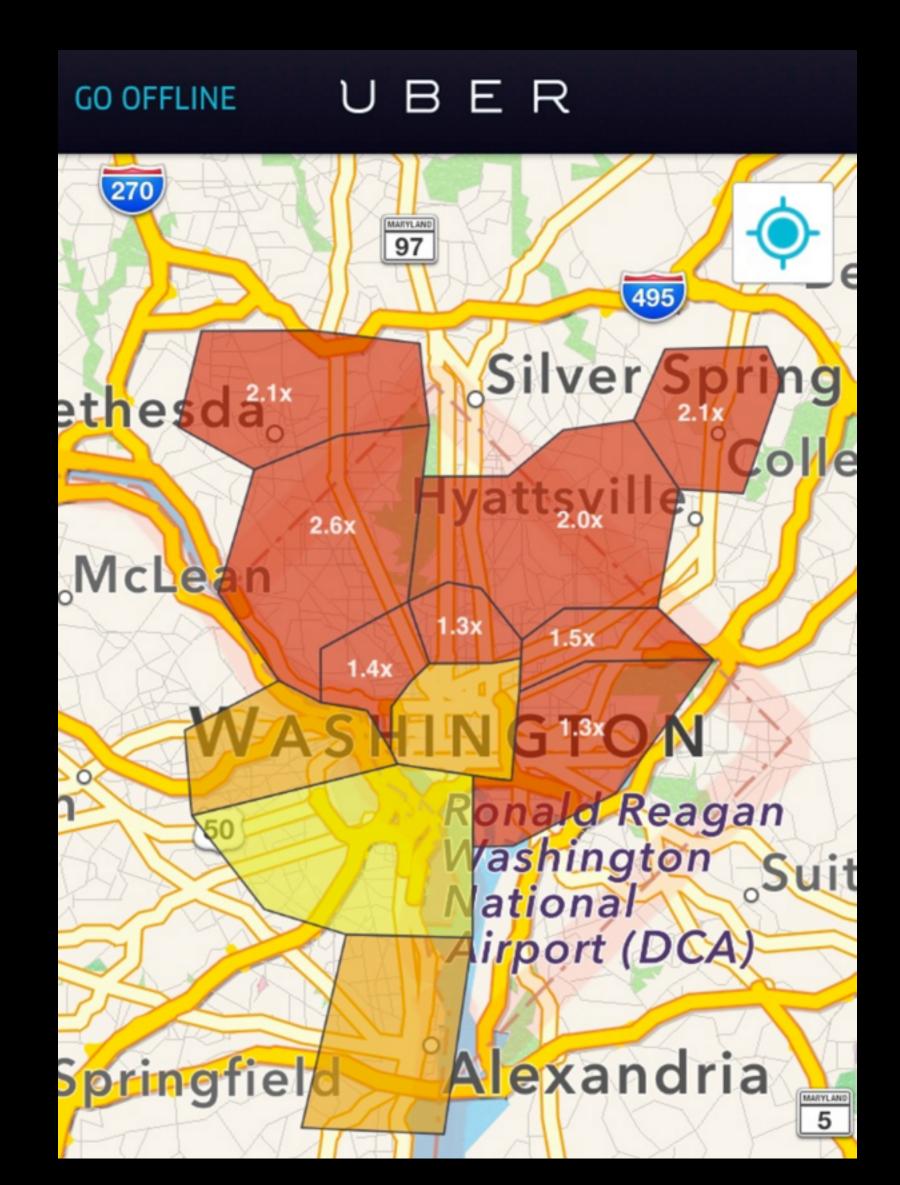


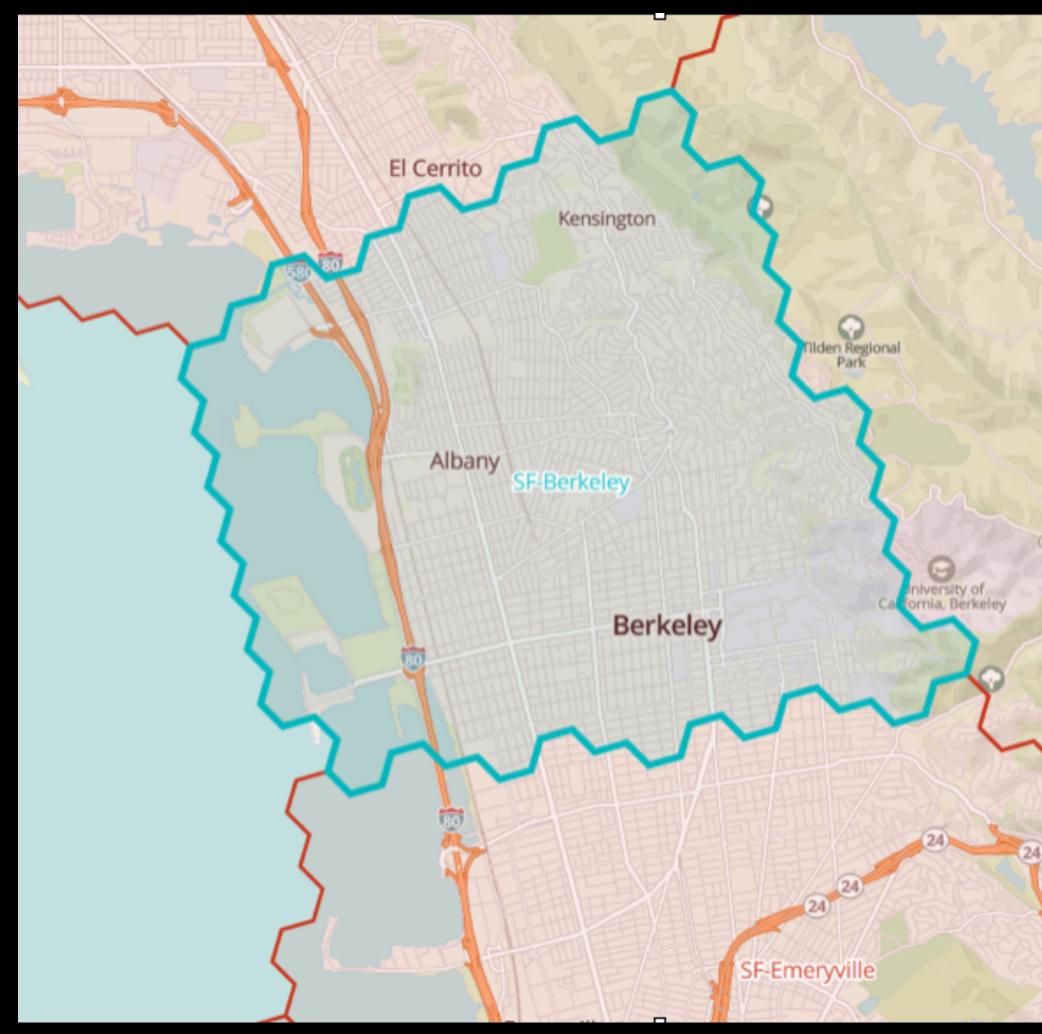


We need to evolve our architecture for other analytics

Clustering

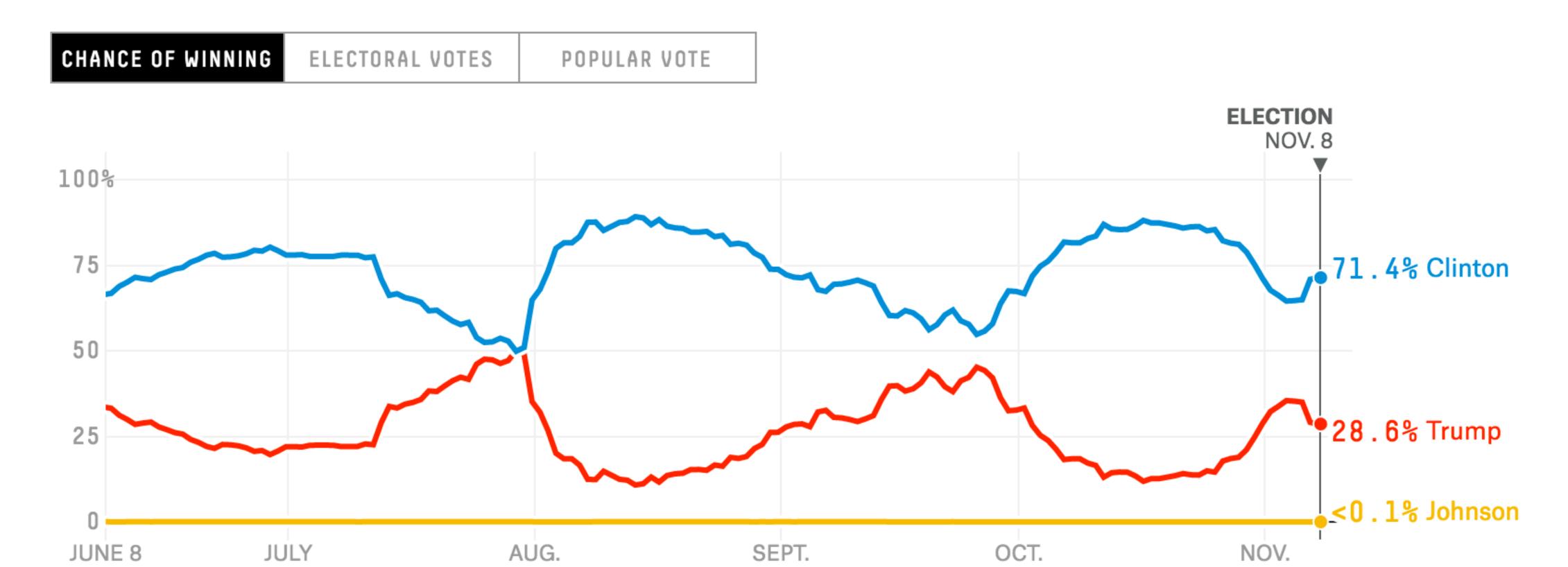
Manually Created Cluster





- Clustering based on key performance metrics

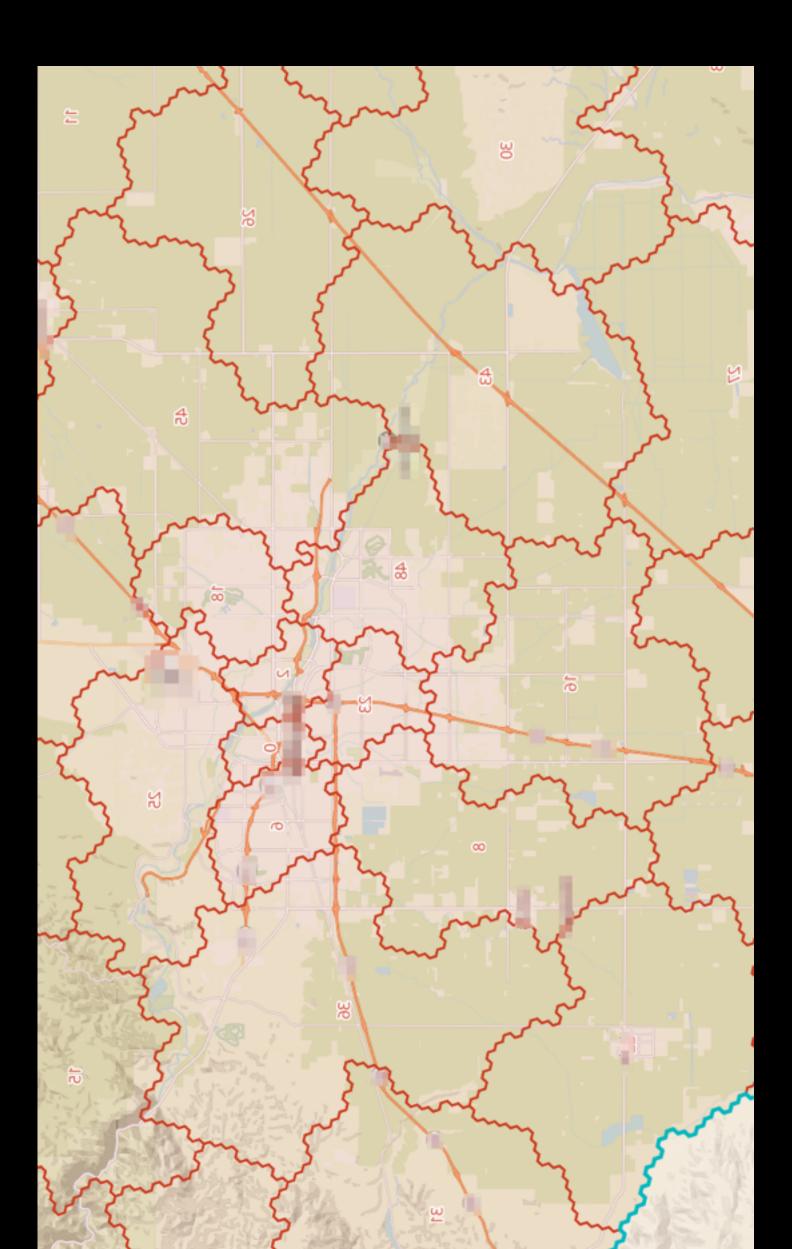
- Clustering based on key performance metrics
- Continuously measure the clusters

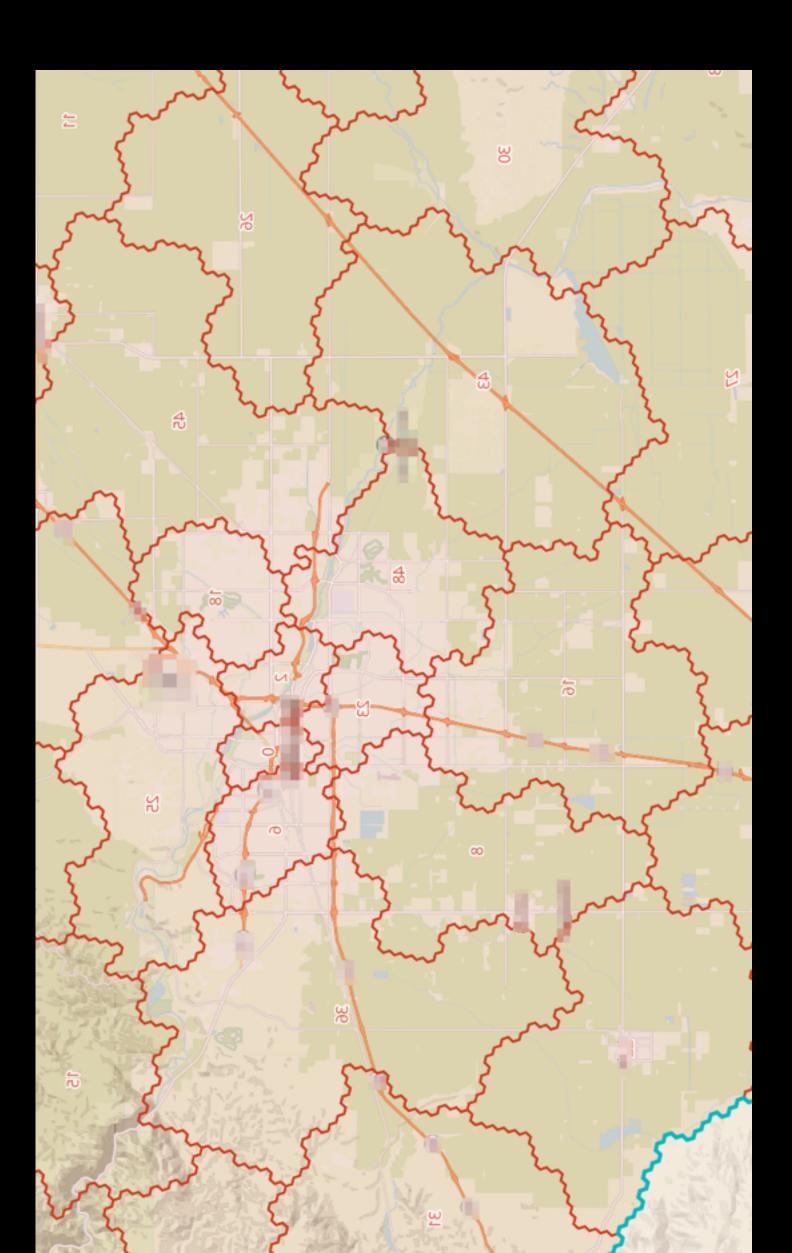


- Clustering based on key performance metrics
- Continuously measure the clusters
- Different clustering for different business needs

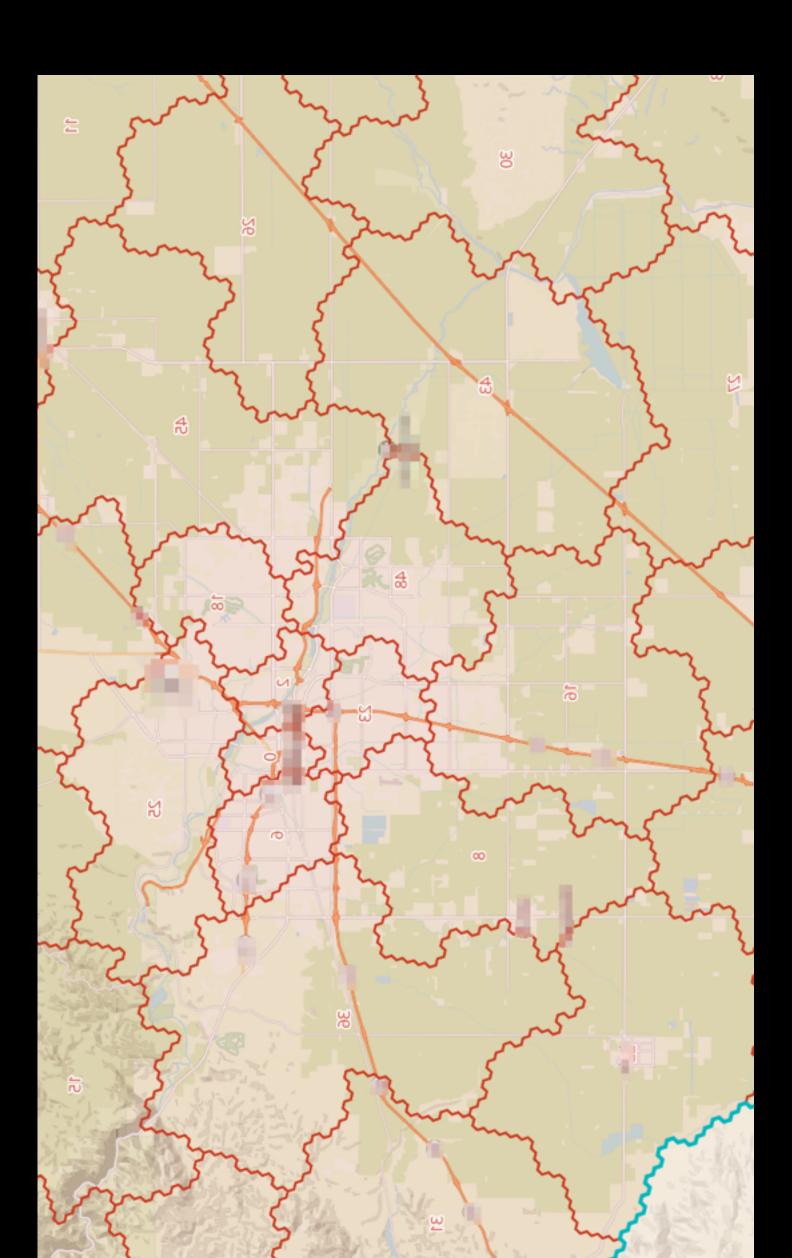
- Clustering based on key performance metrics
- Continuously measure the clusters
- Different clustering for different business needs
- Create clusters in minutes for all cities

- Clustering based on key performance metrics
- Continuously measure the clusters
- Different clustering for different business needs
- Create clusters in minutes for all cities
- Foundation for other stream analytics

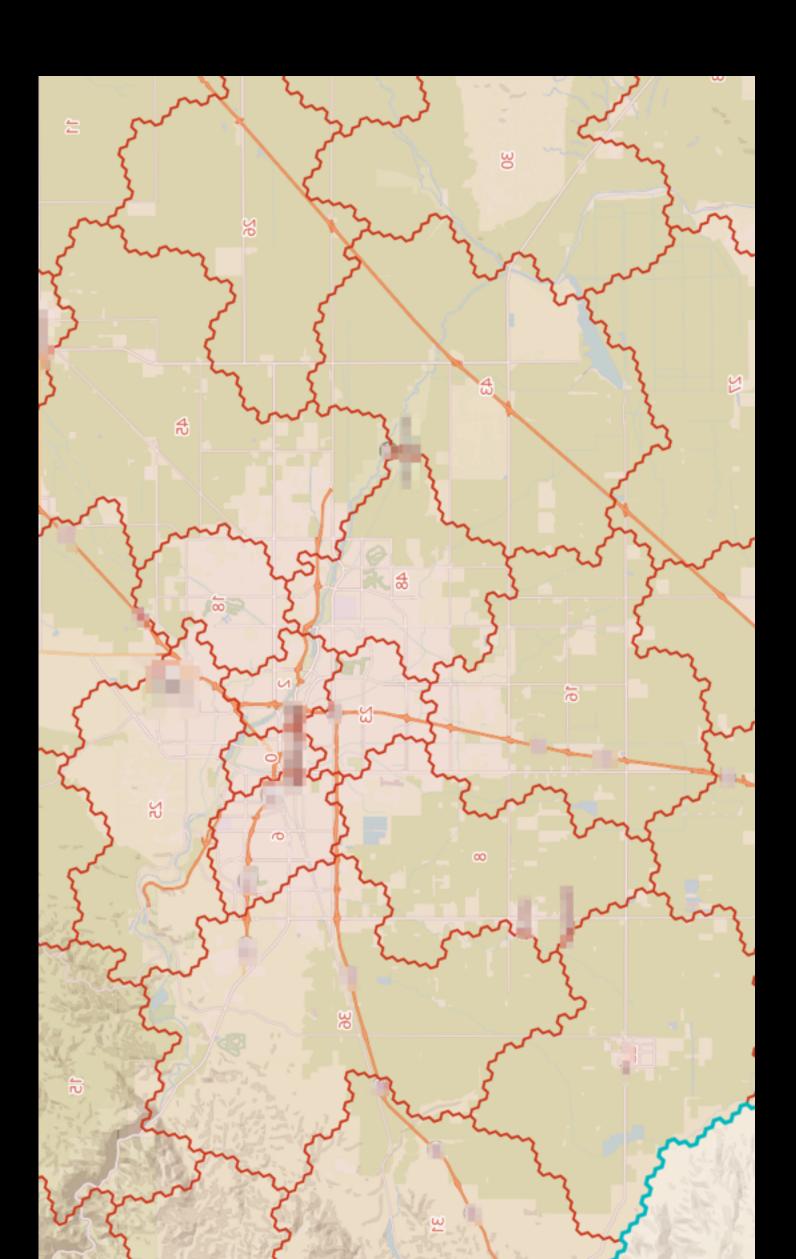




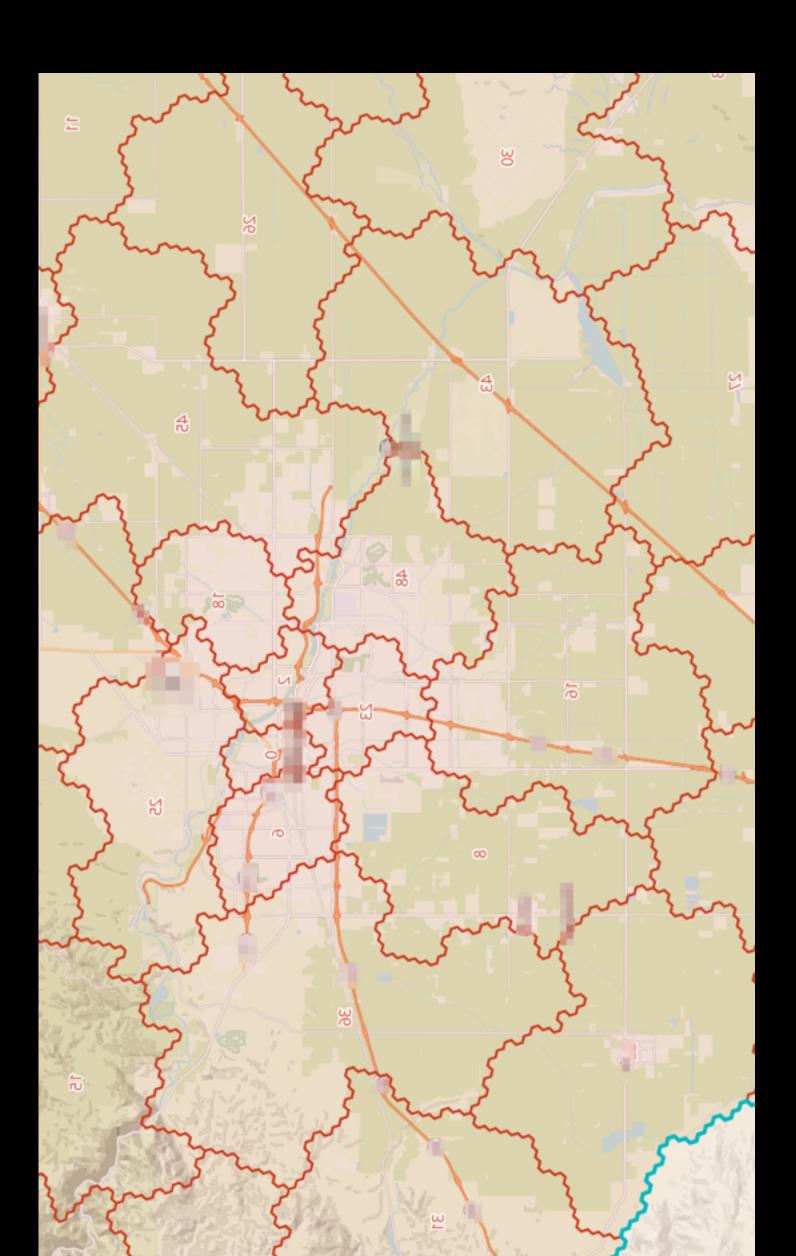
- All cities under 3 minutes



- All cities under 3 minutes
- Pluggable algorithms and measurements

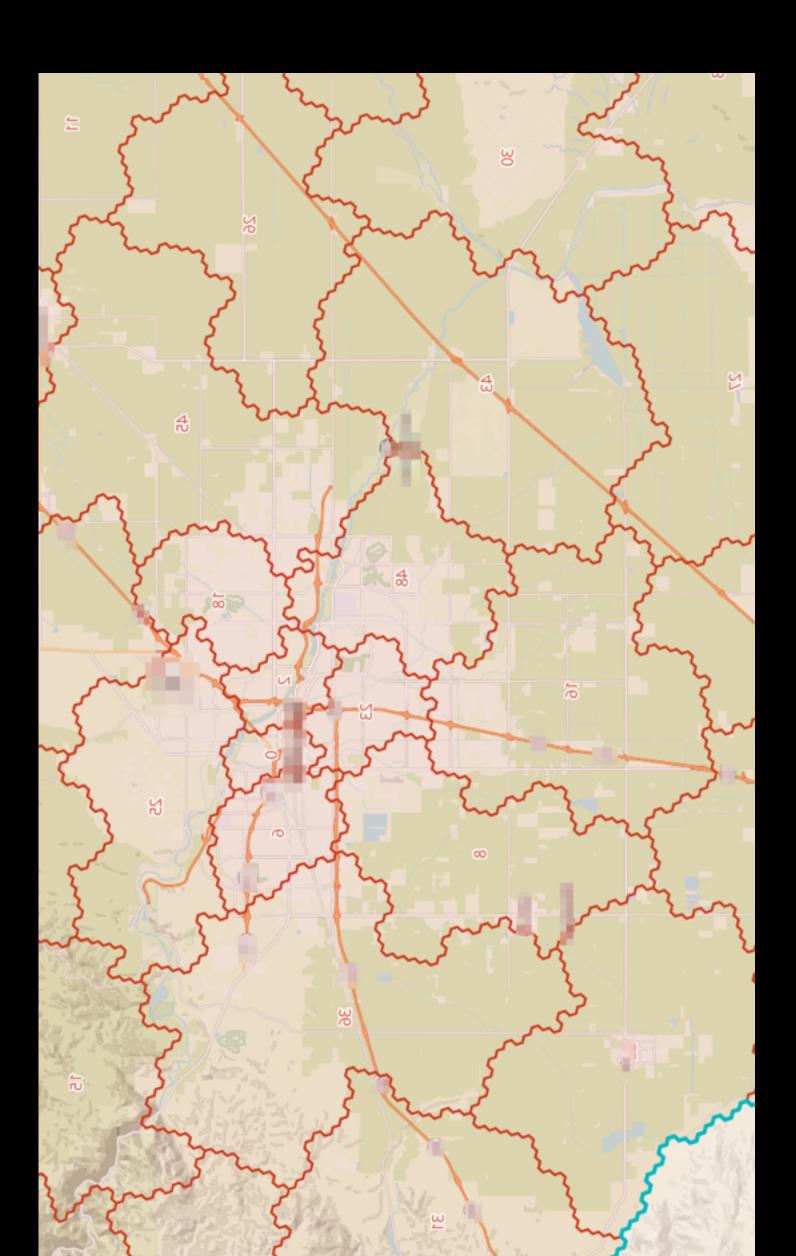


- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering



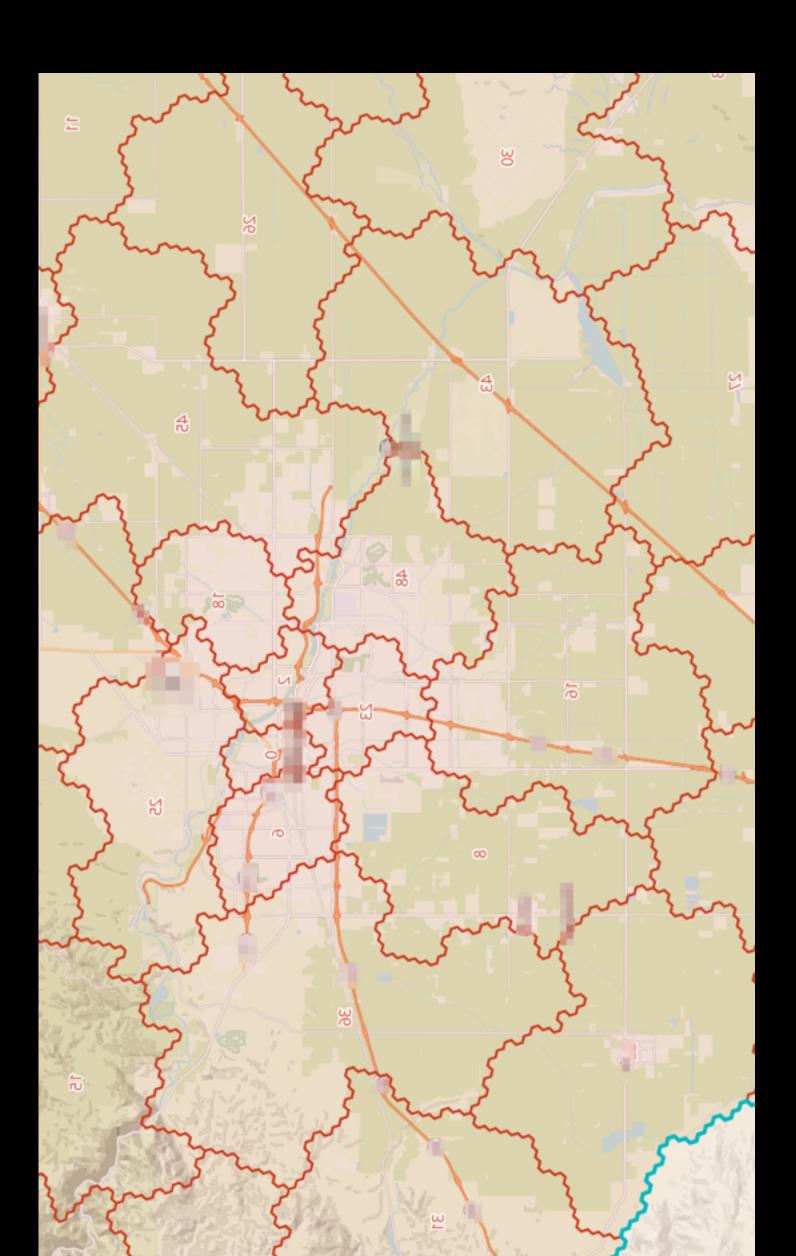
- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement

Home-grown Clustering Service



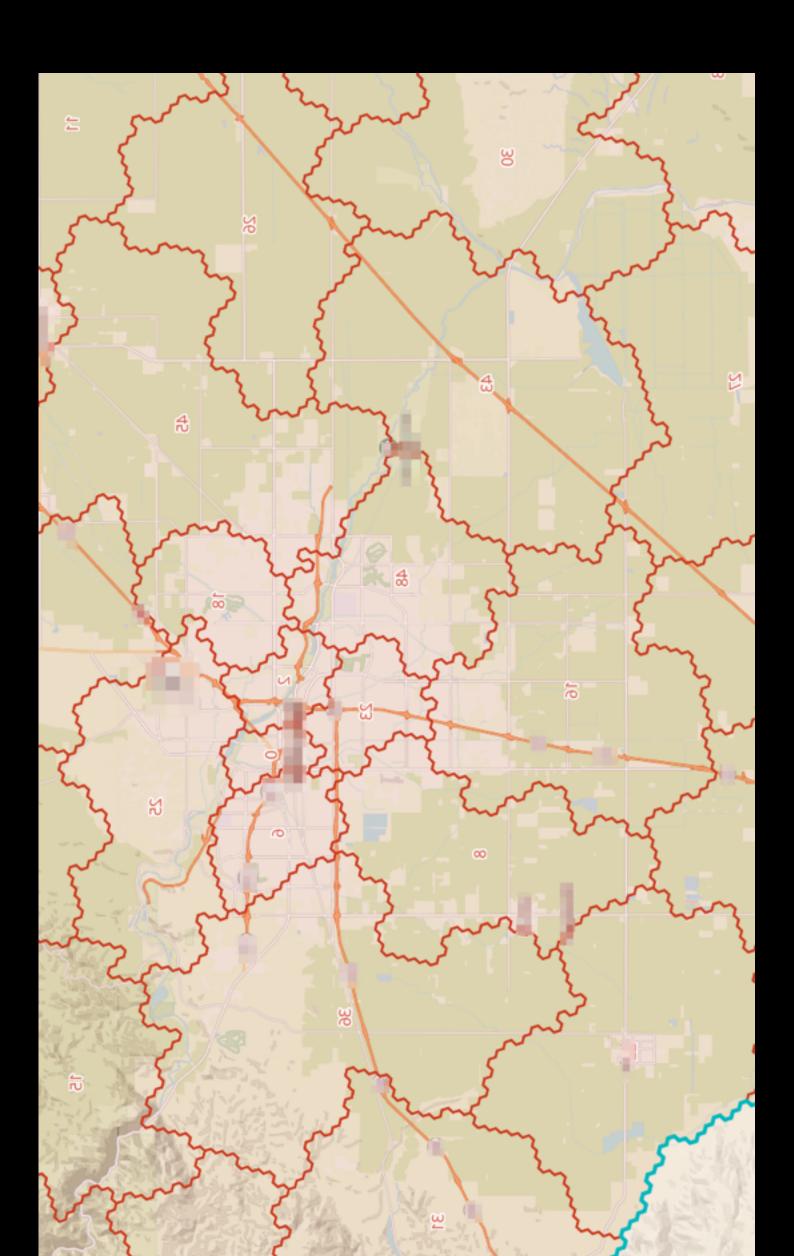
- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement
- Shared optimizations

Home-grown Clustering Service



- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement
- Shared optimizations. To put things in perspective:
 - 70,000 hexagons in SF
 - Naive distance function requires at least 70,000 x
 - 70,000 = **4**.9 billion pairs!

Home-grown Clustering Service

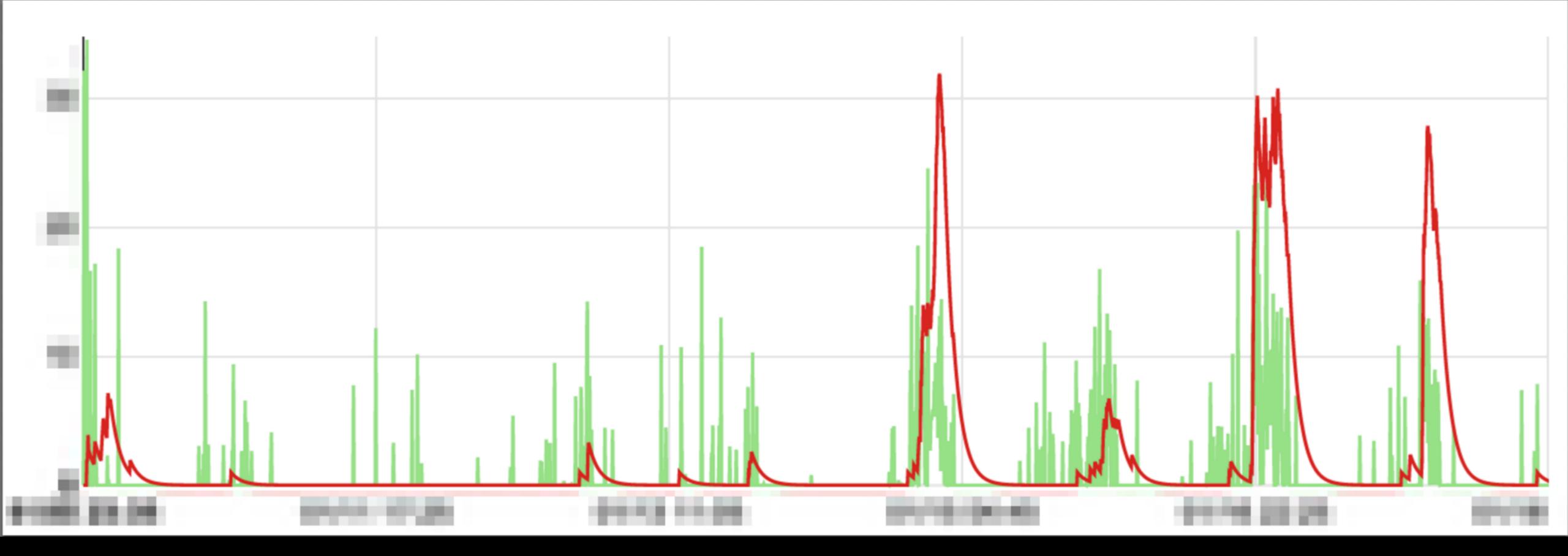


- All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering
- Real-time geo-temporal data for measurement
- Shared optimizations
 - Incremental updates
 - Compact data representation
 - Memoization
 - Avoid anything more complex than O(nlog(n))

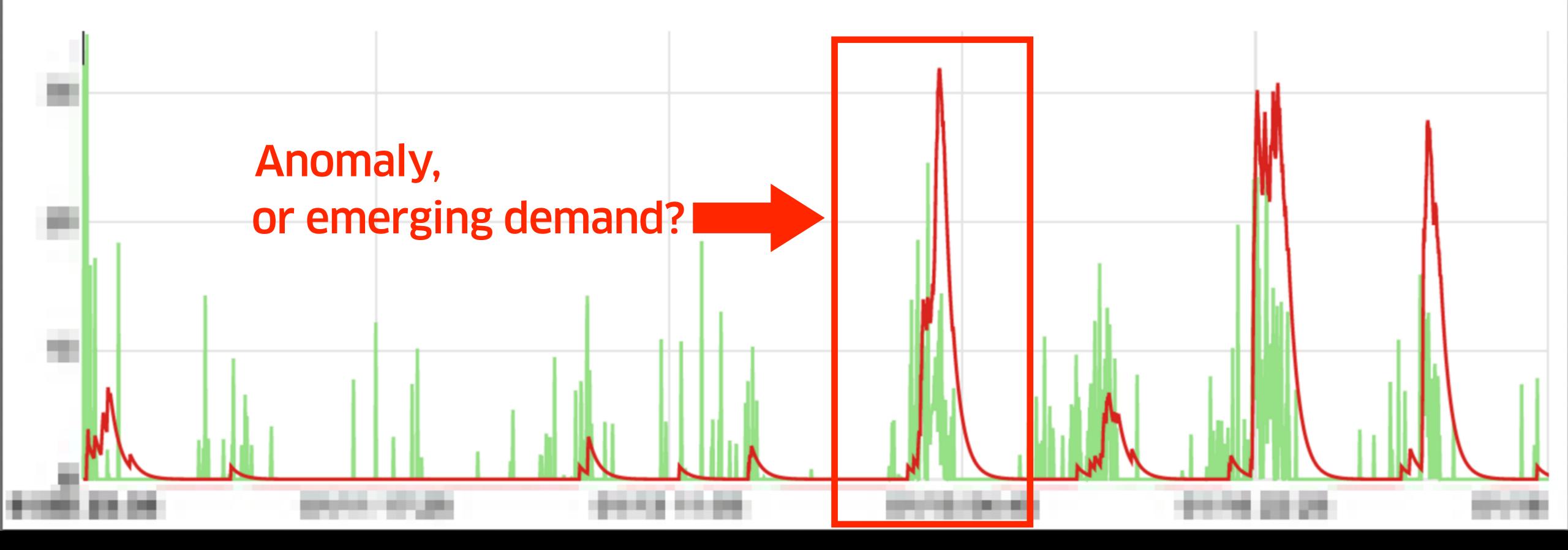
Every decision is based on forecasting

Forecasting based on both historical data and stream input

- Forecasting based on both historical data and stream input

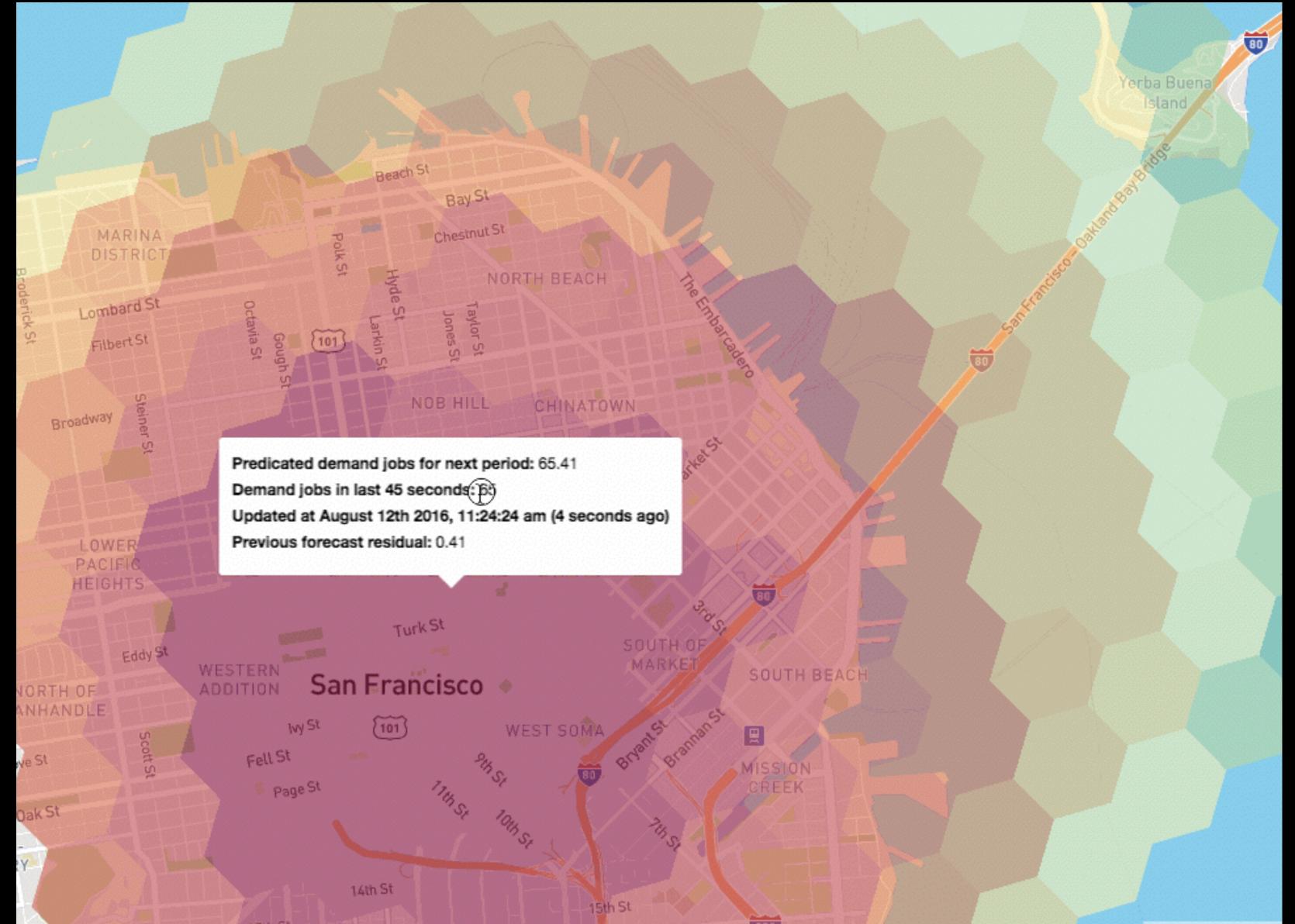


- Forecasting based on both historical data and stream input



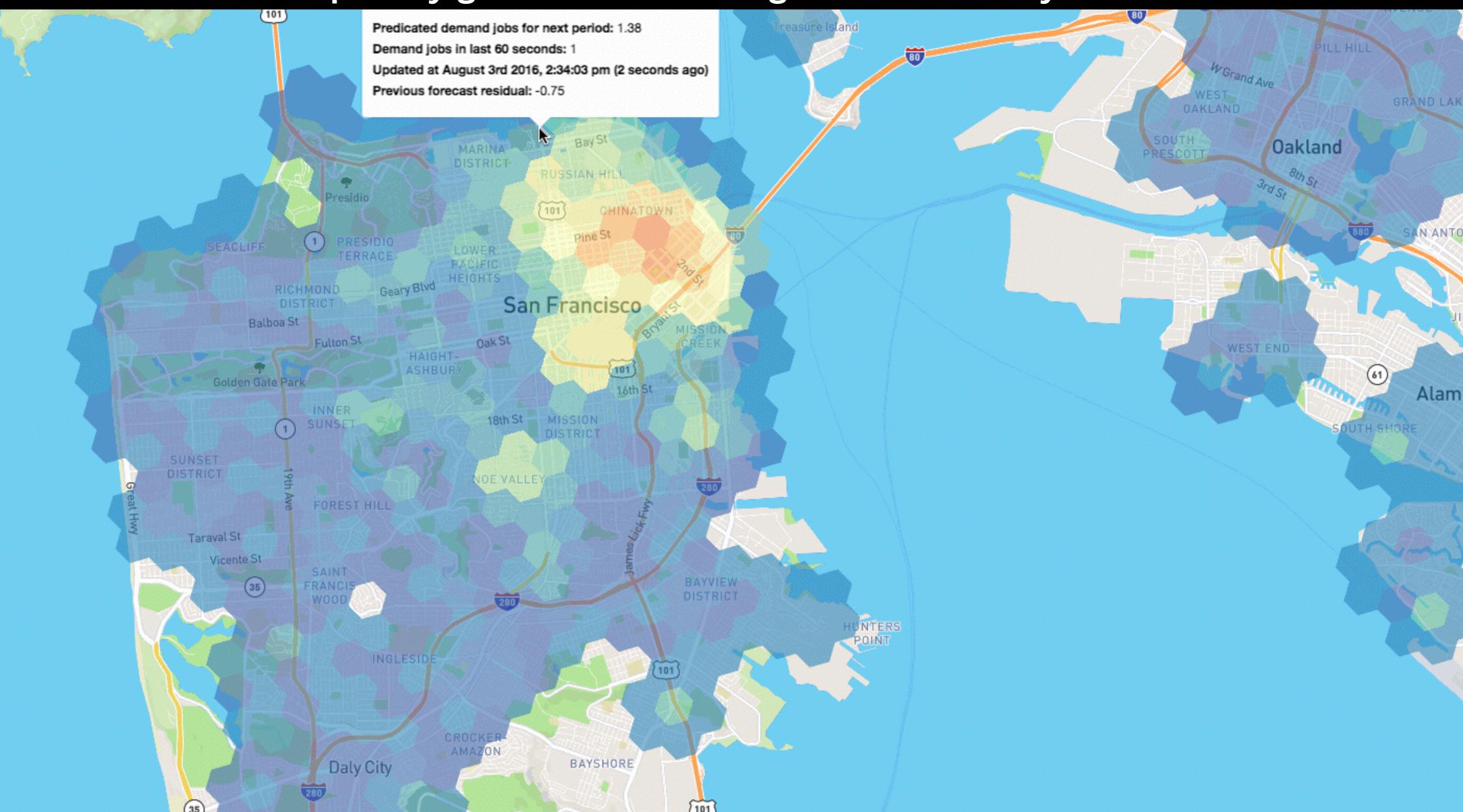
- Spatially granular forecasting - down to every hexagon

Forecasting Spatially granular forecasting - down to every hexagon



- Temporally granular forecasting - down to every minute

Forecasting Temporally granular forecasting - down to every minute



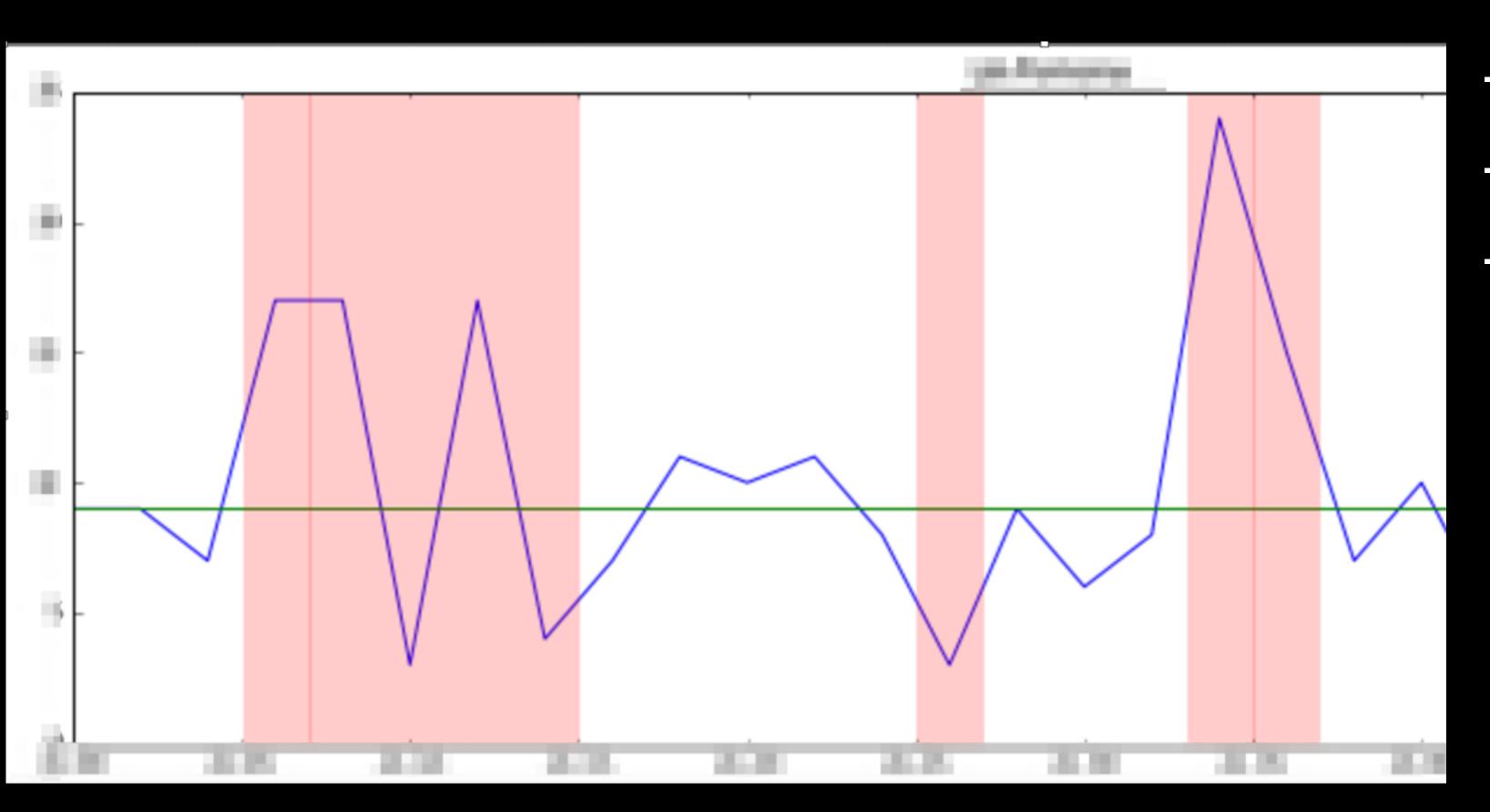
Pattern Detection

- Similarity of different metrics across geolocation and time
- Metric outliers across geolocations and time
- Frequent occurrences of certain patterns
- Clustered behavior
- Anomalies

Common Requirements in Pattern Detection

- Not just traditional time series analysis
- Incorporating insights on marketplace data
- Required both historical data and real-time input
- Spatially granular patterns down to every hexagon
- Temporally granular patterns down to every minute

Example: Anomaly Detection

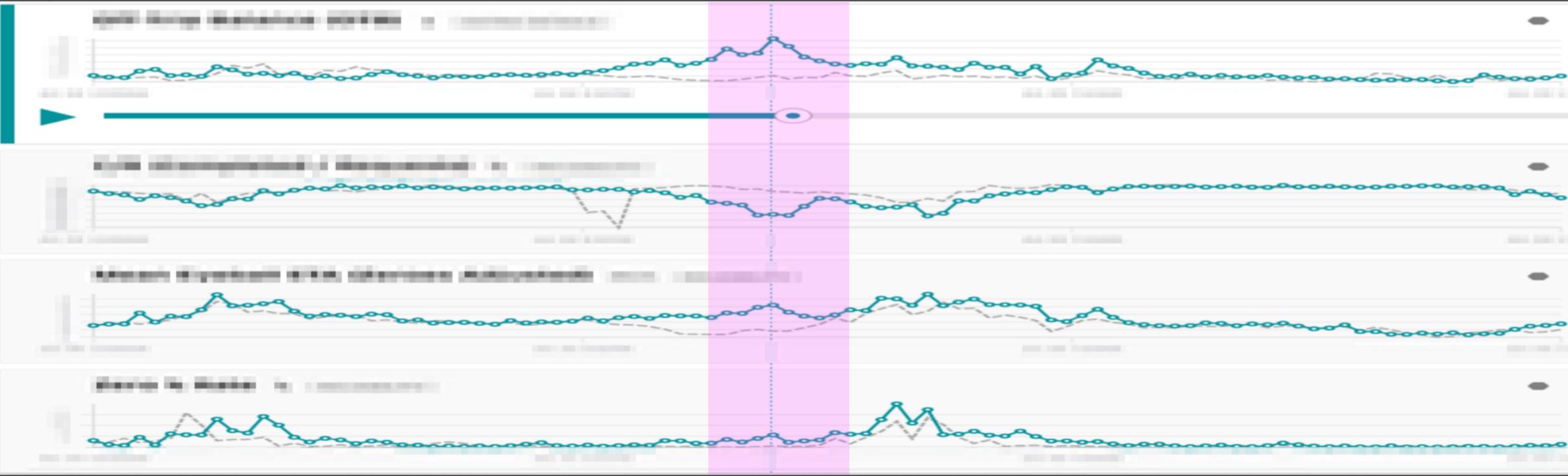


- Simple time series analysis
- For a single geo area
- Can be noisy

A More Realistic Anomaly Detection

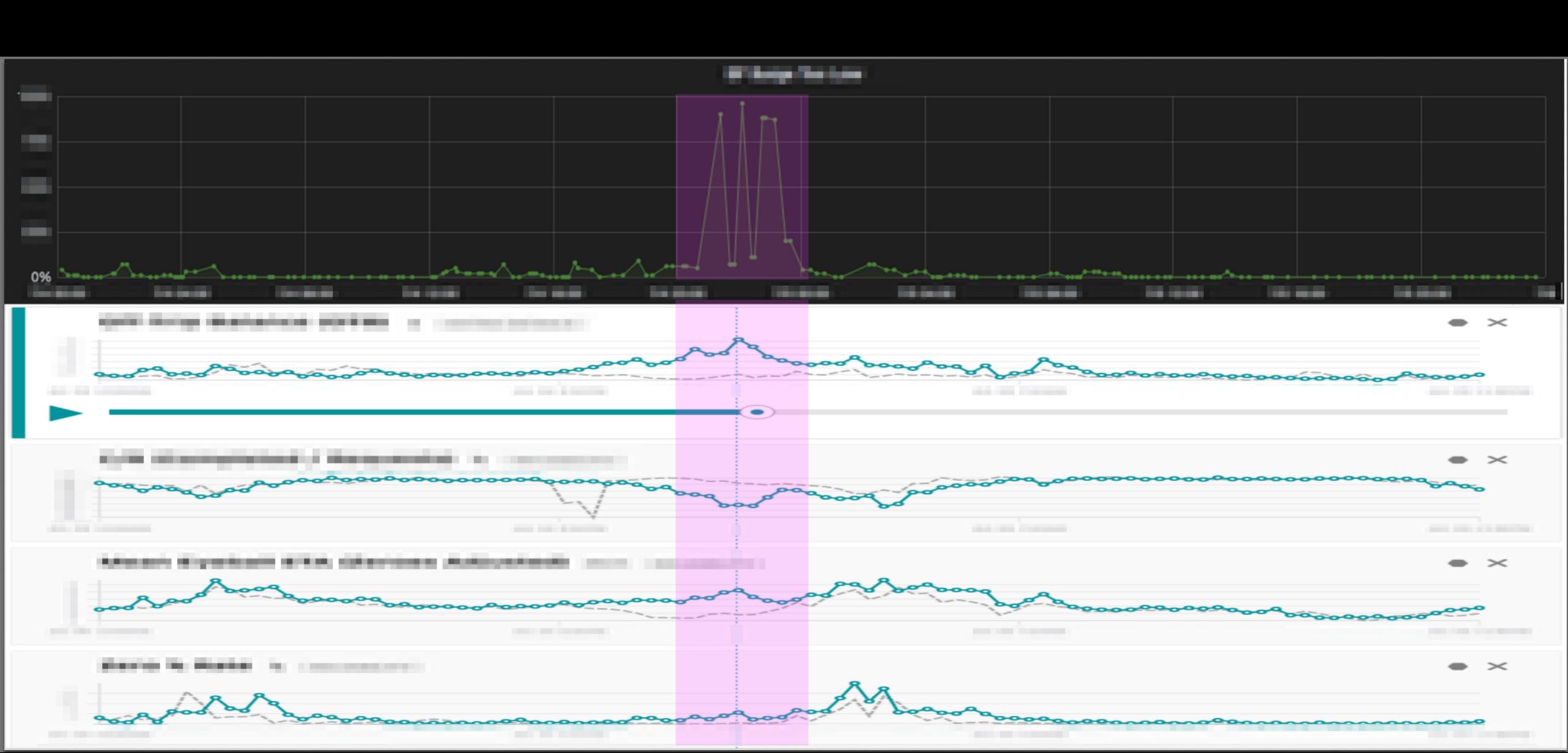
 \sim >

Example: Anomaly Detection



 \sim >

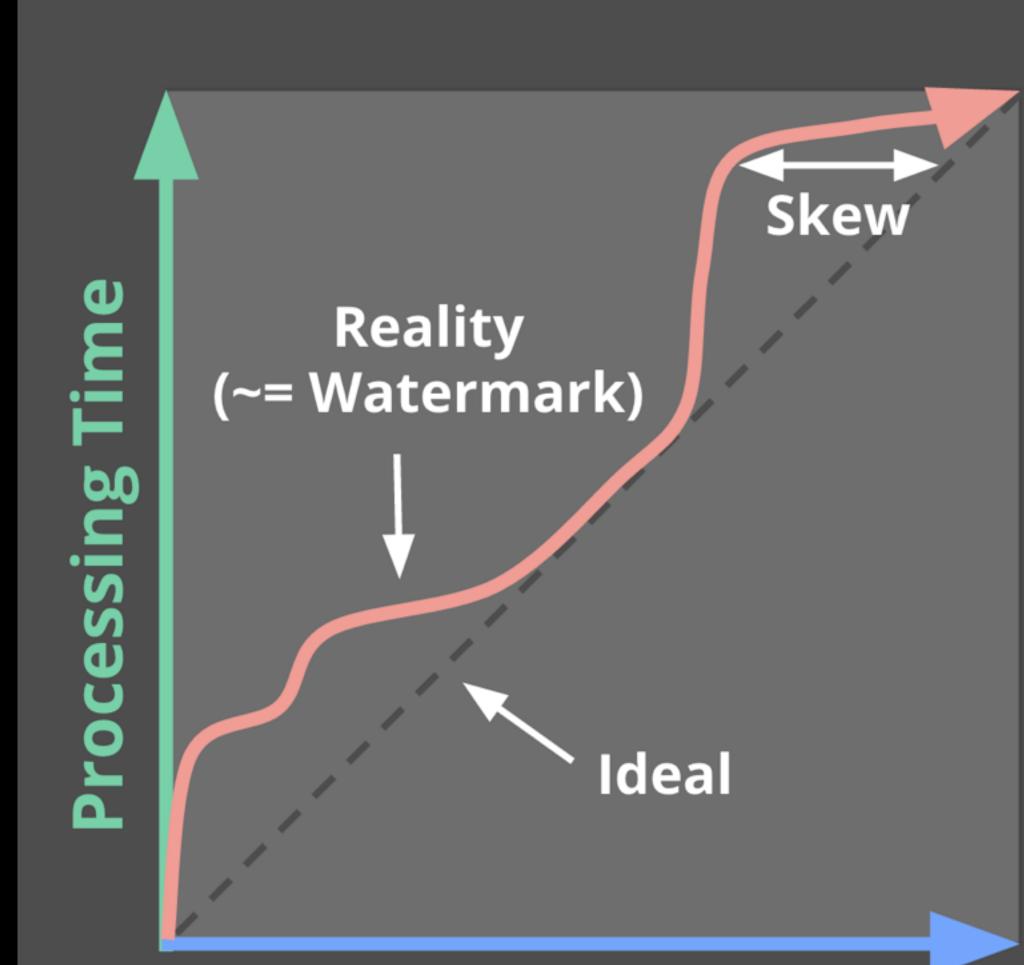
Example: Anomaly Detection



What's the right architecture to support the analytics use cases?

- Time series by event time

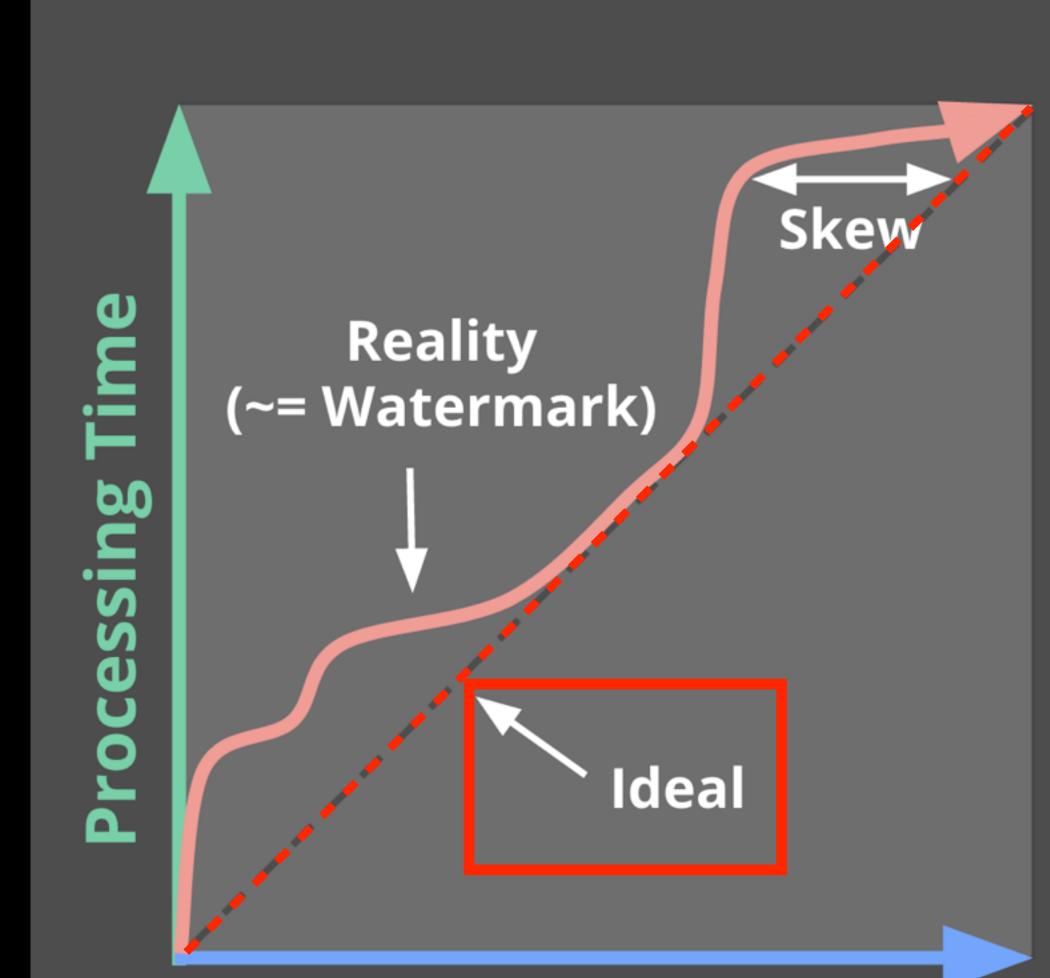
- Time series by event time



Event Time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

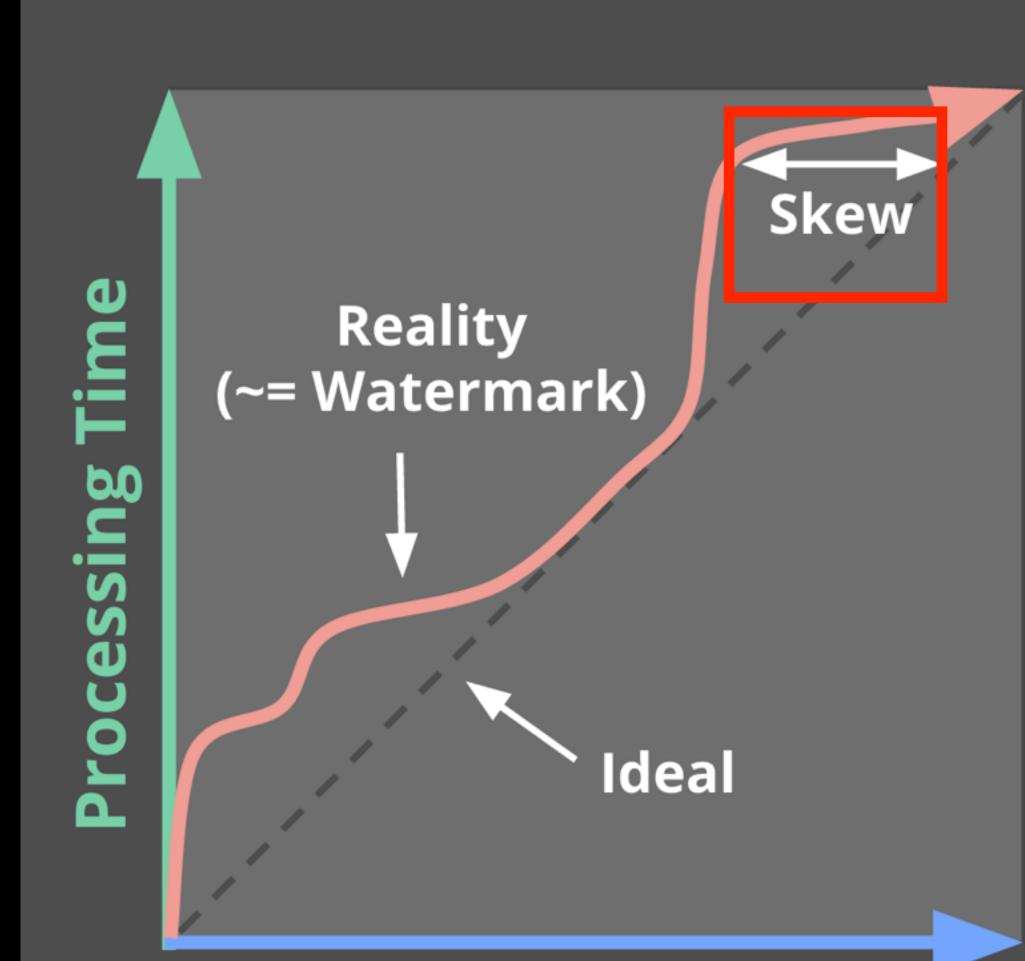
- Time series by event time



Event Time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

- Time series by event time



Event Time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

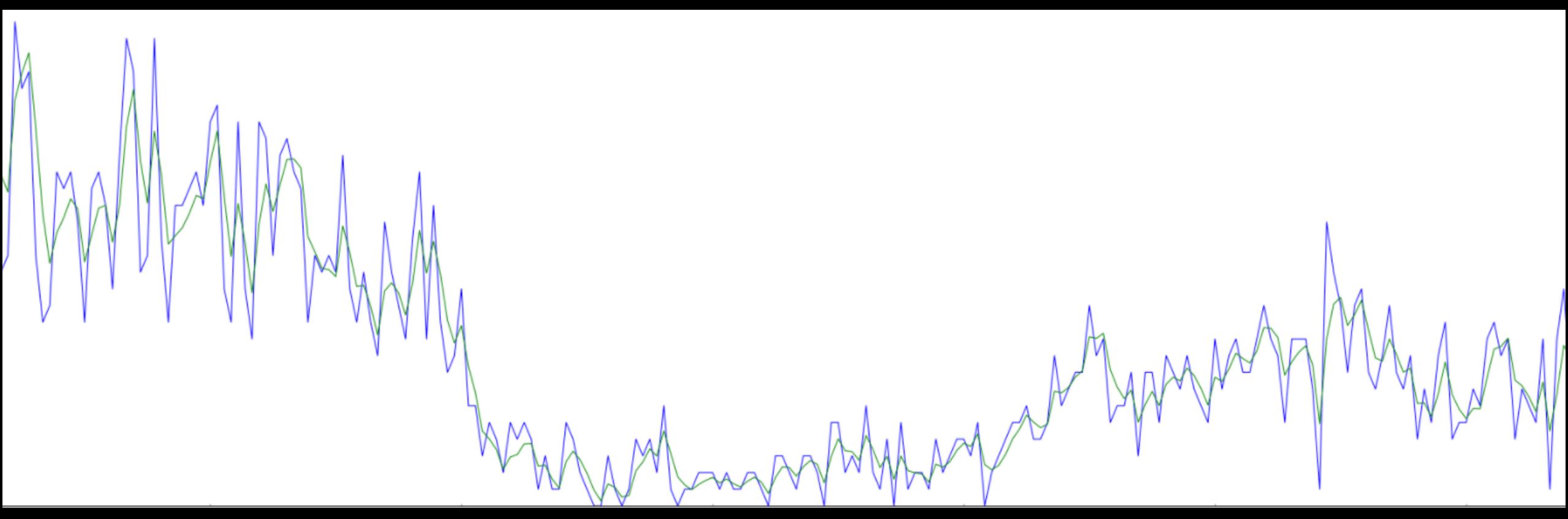
- Time series by event time

- Time series by event time
- - e.g. event-based triggers

- Time series by event time
- - e.g. event-based triggers
 - e.g., triggers of computation results

- Time series by event time
- Stateful processing

- Time series by event time
- Stateful processing. E.g.,



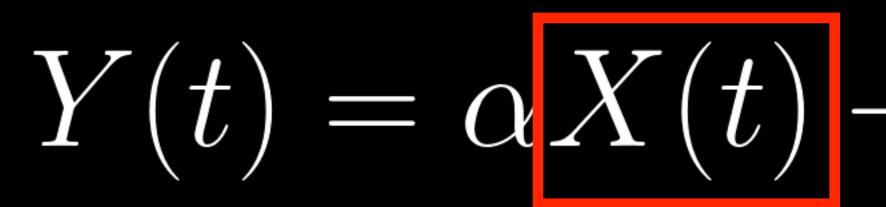
- Time series by event time
- Stateful processing. E.g.,

$$Y(t) = \alpha X(t) -$$

- Flexible windowing - tumbling, sliding, conditionally triggered

$+\left(1-\alpha\right)Y(t-1)$

- Time series by event time
- Stateful processing. E.g.,



- Flexible windowing - tumbling, sliding, conditionally triggered

$Y(t) = \alpha X(t) + (1 - \alpha)Y(t - 1)$

- Time series by event time
- Stateful processing. E.g.,
 - $Y(t) = \alpha X(t) +$

$$-(1-lpha)Y(t-1)$$

- Time series by event time
- Stateful processing. E.g.,

 $Y(t) = \alpha X(t) + (1 - \alpha) Y(t - 1)$ State

- Time series by event time
- Stateful processing. E.g.,
 - $Y(t) = \alpha X(t) +$

$$(1 - \alpha)Y(t - 1)$$
State per key

- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered
- Stateful processing
- Unified stream

- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered
- Stateful processing

- Unified stream

- Real-time streams: unbounded streams

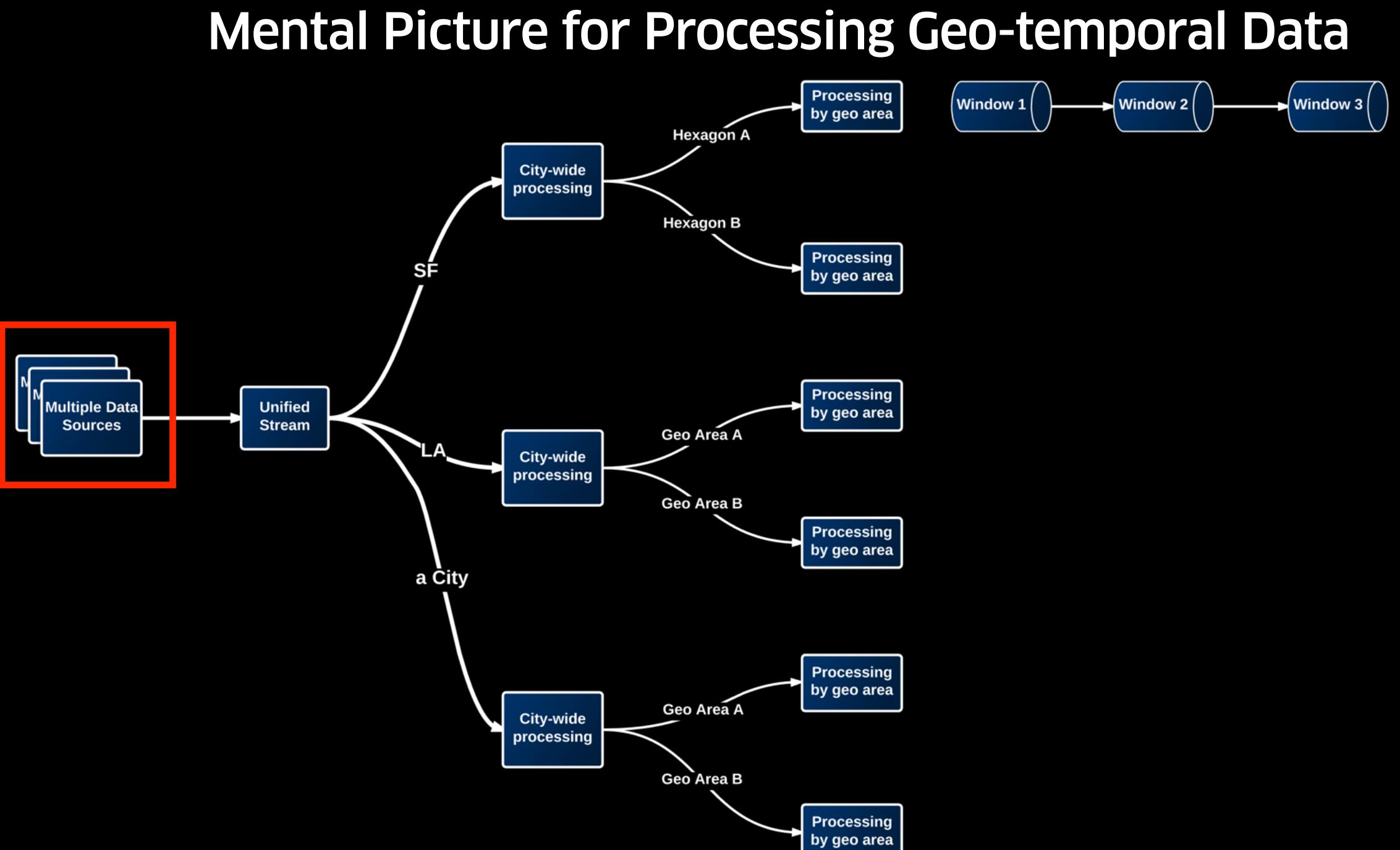
- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered
- Stateful processing
- Unified stream
 - Real-time streams: unbounded streams
 - Batch: bounded streams

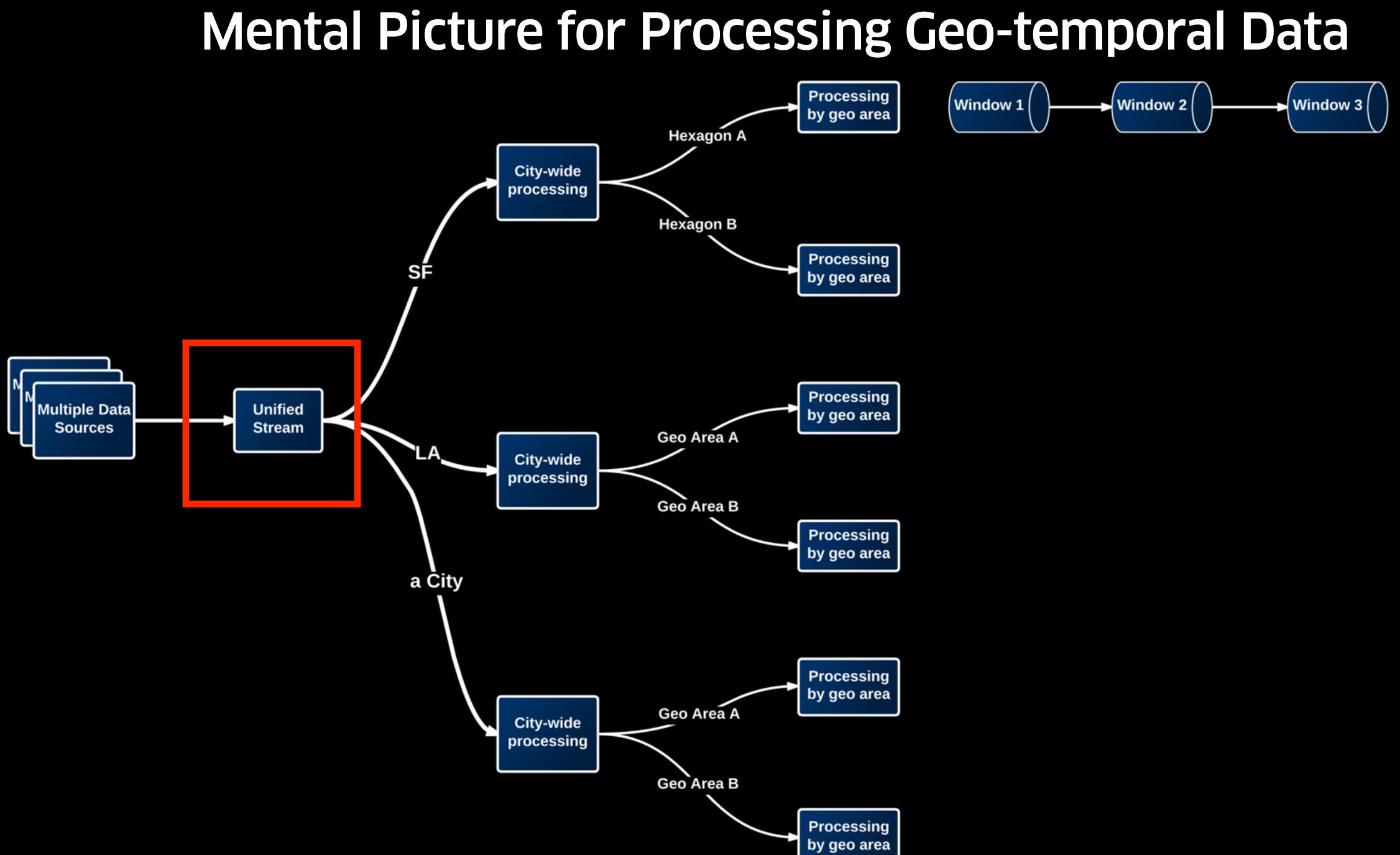
Shared abstraction: multi-dimensional geo-temporal data

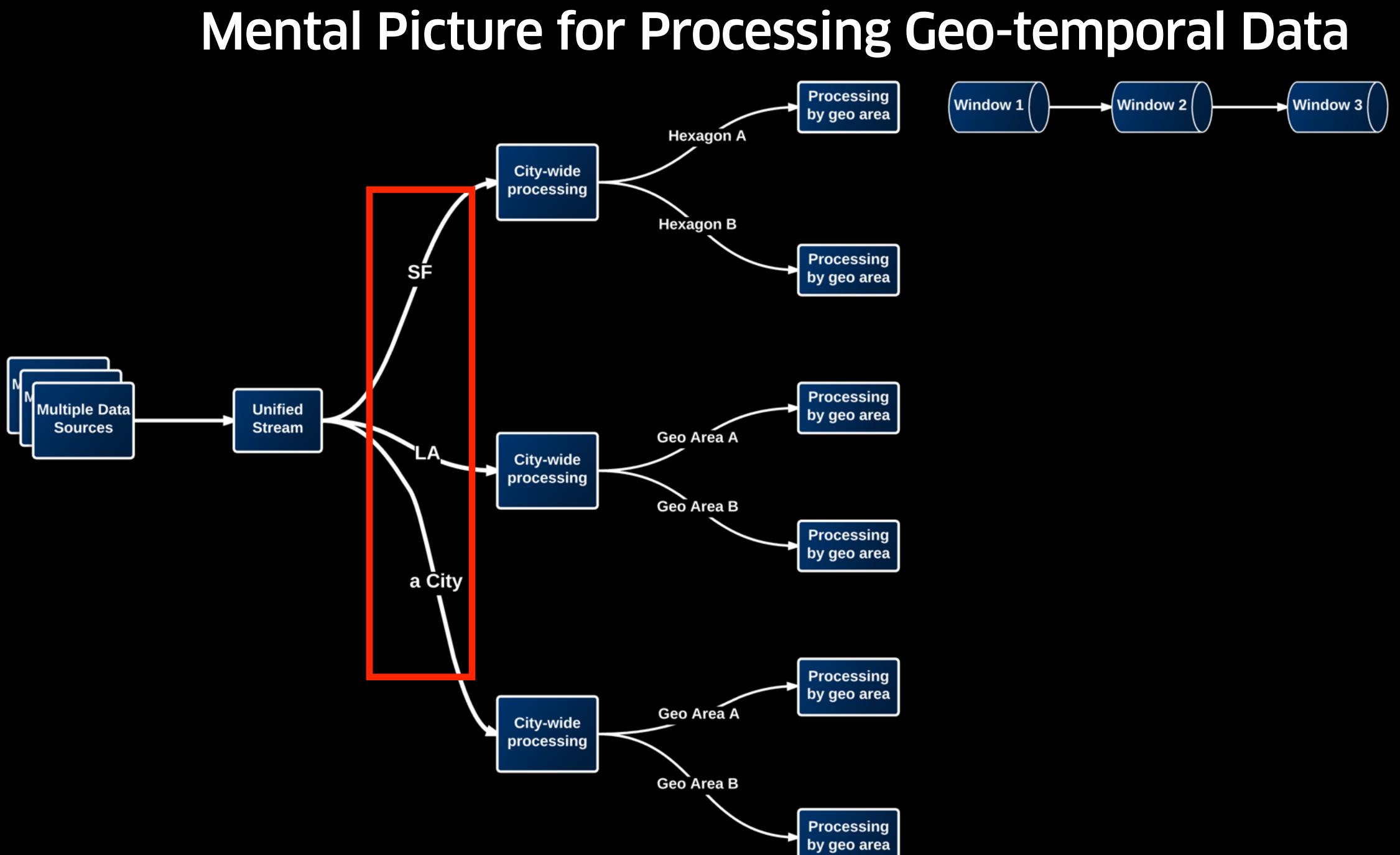
- Time series by event time
- Flexible windowing tumbling, sliding, conditionally triggered
- Stateful processing
- Unified stream
 - Real-time streams: unbounded streams
 - Batch: bounded streams
 - s/lambda/kappa

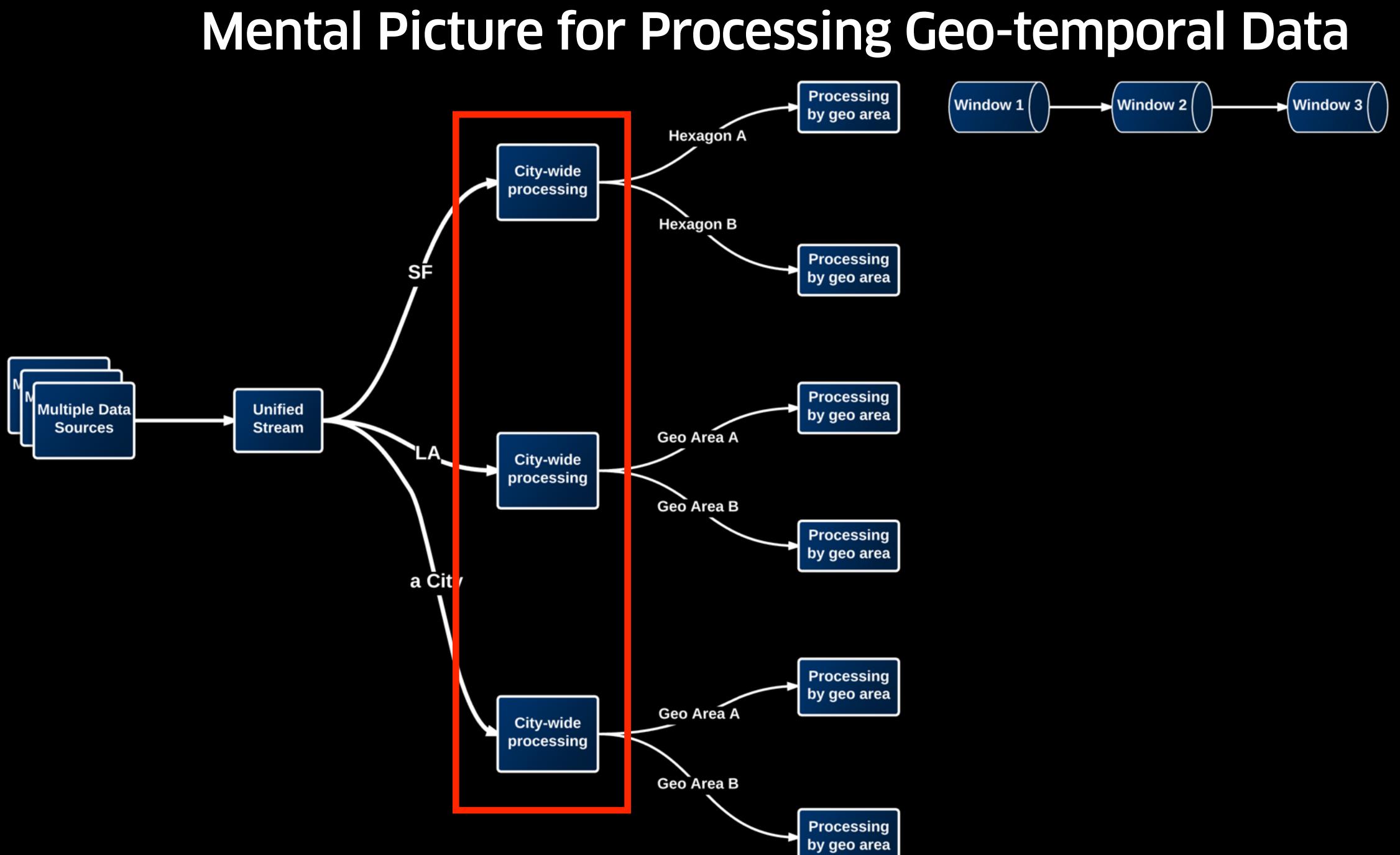
Apache Flink

- Ordering by event time
- Flexible windowing with watermark and triggers
- Exactly-once semantics
- Built-in state management and checkpointing
- Nice data flow APIs

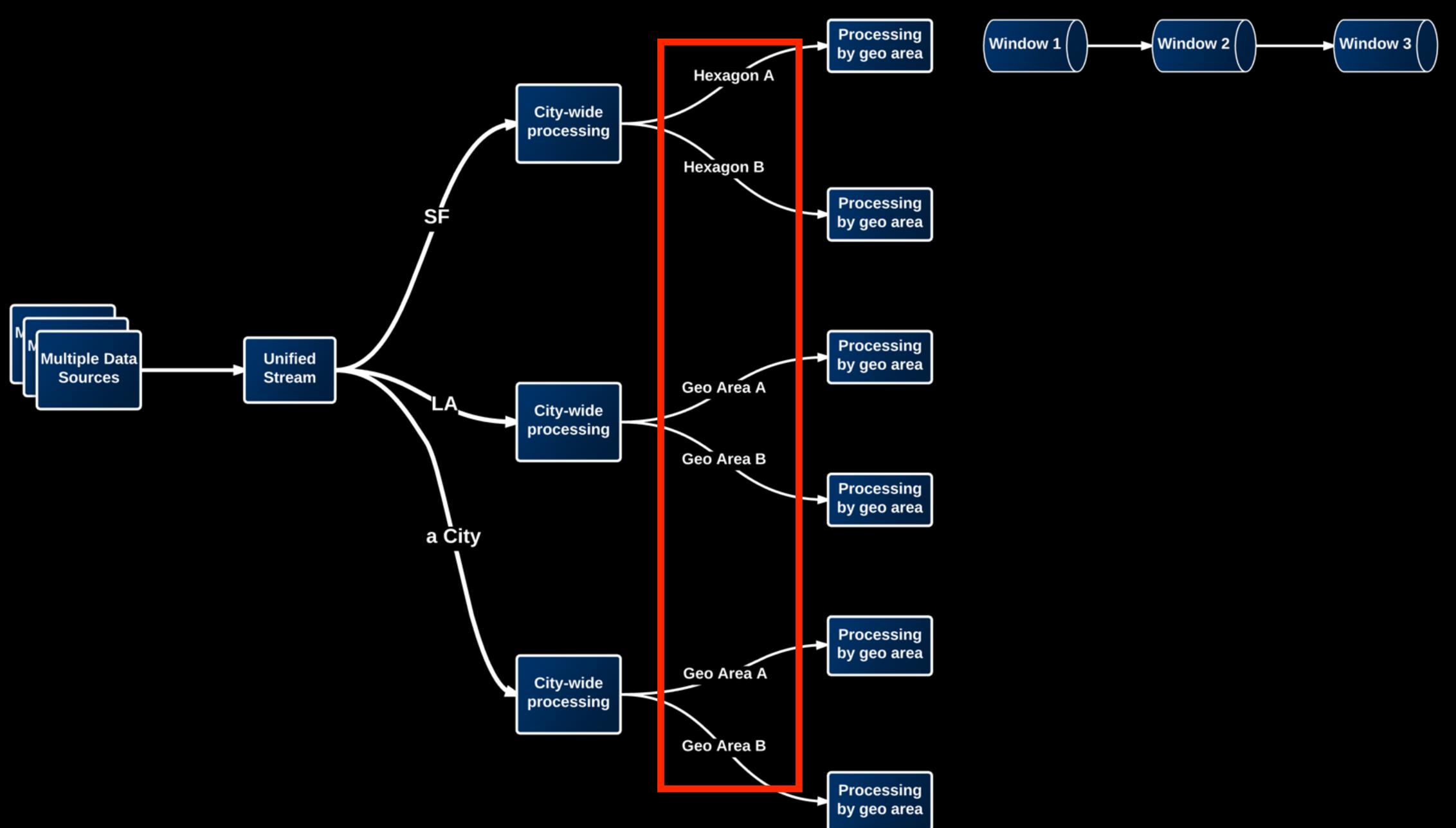




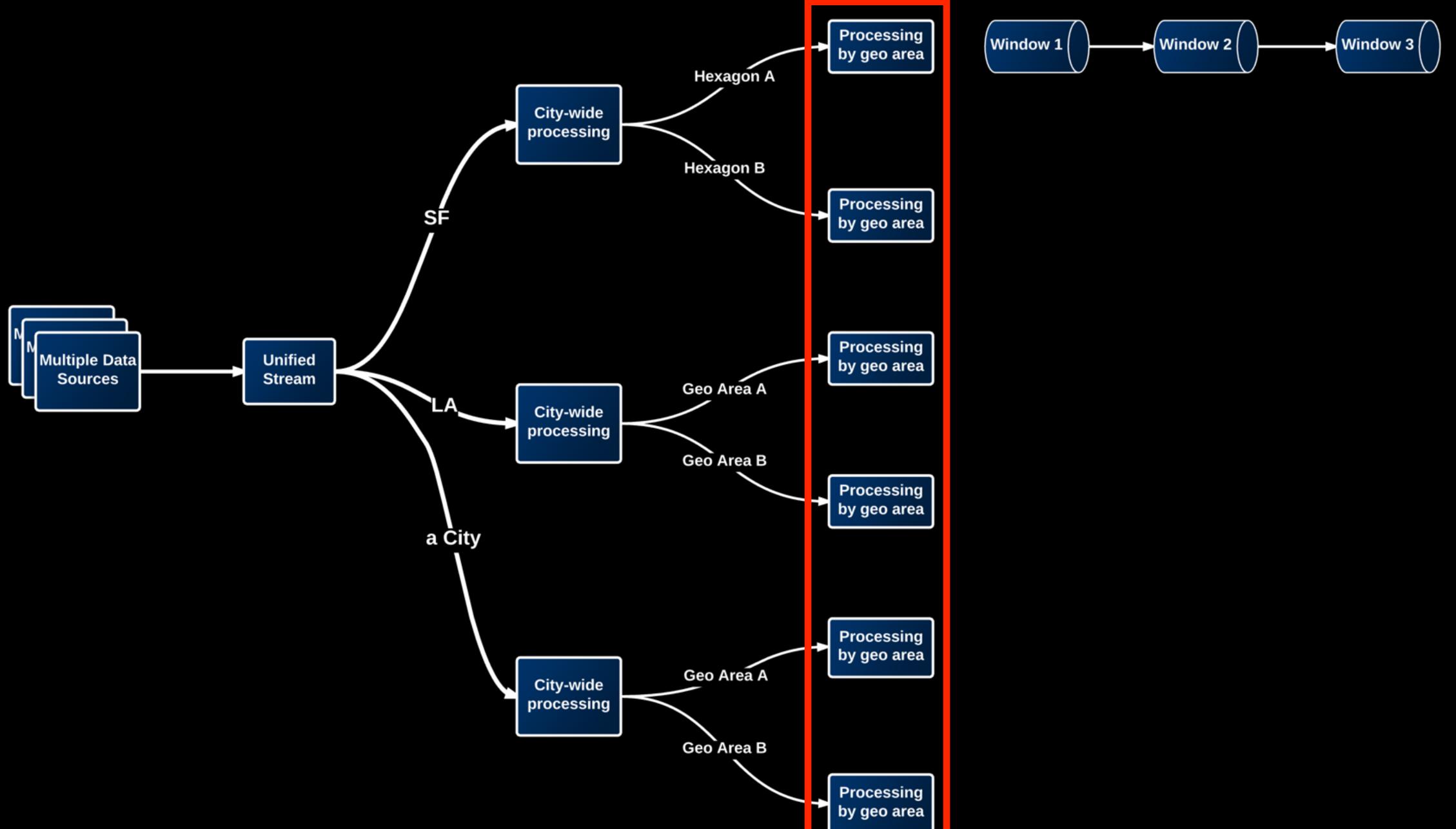


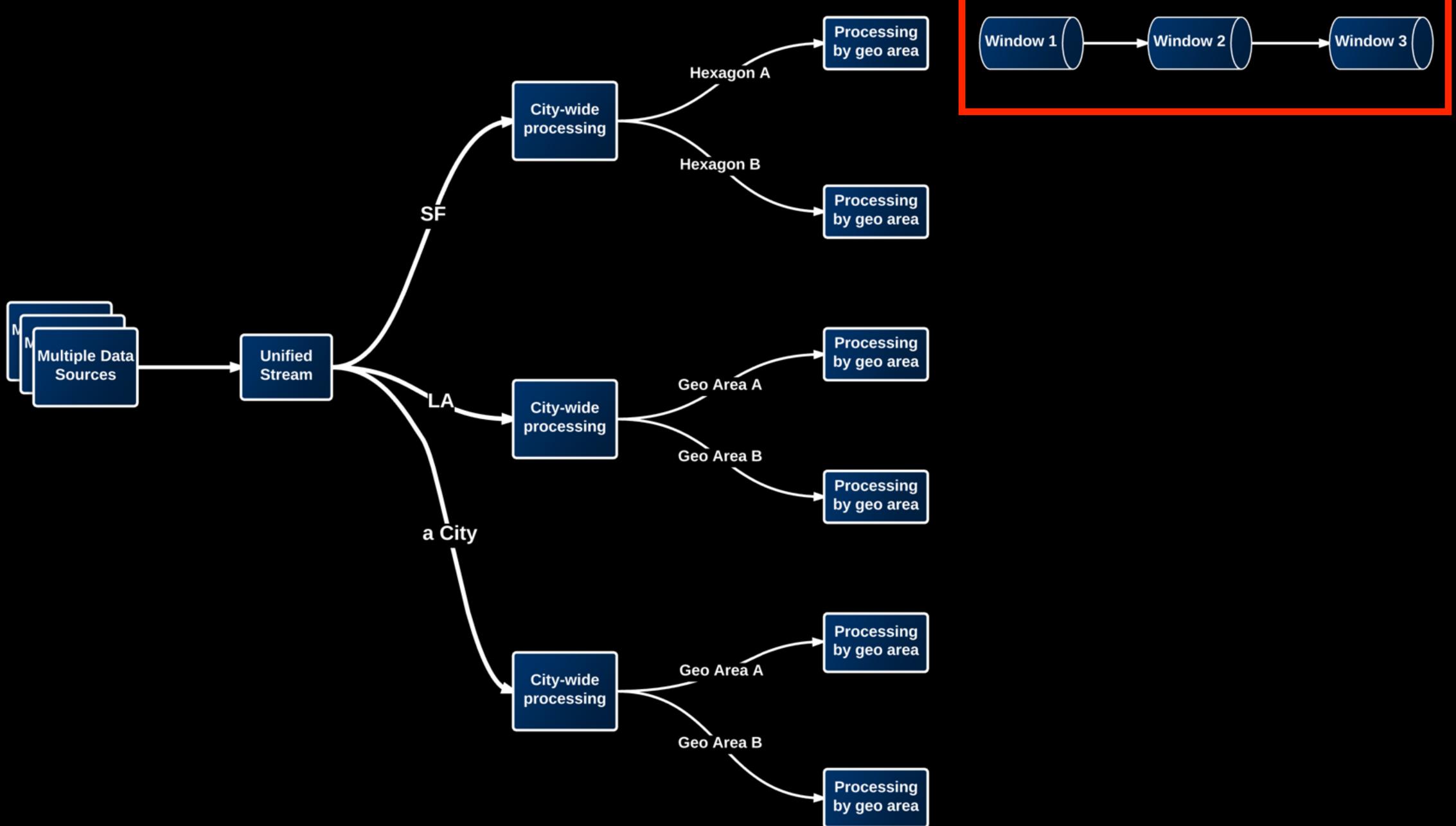


Mental Picture for Processing Geo-temporal Data



Mental Picture for Processing Geo-temporal Data



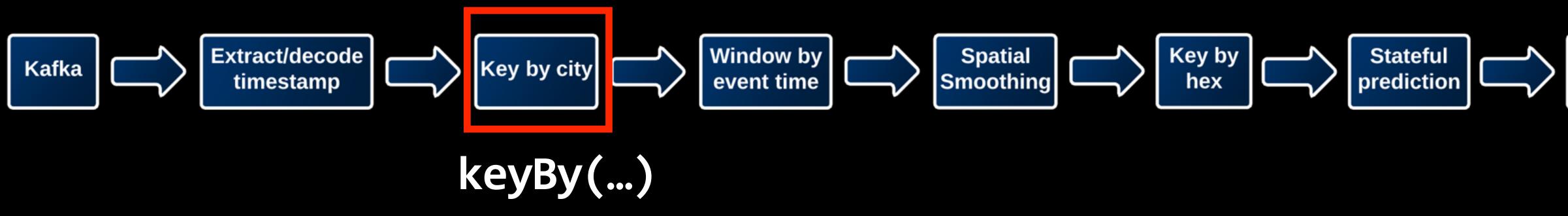


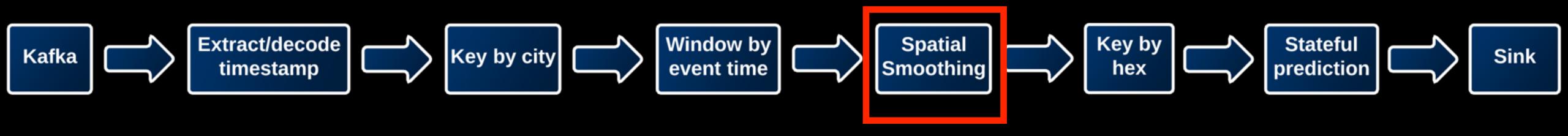
A Simple Example: simple prediction

Sources

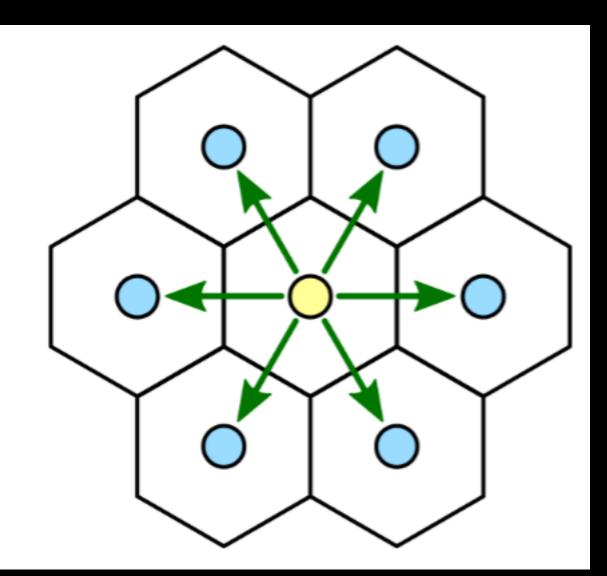
- .fromKafka()
- .config(config)
- .cluster(aCluster)
- .topics(topicList)

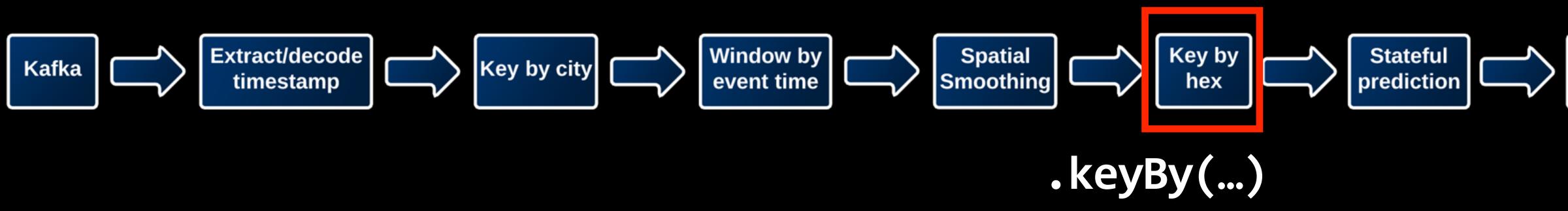
assignTimestampsAndWatermarks

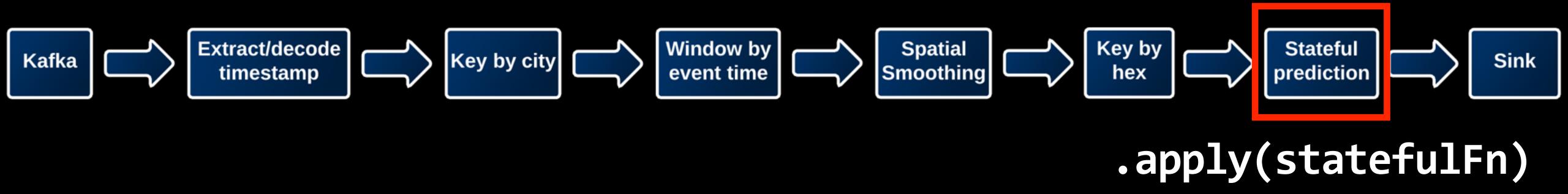


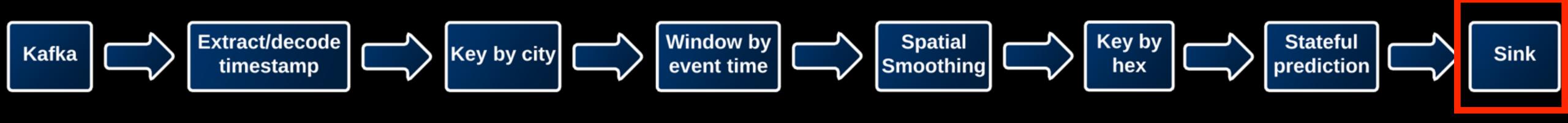


.flatMap(...)

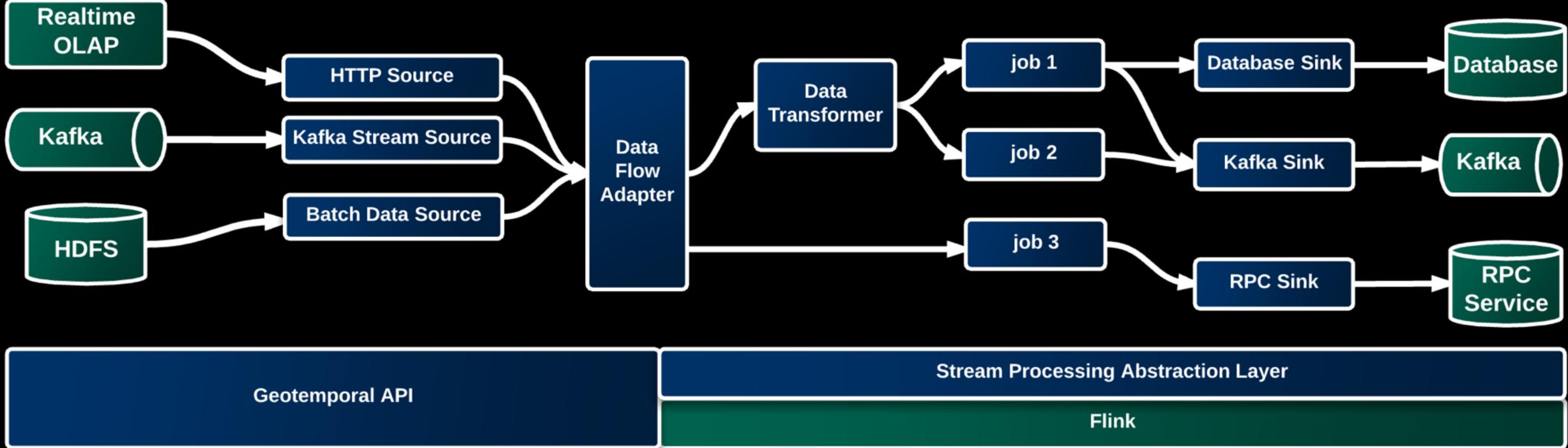


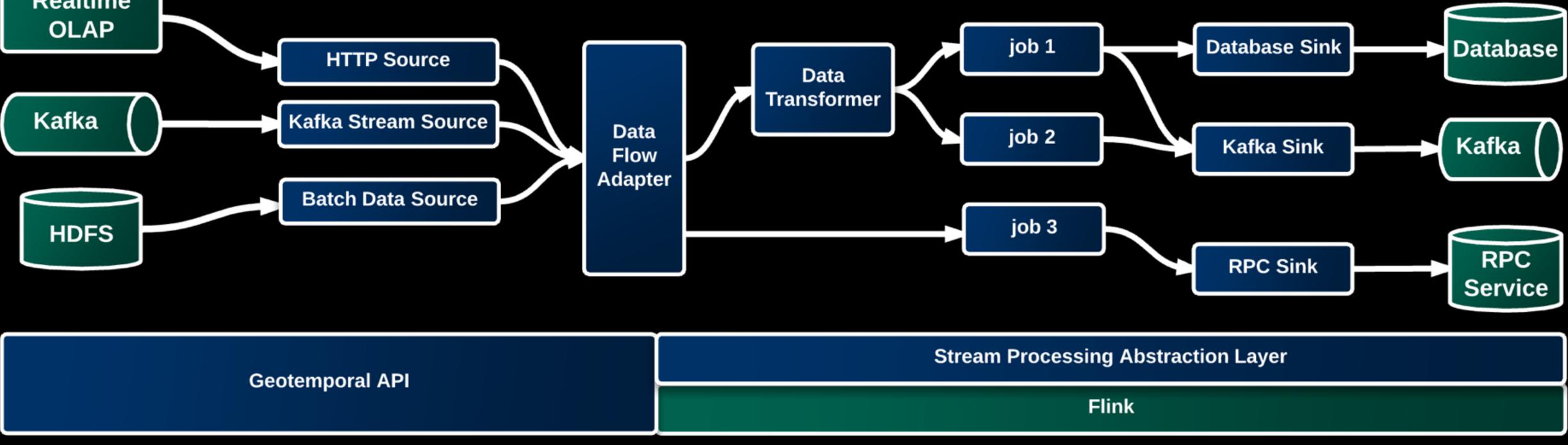


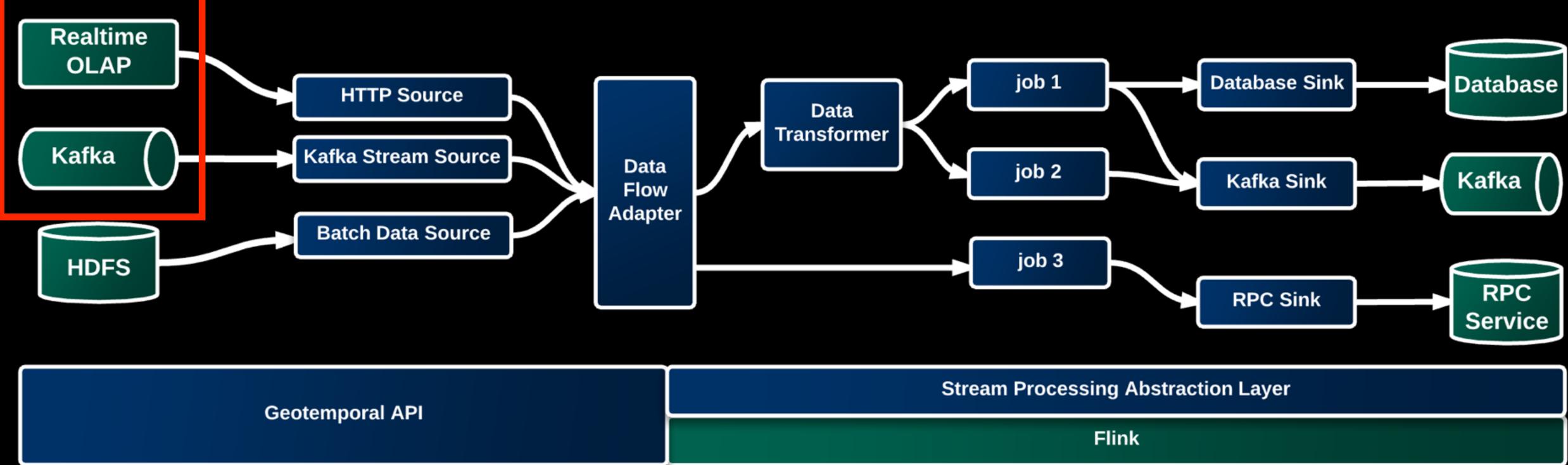


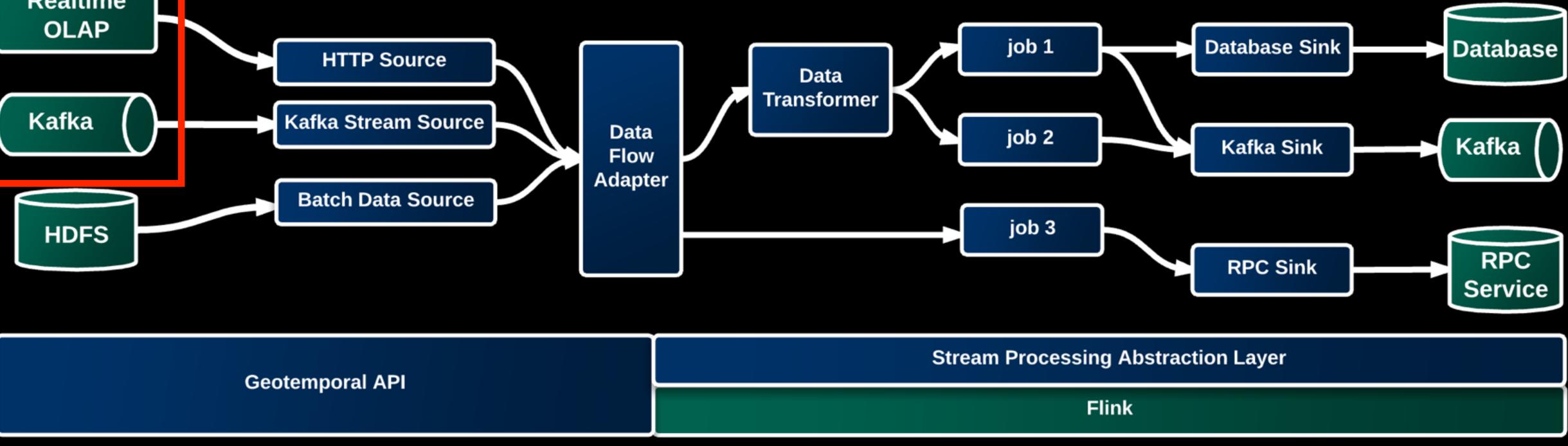


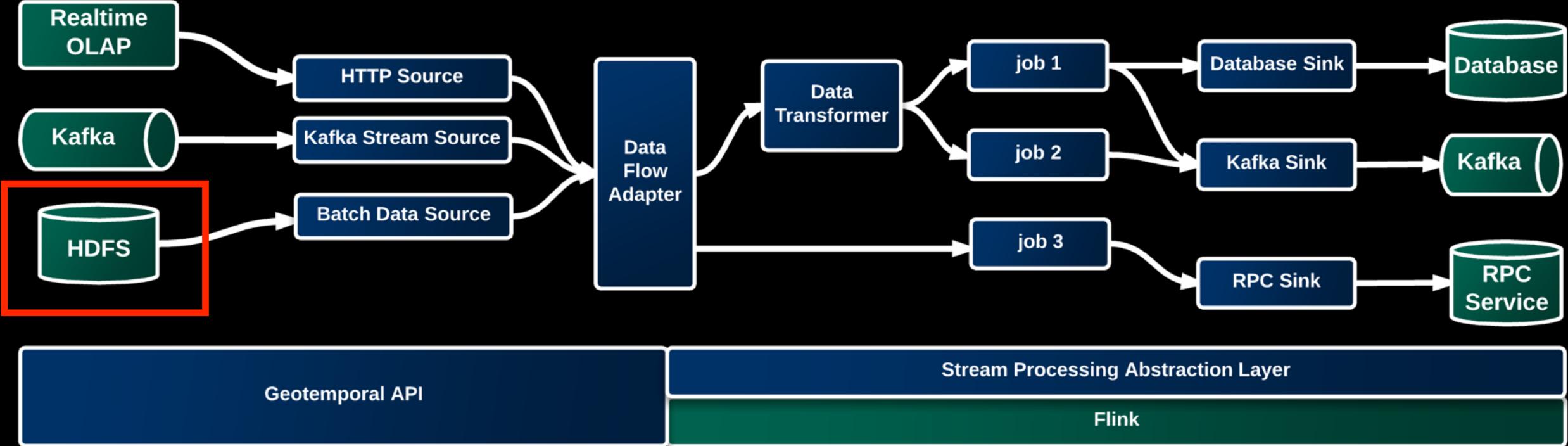
.addSink(...)

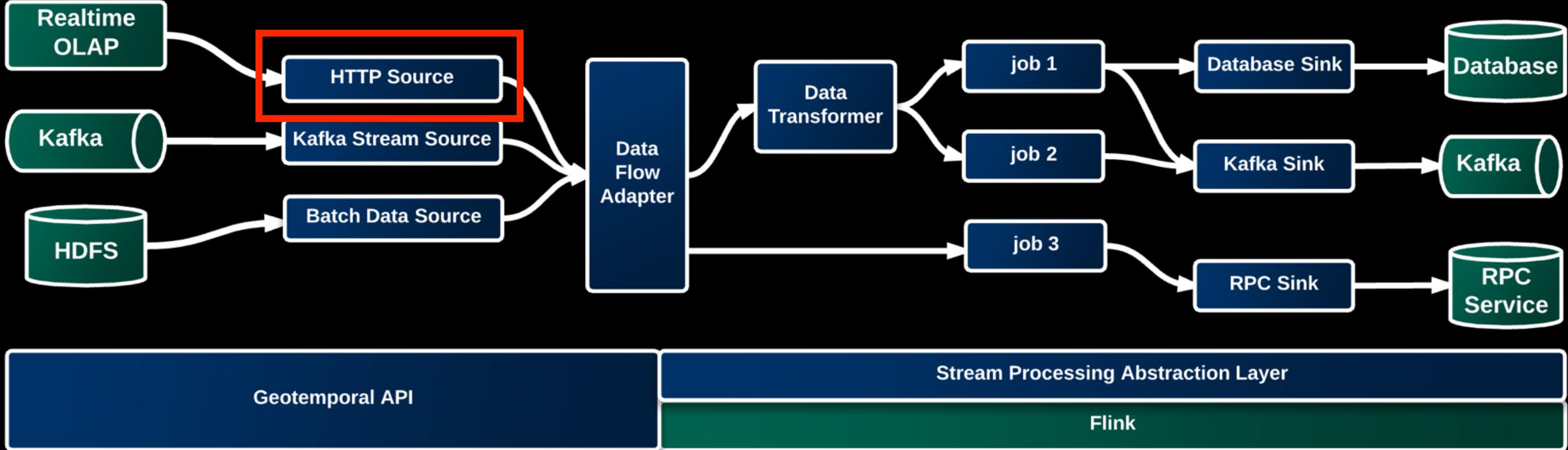


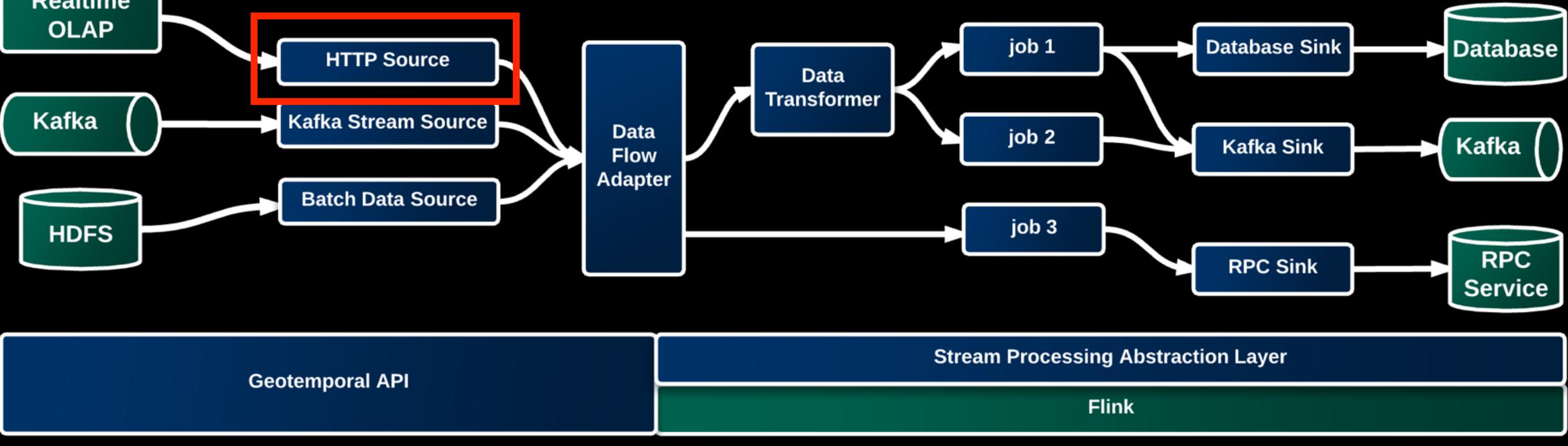


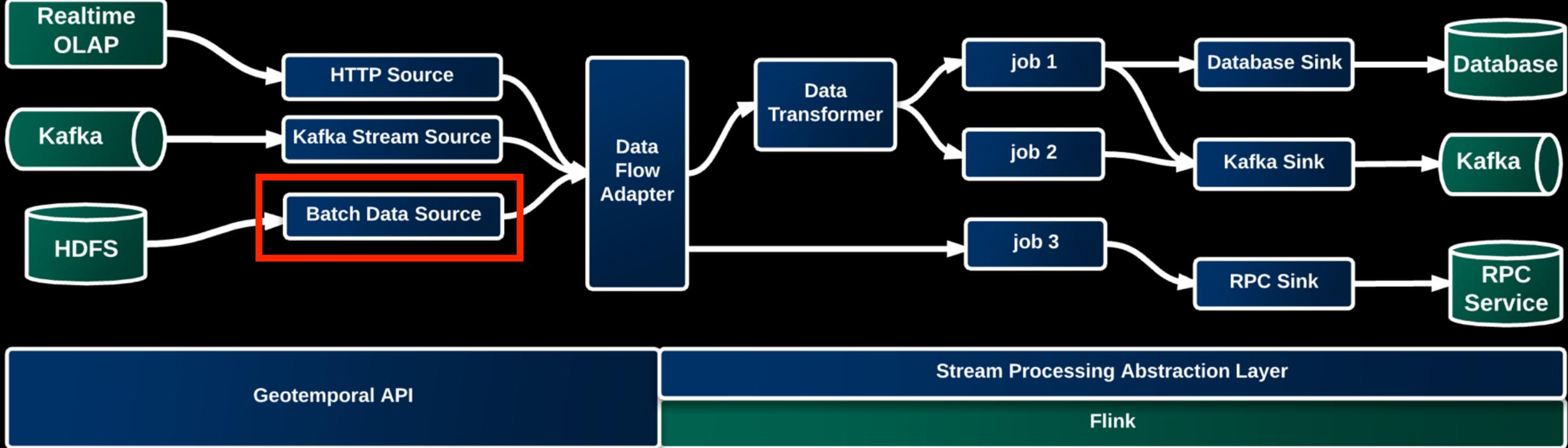


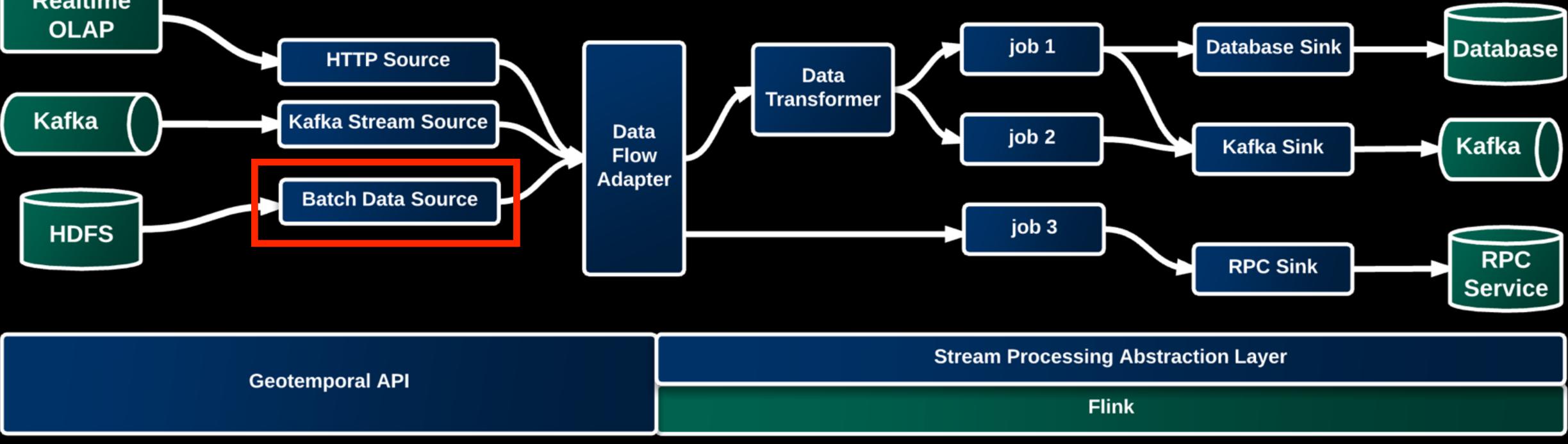


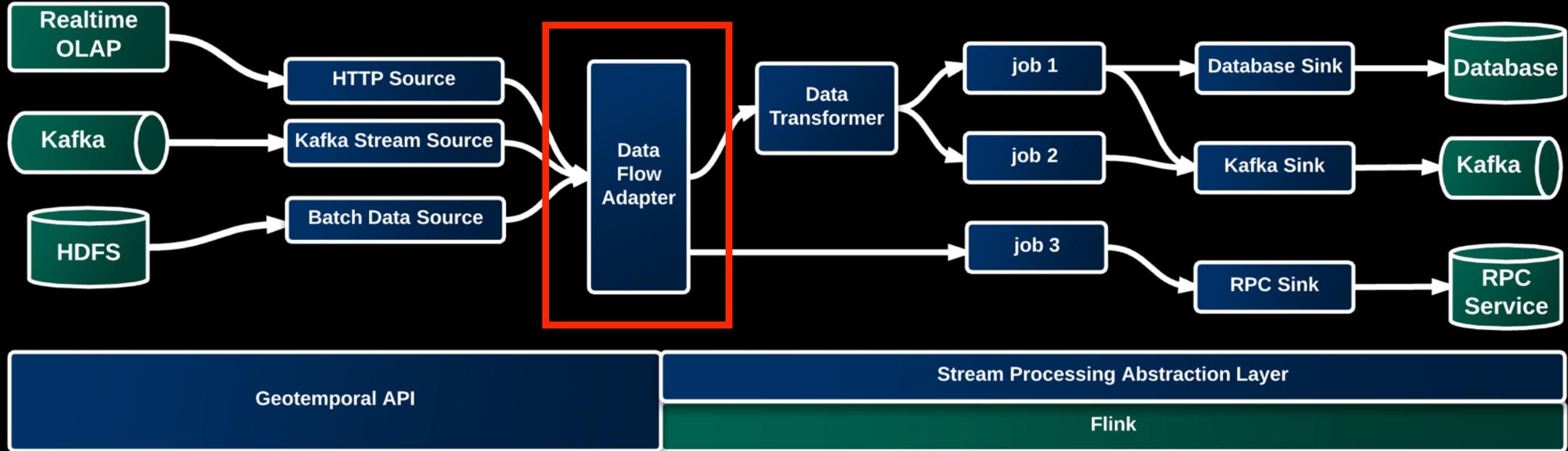


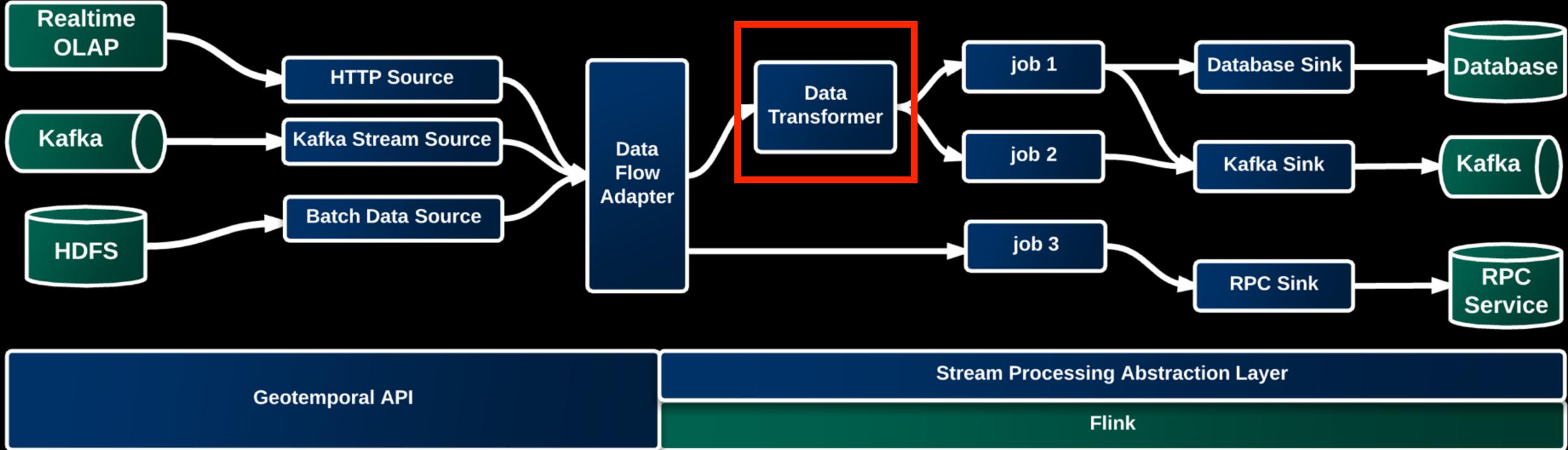


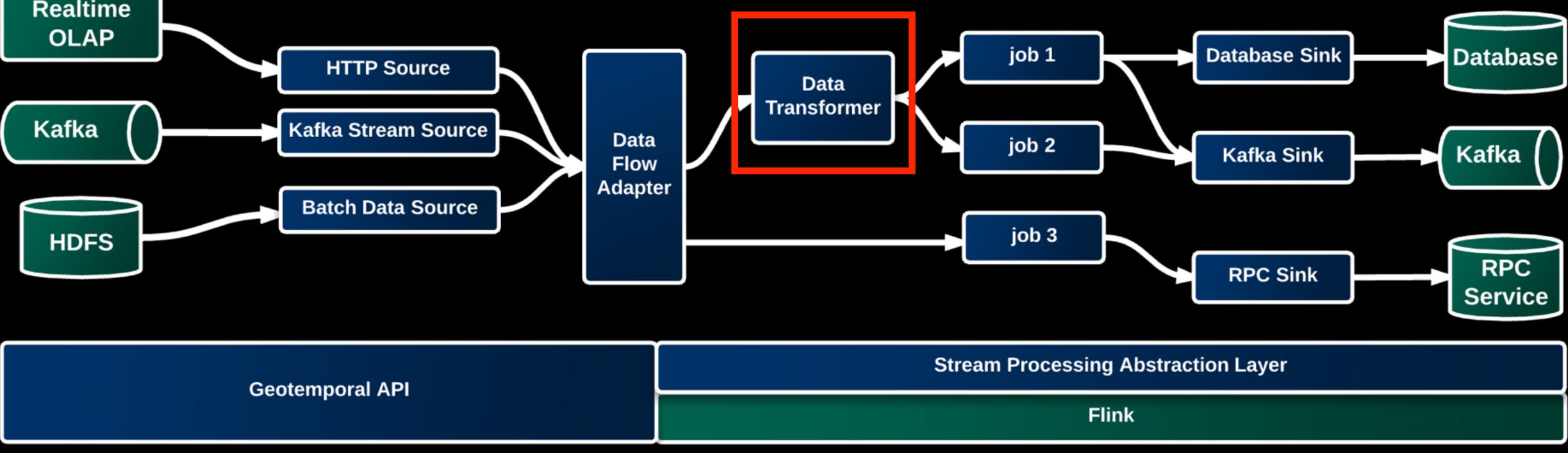


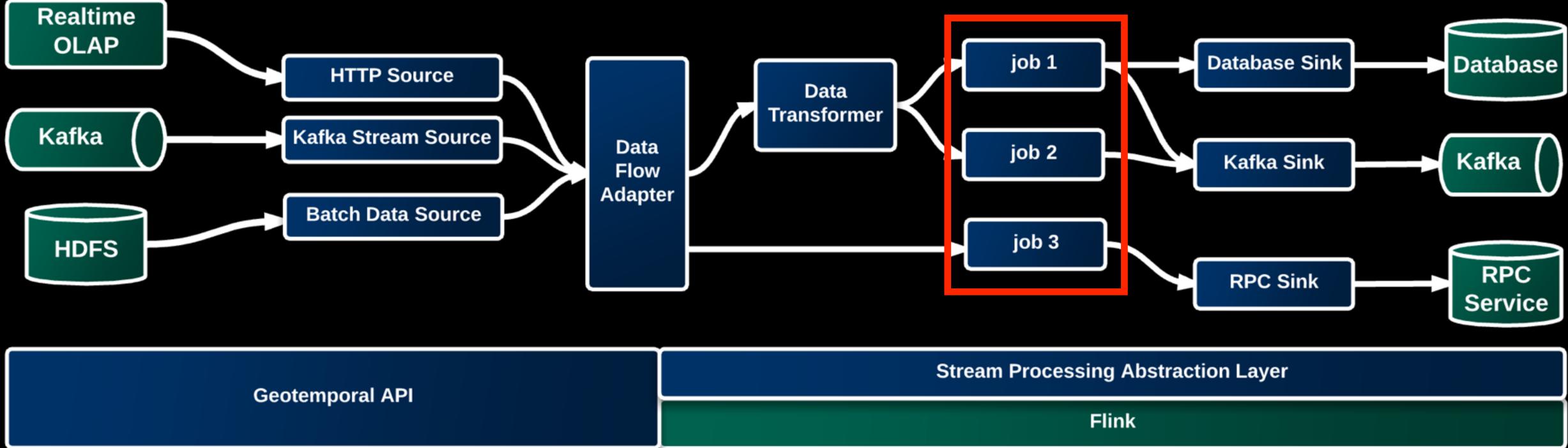


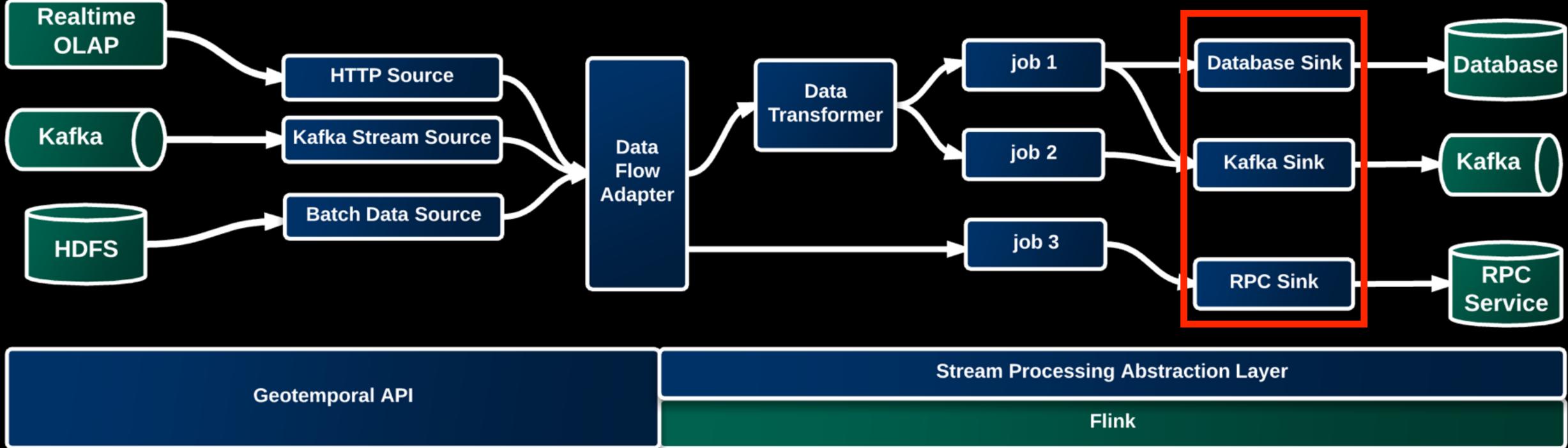


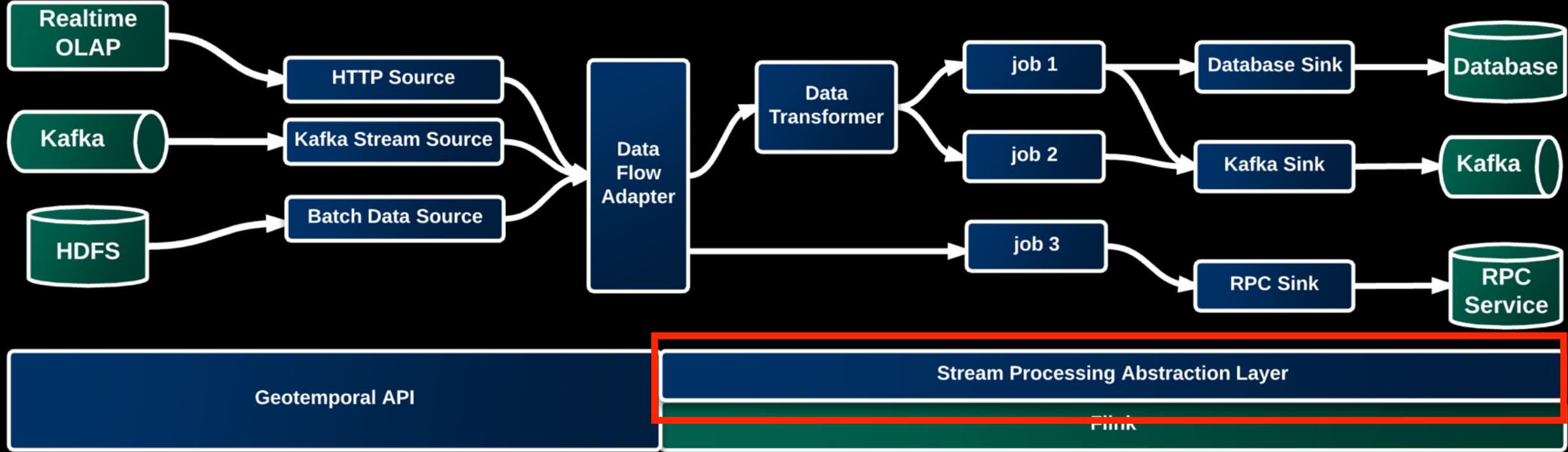


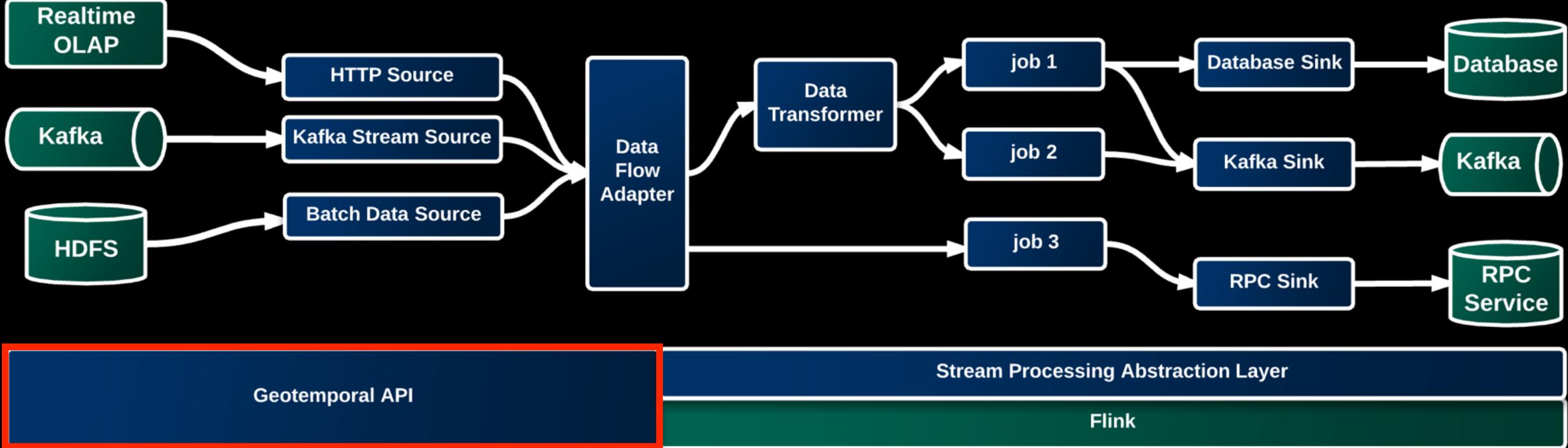




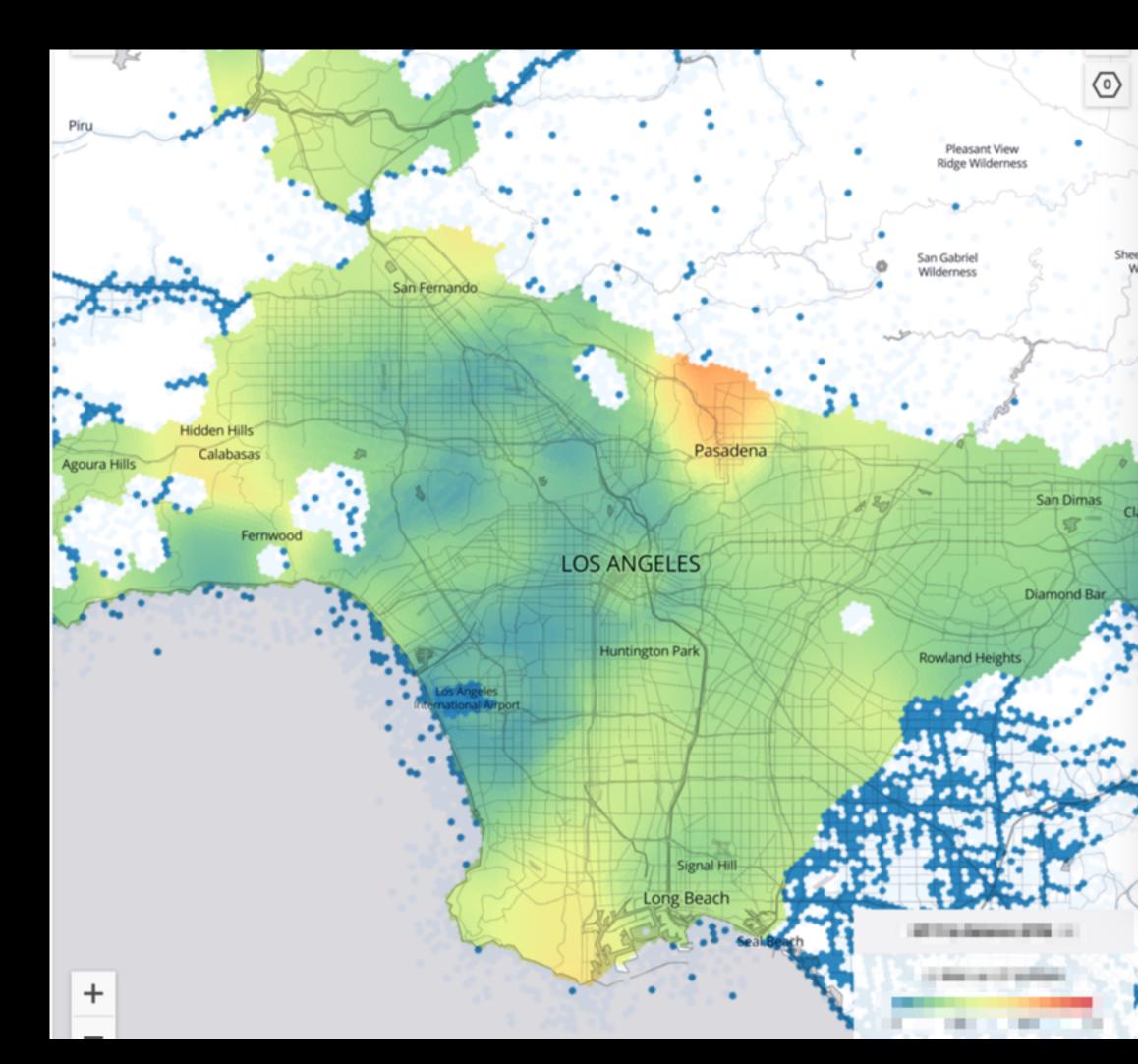




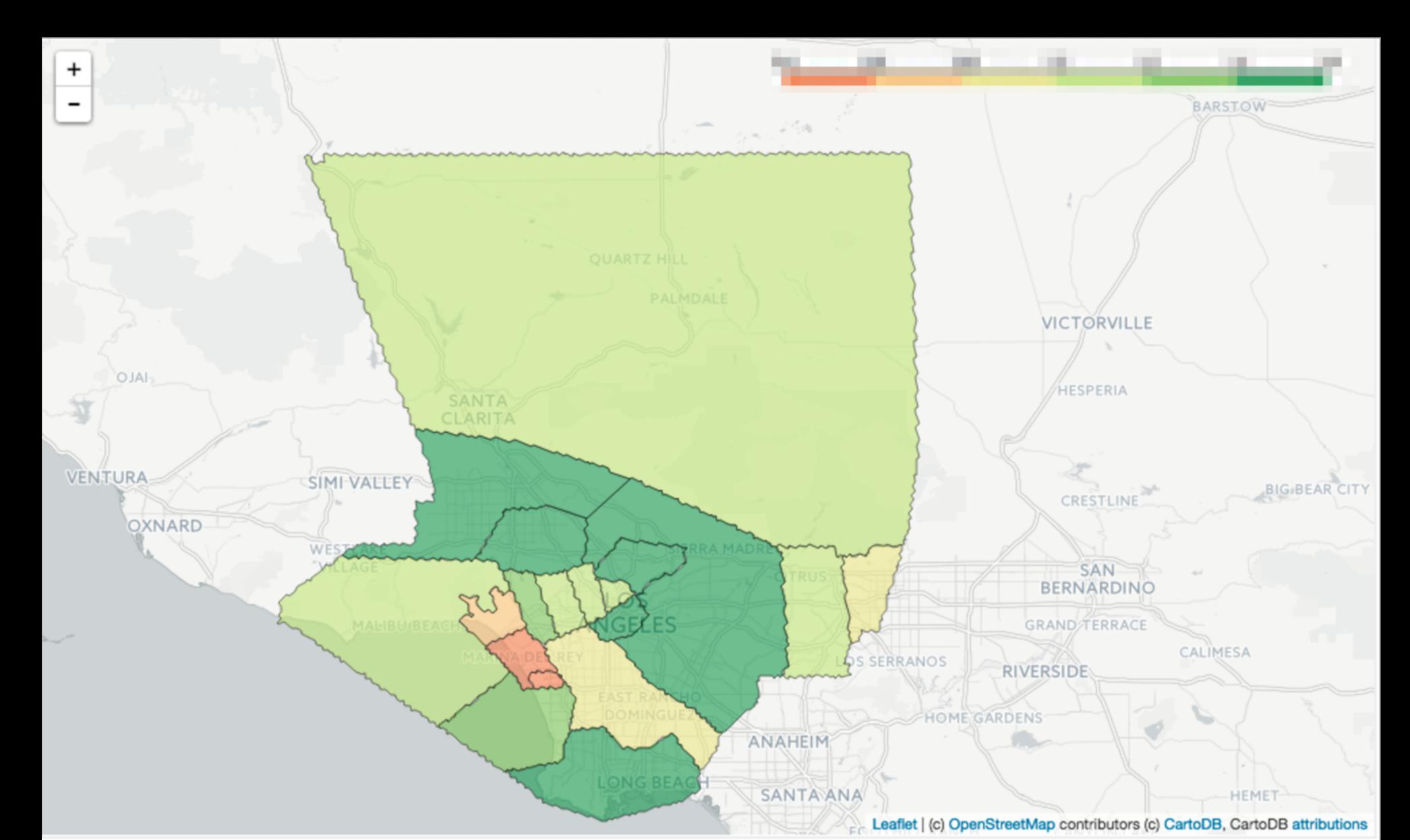




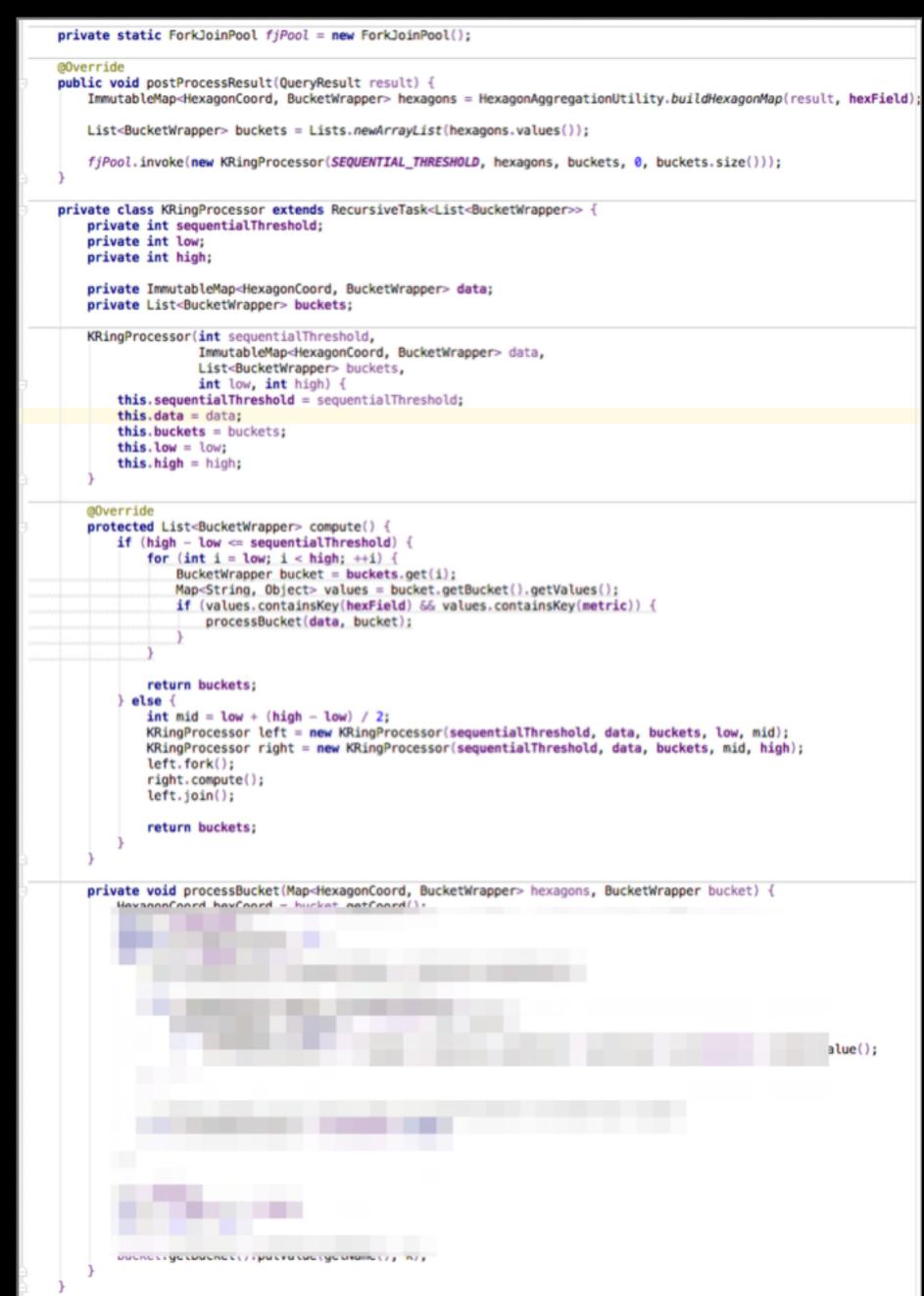
Geotemporal API for efficiency



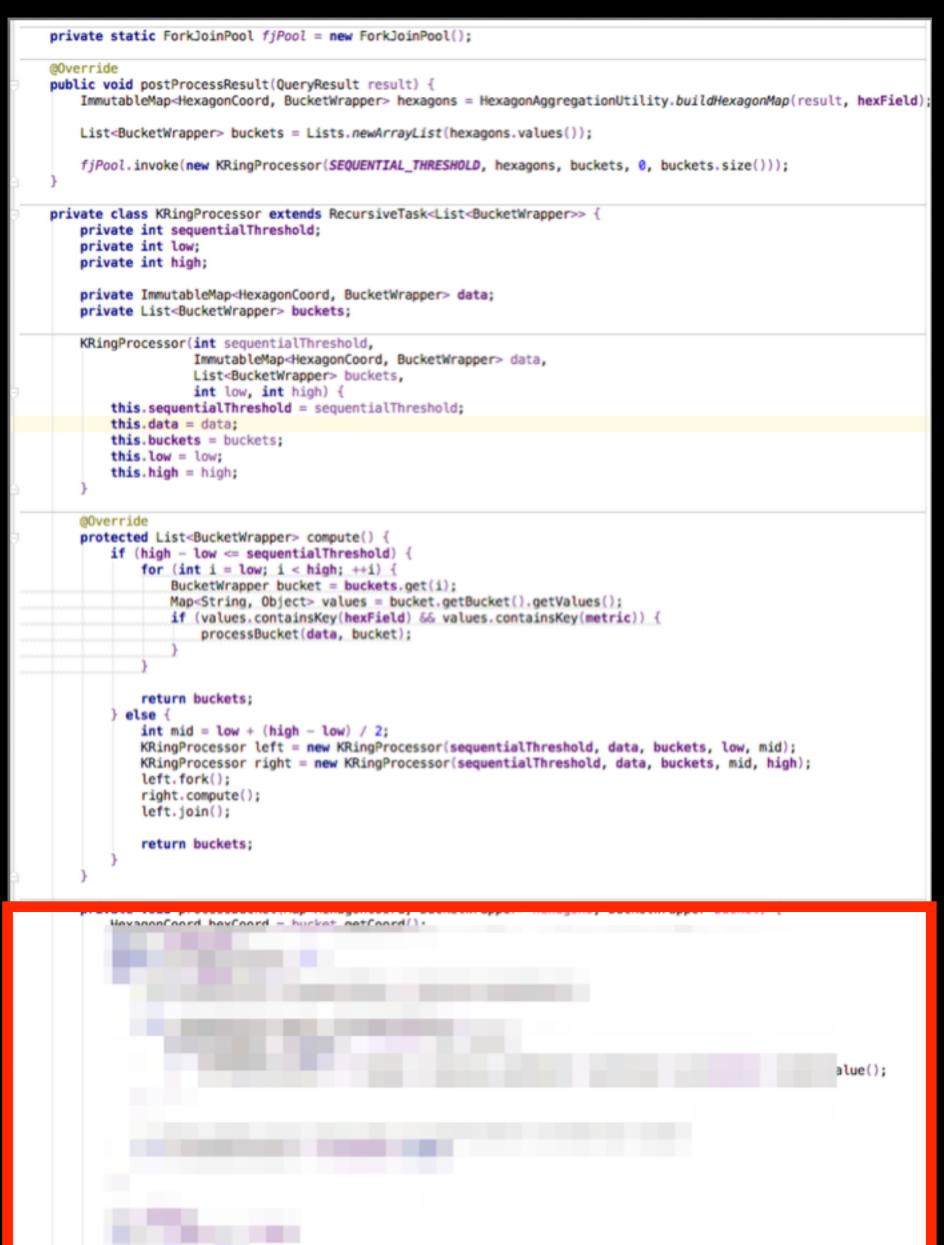
Geotemporal API for efficiency



Geotemporal API for productivity

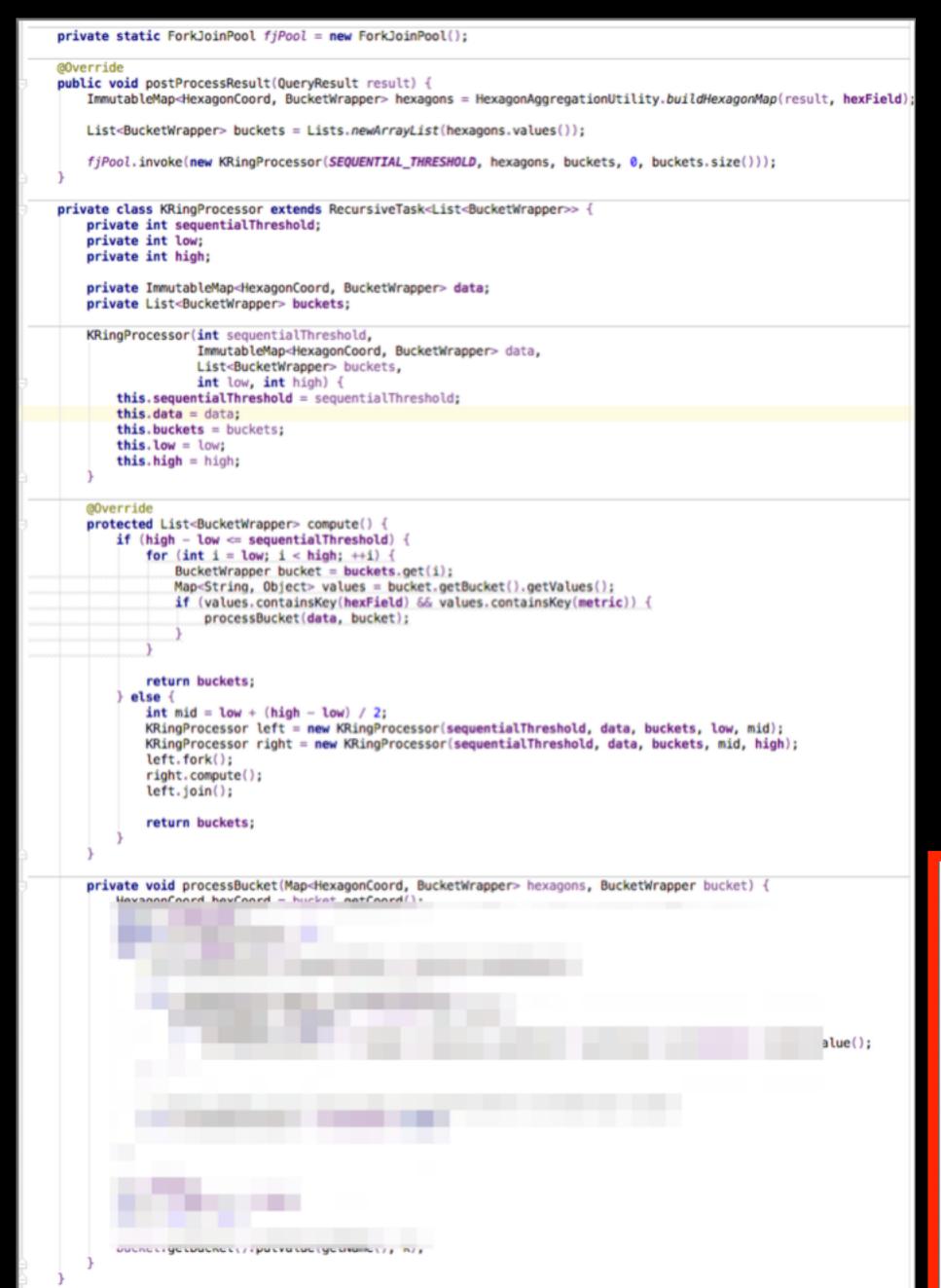


Geotemporal API for productivity

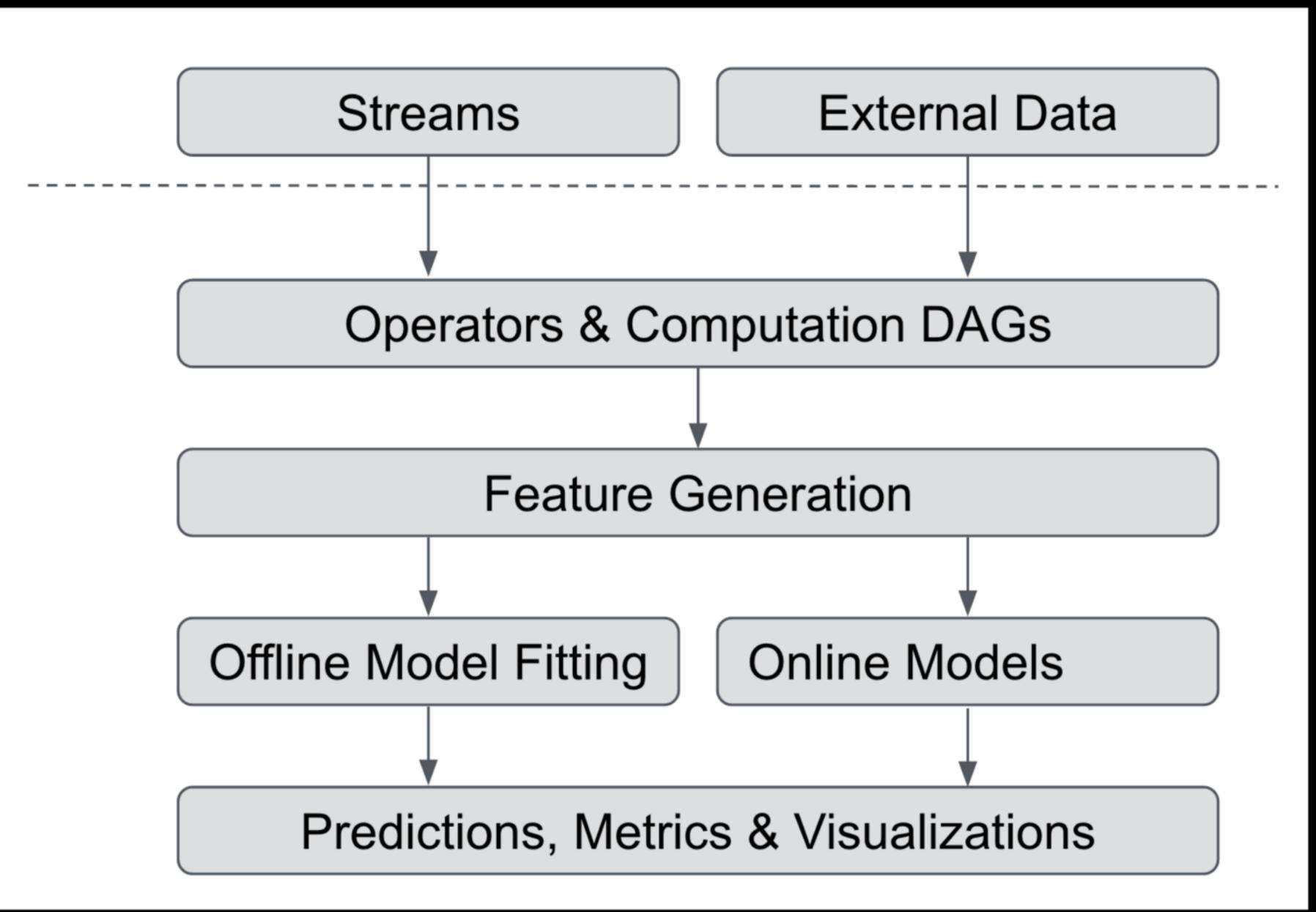


DUCKEC: getDuckec() / putra tuc(getrame()) / k/)

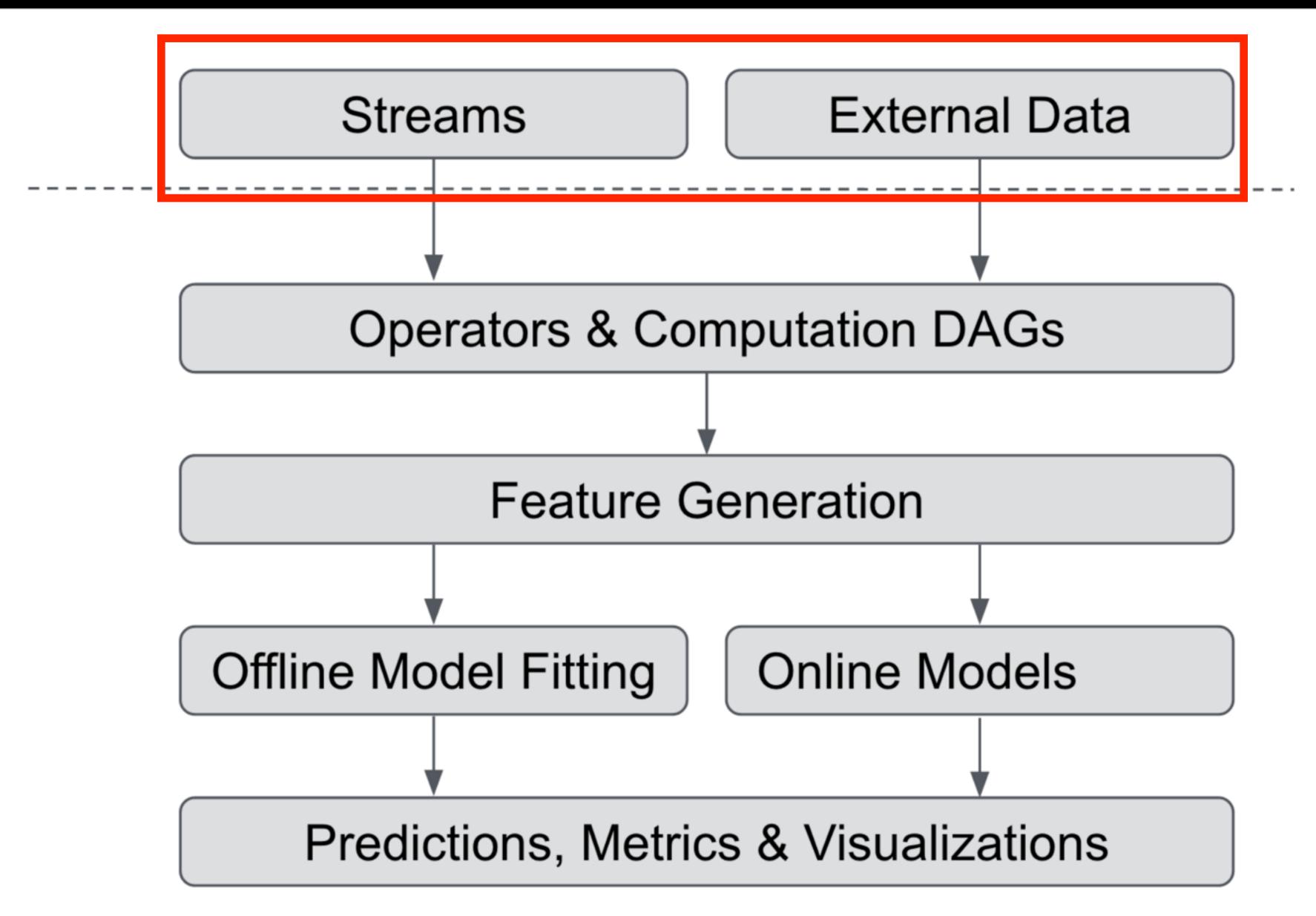
Geotemporal API for productivity



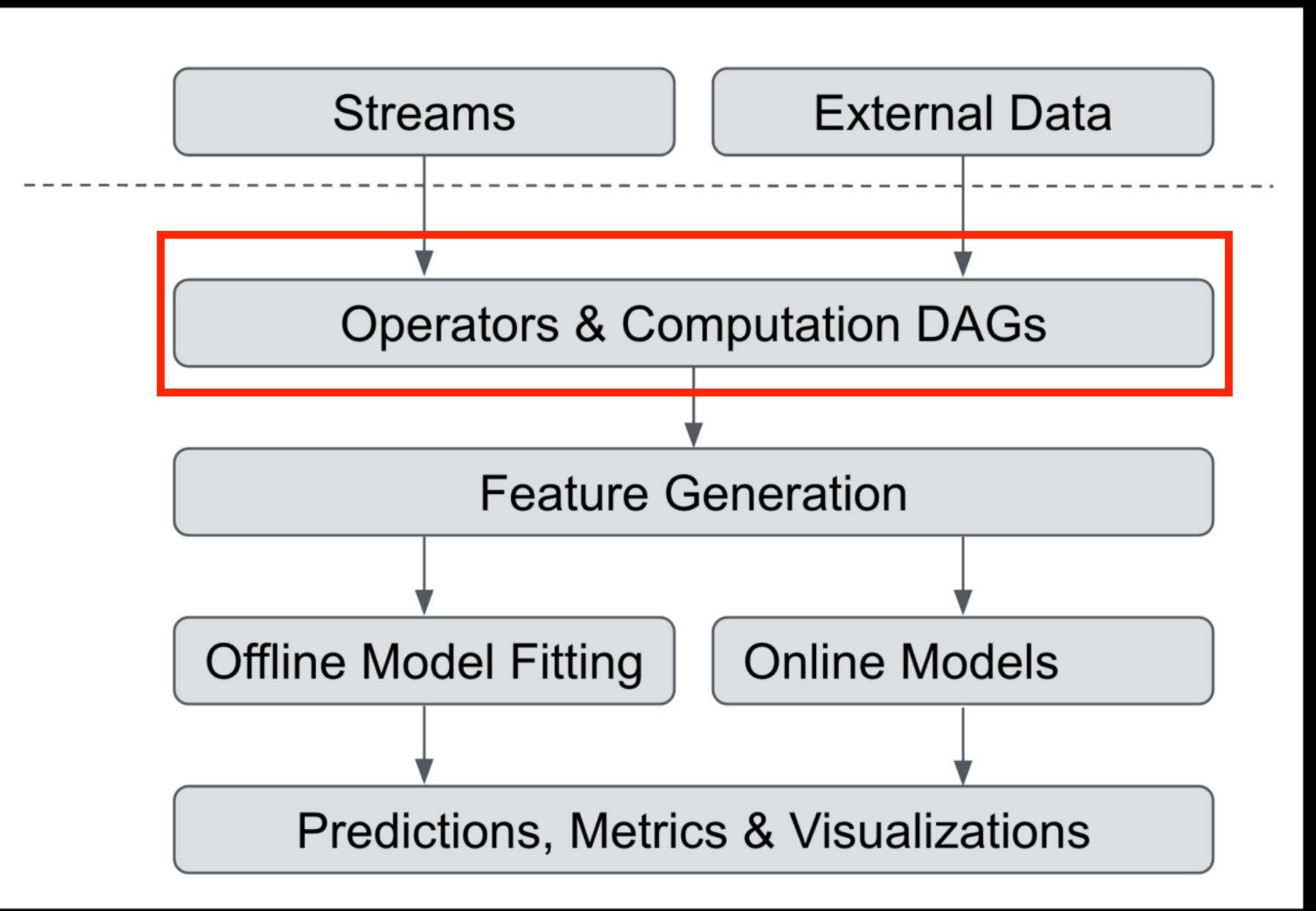
Forecasting as an example

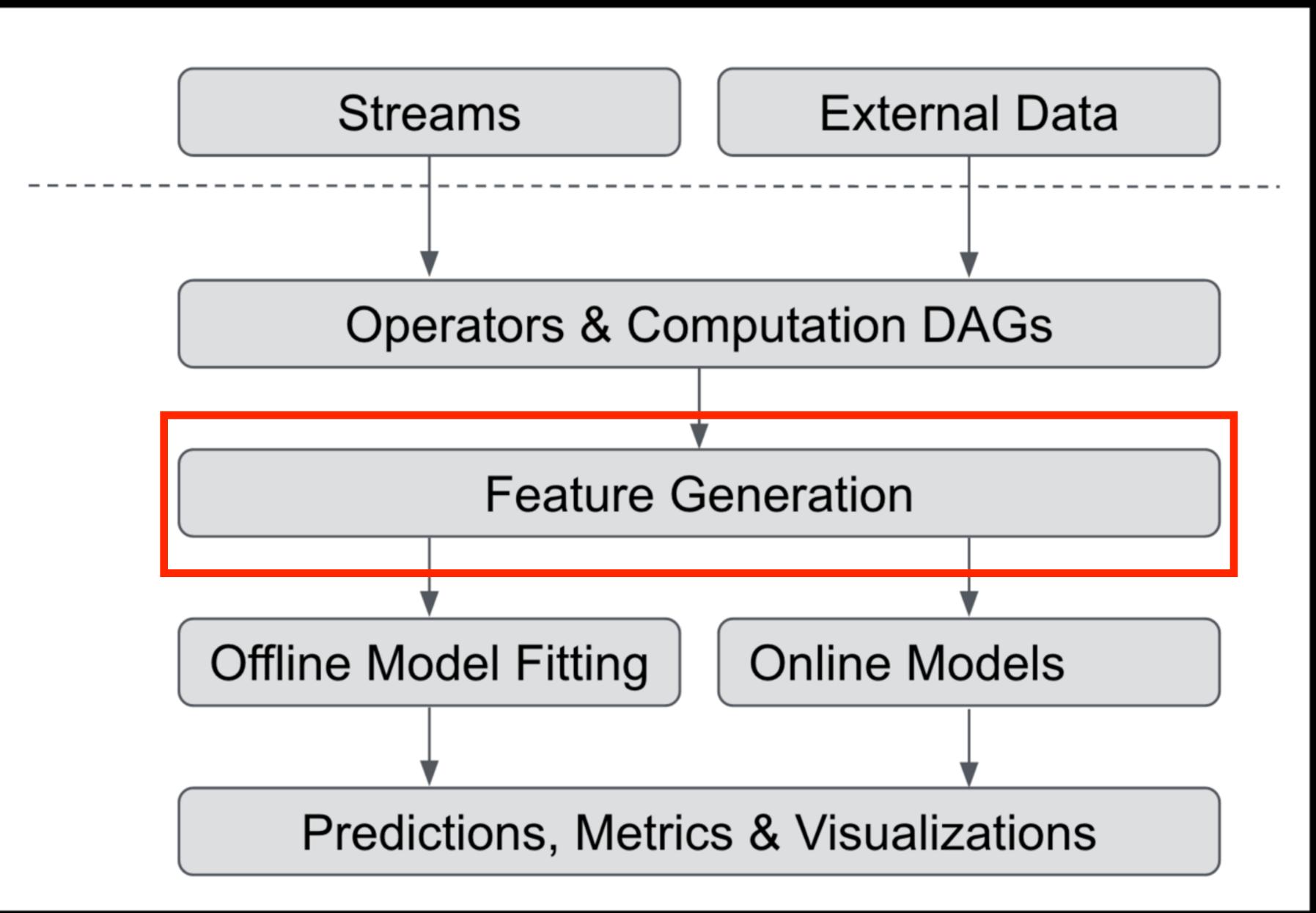


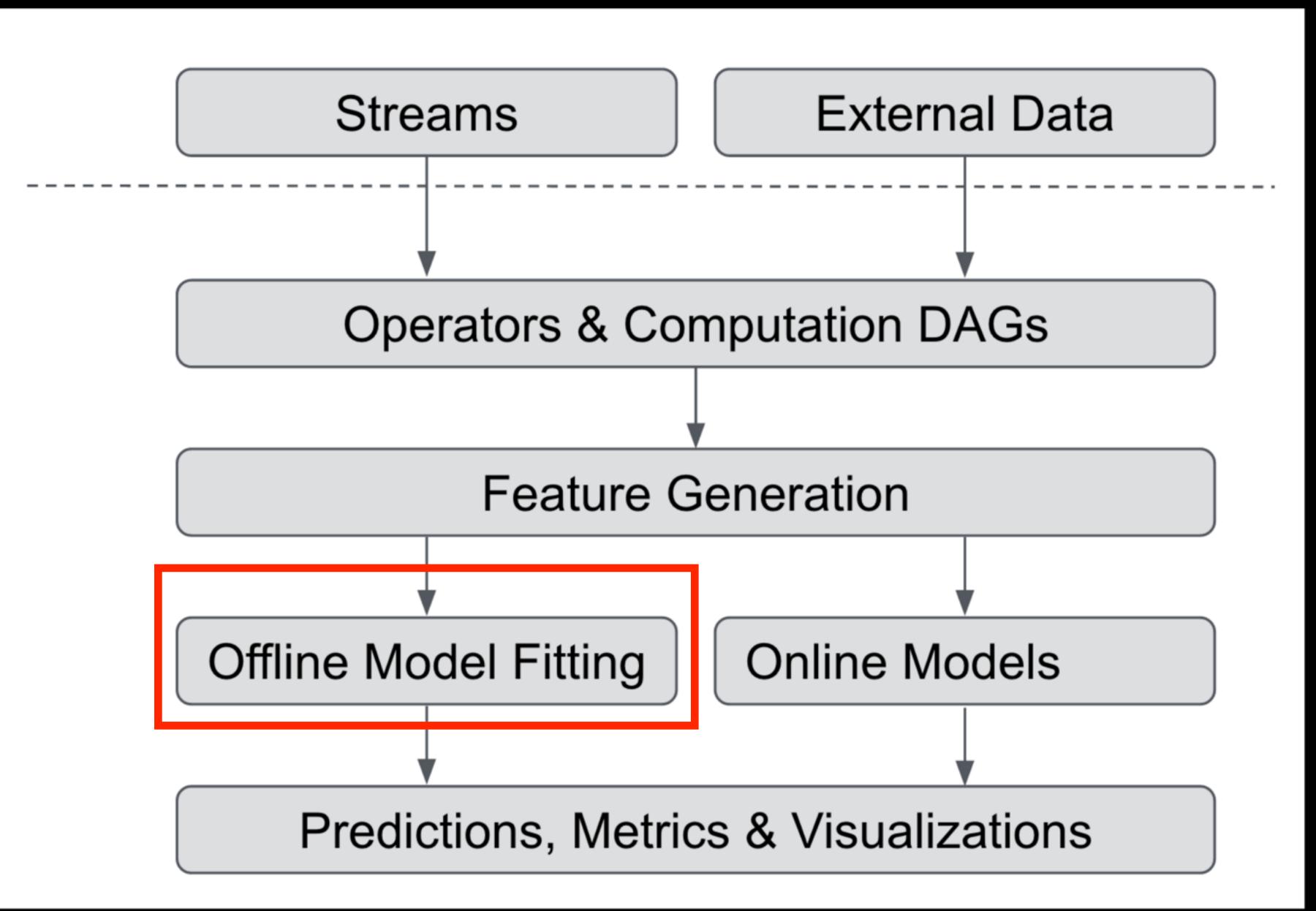
Forecasting as an example

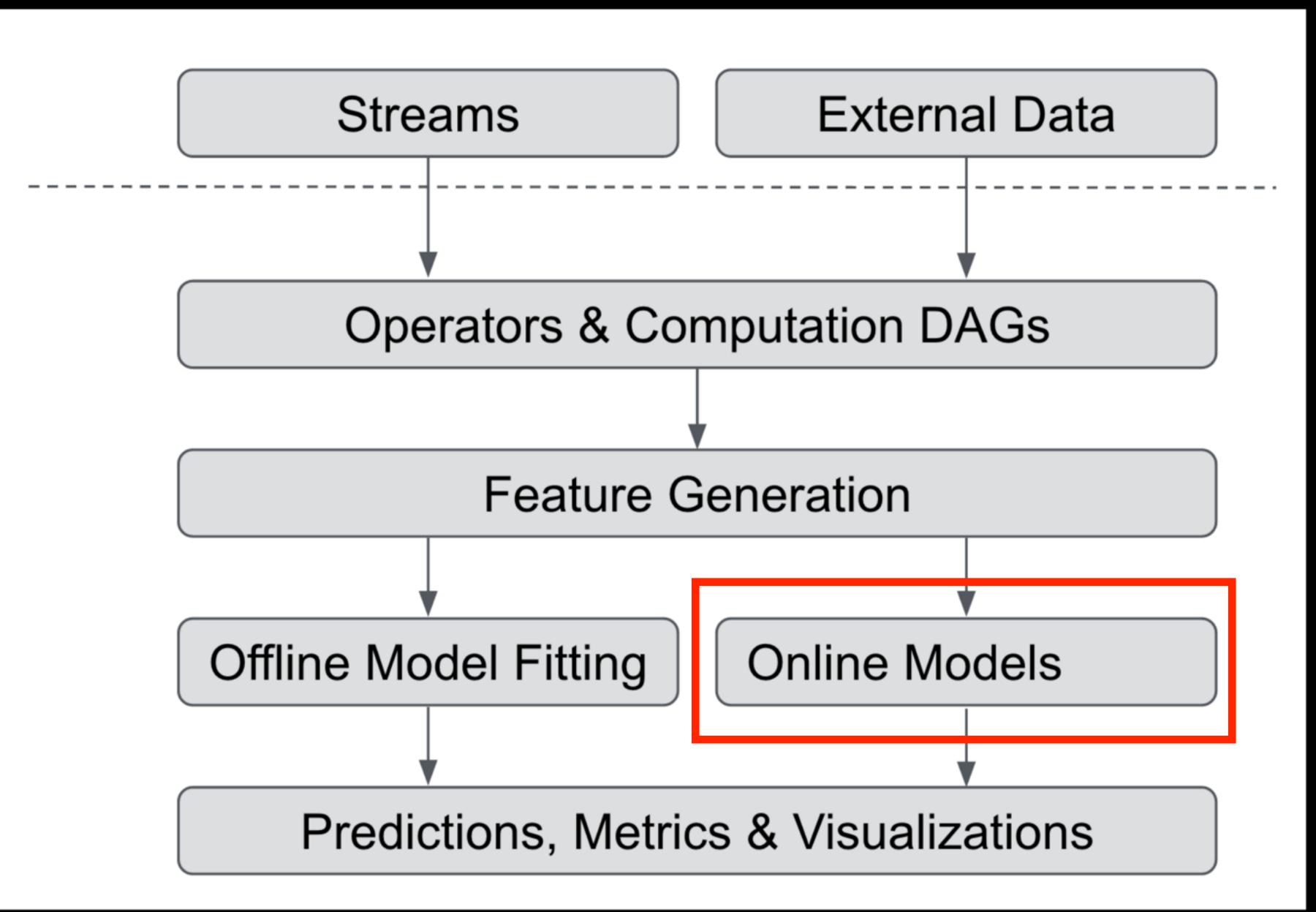


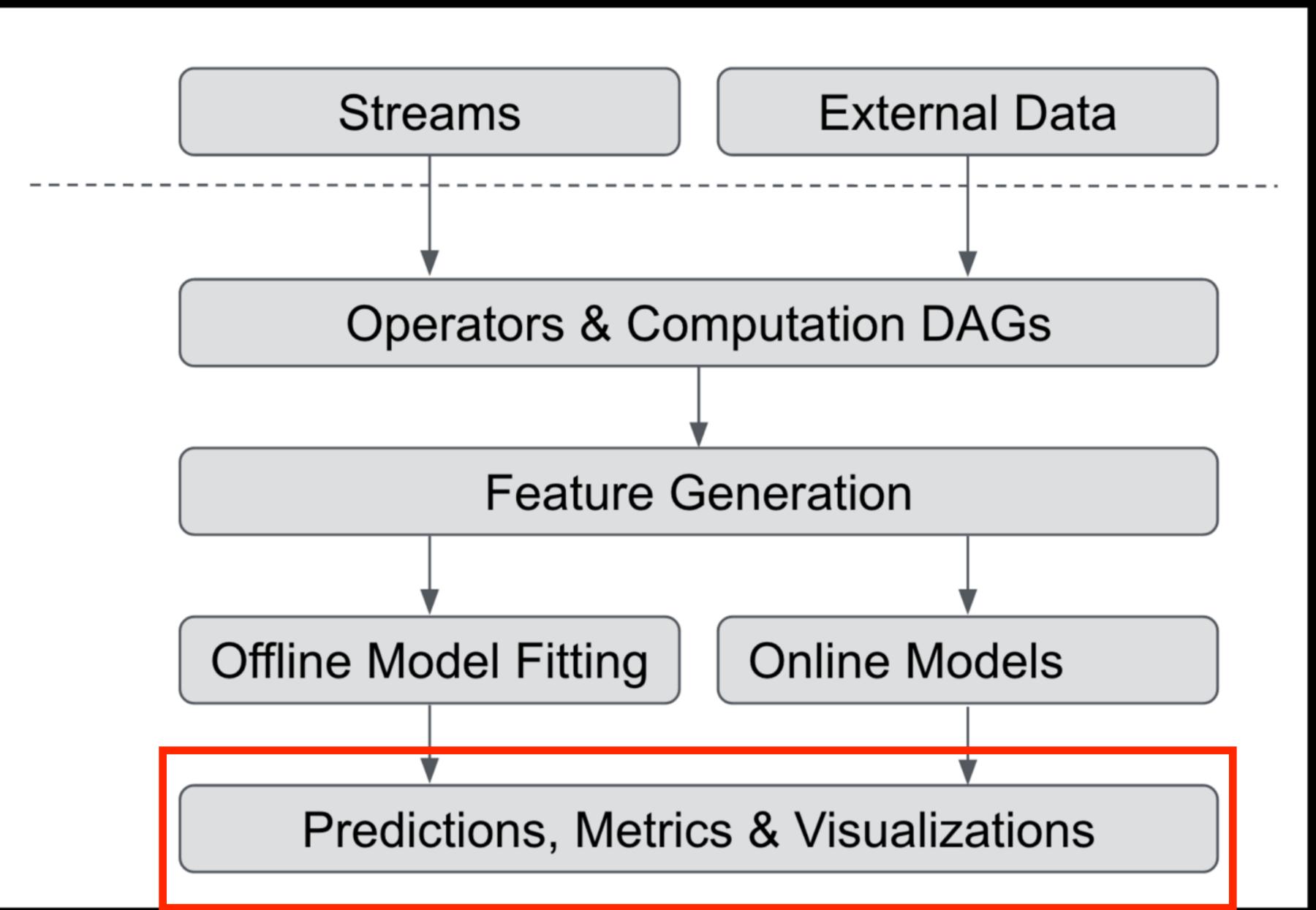
Forecasting as an example

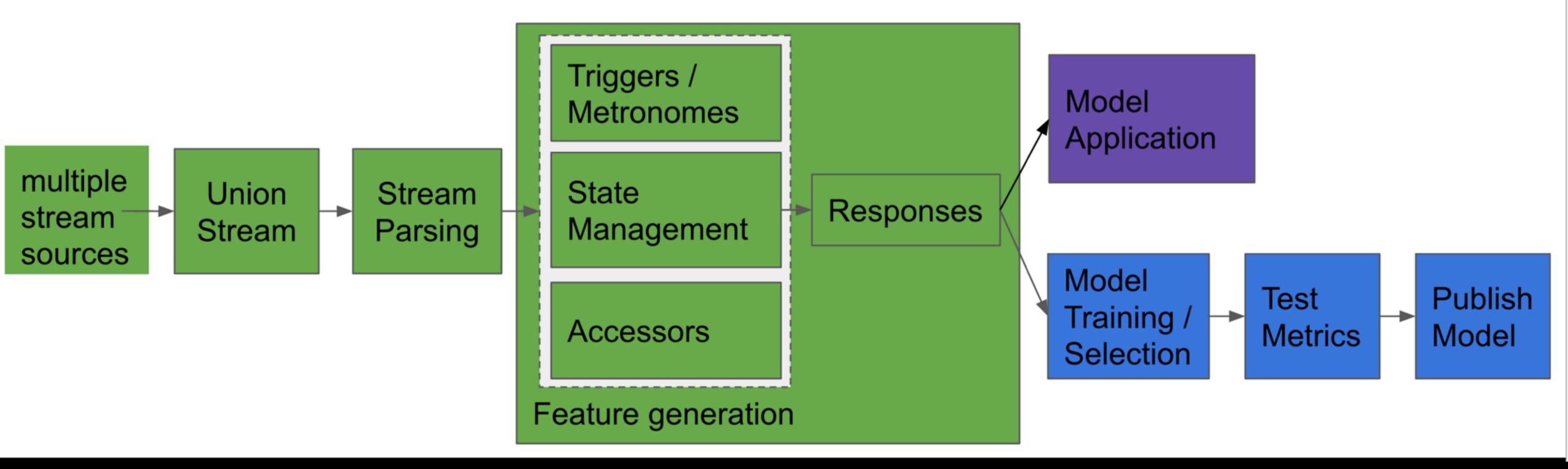


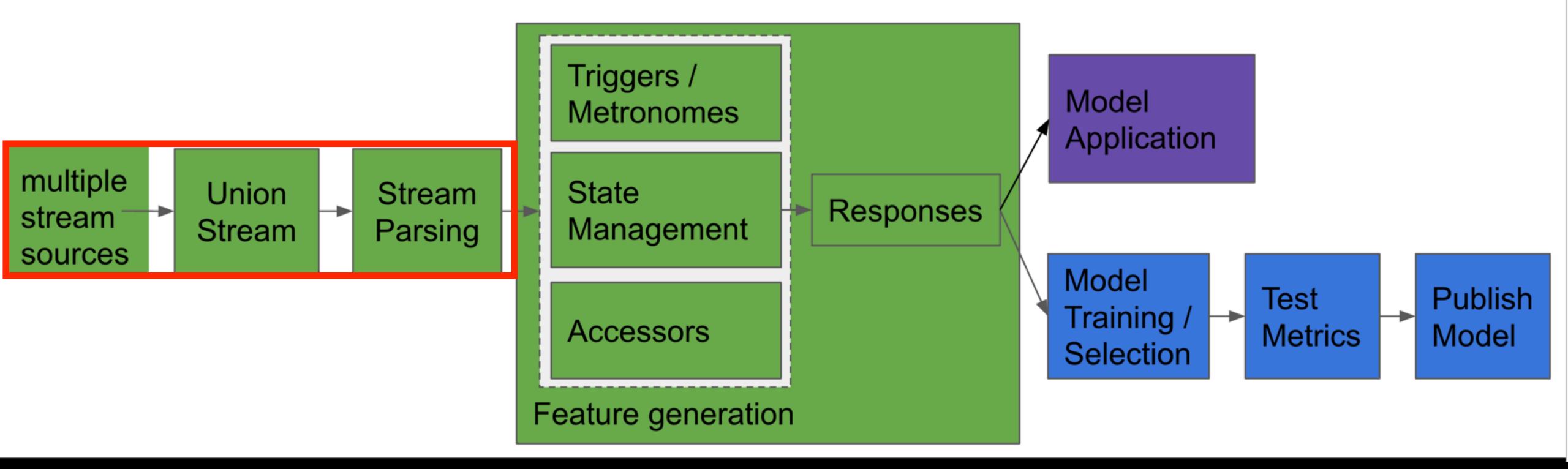


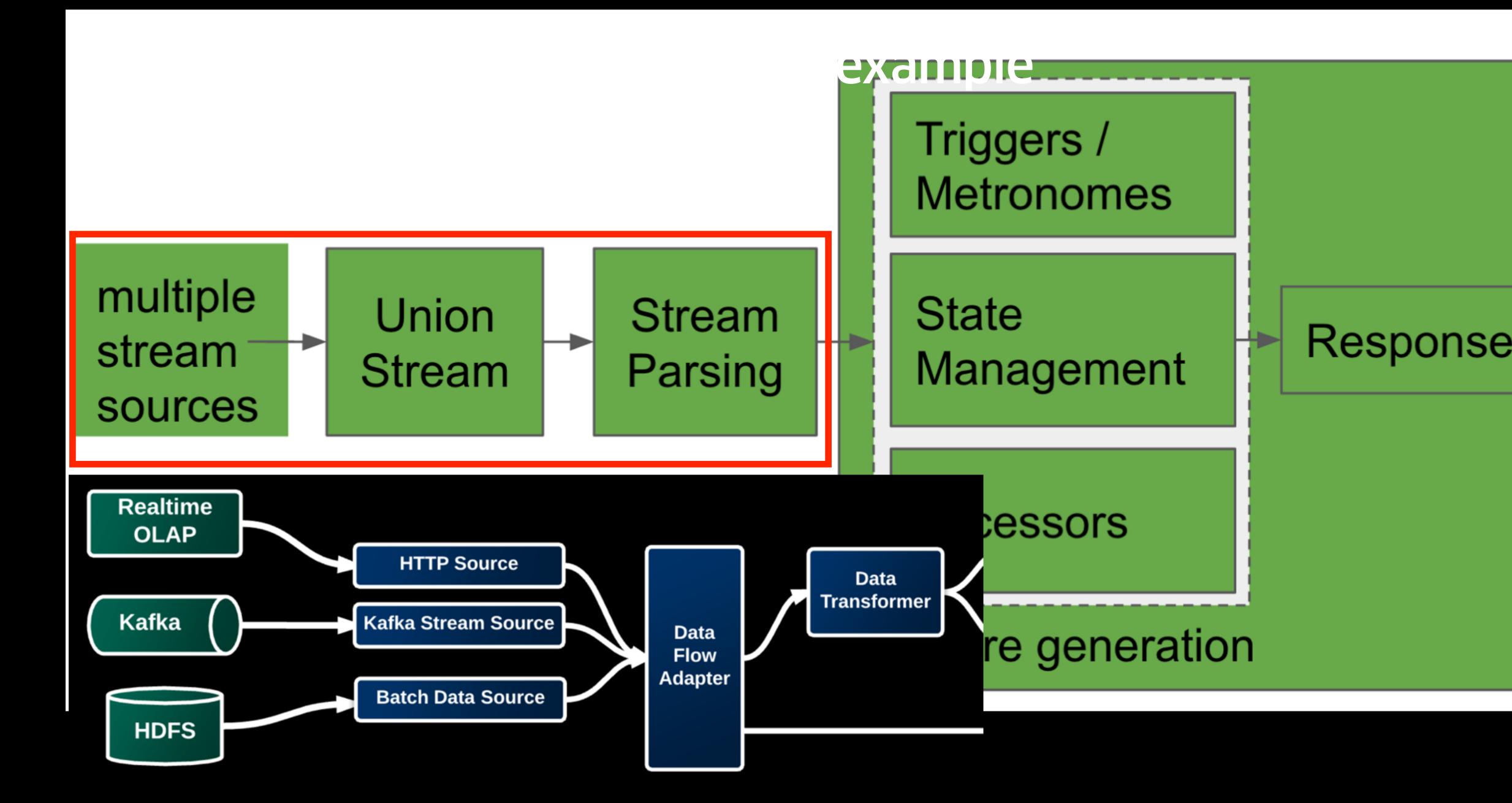


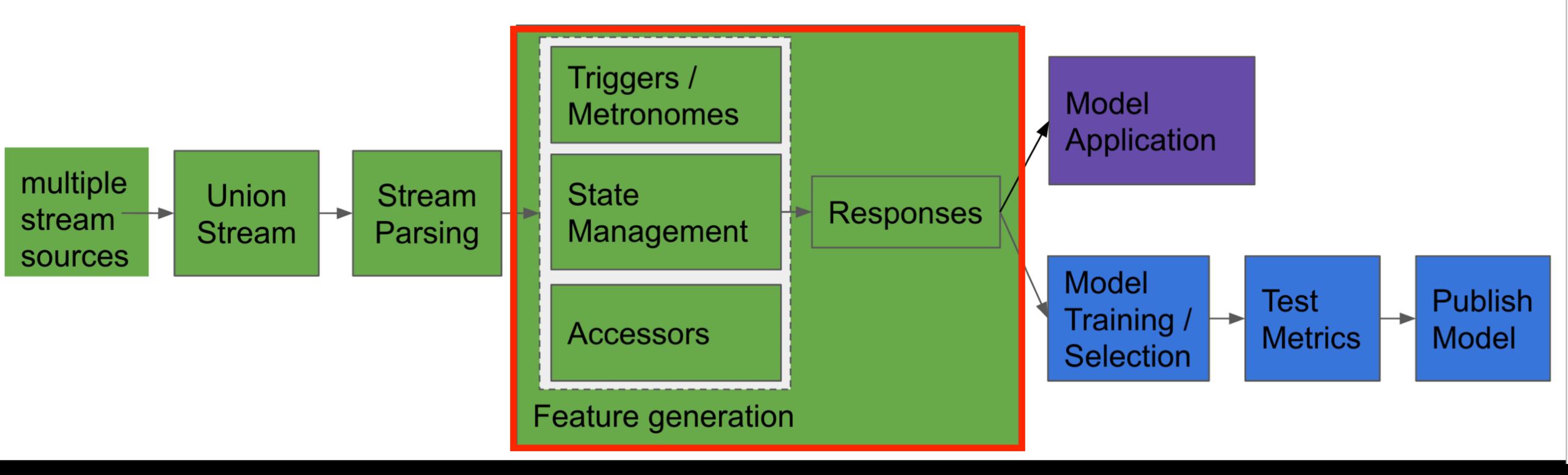


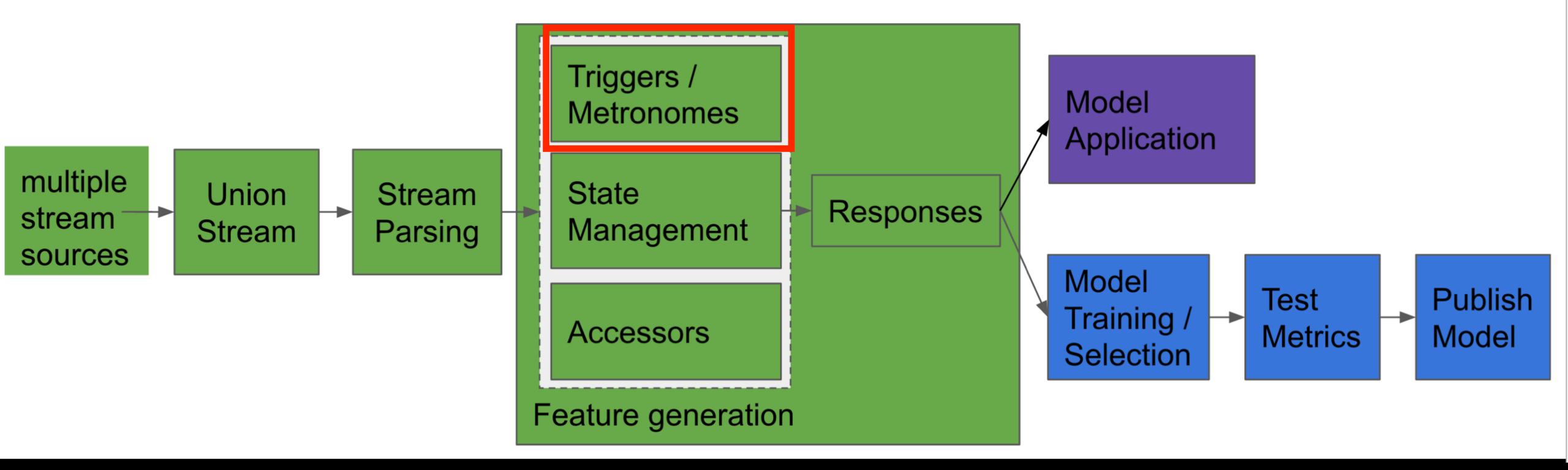


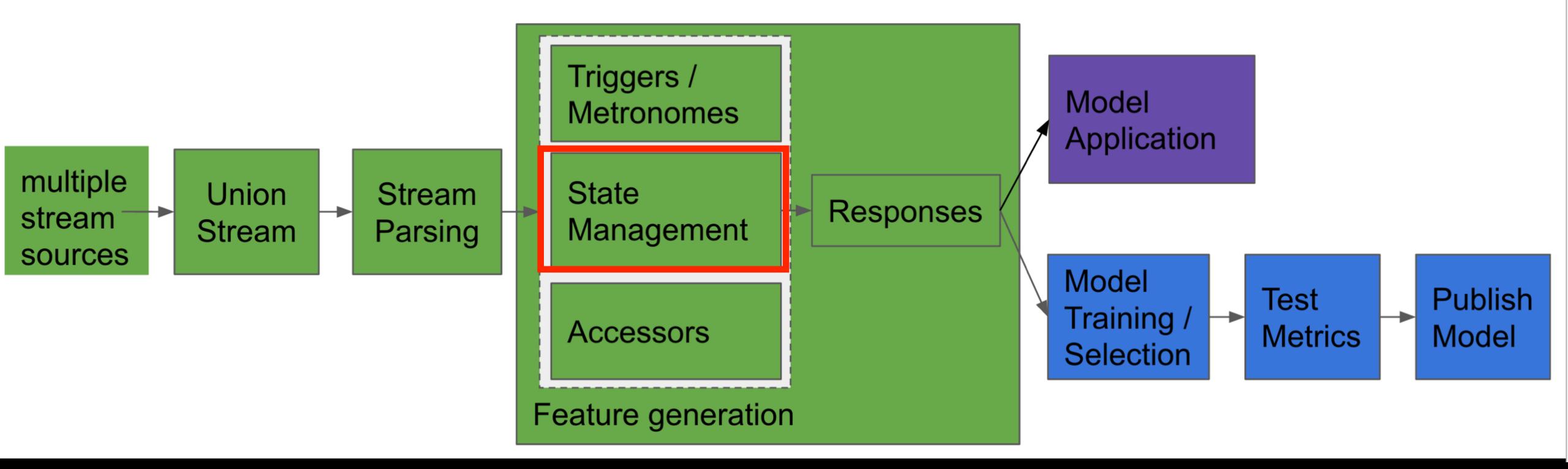


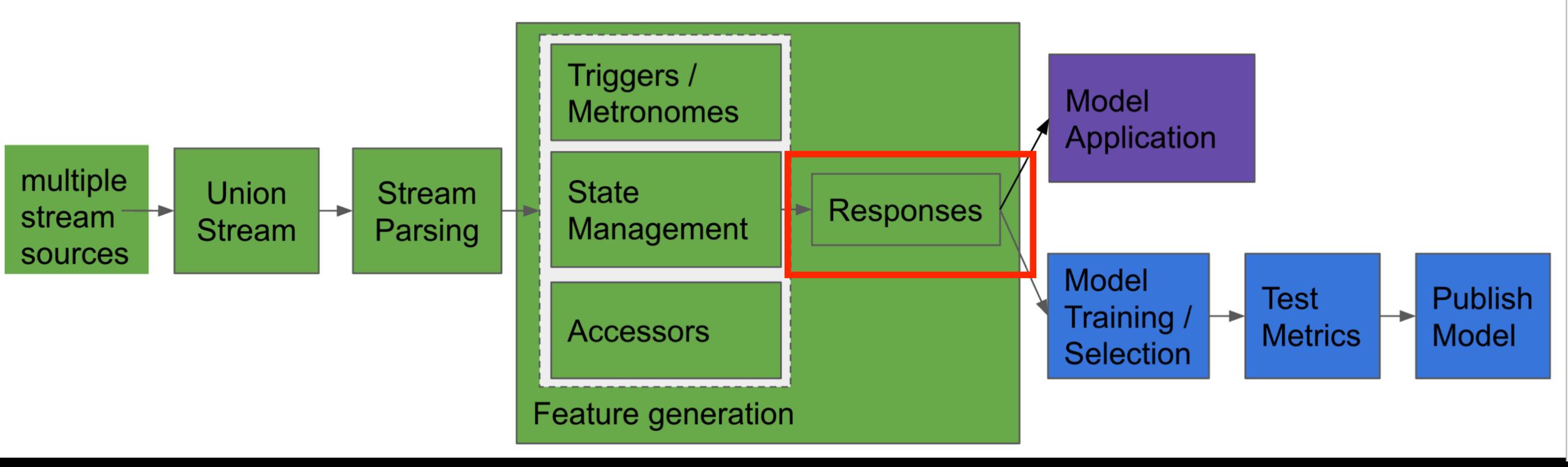


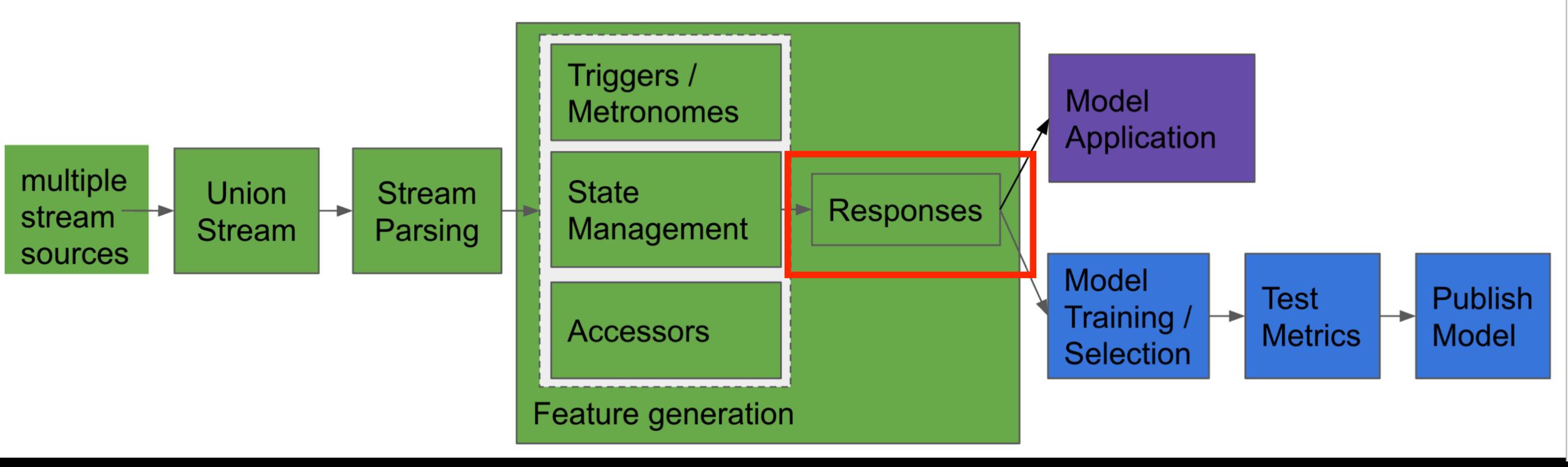


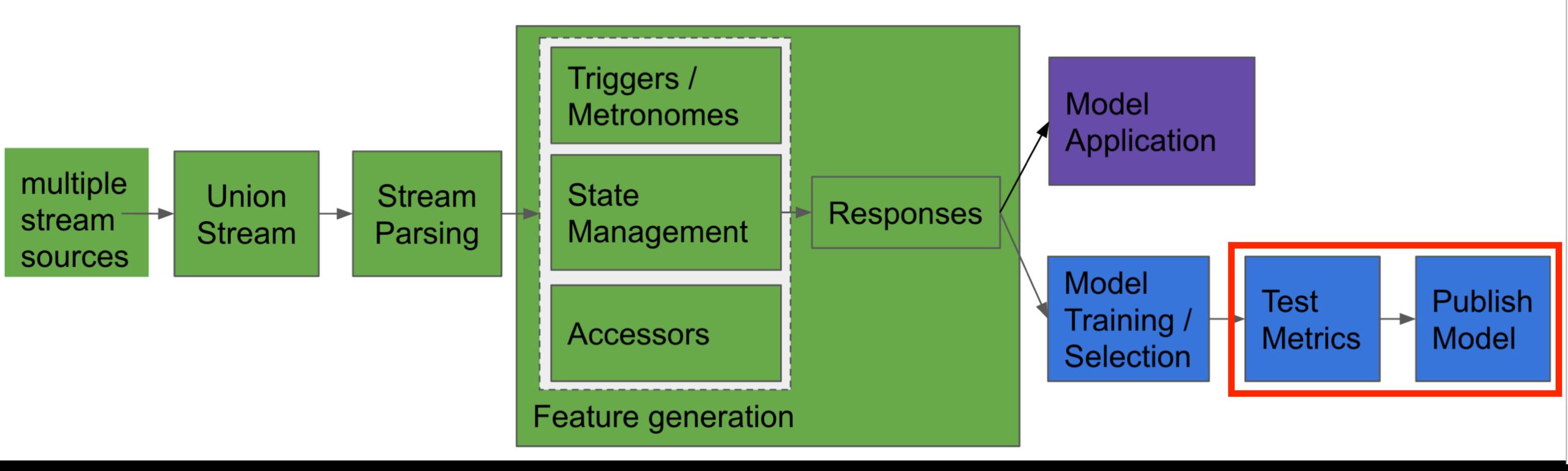


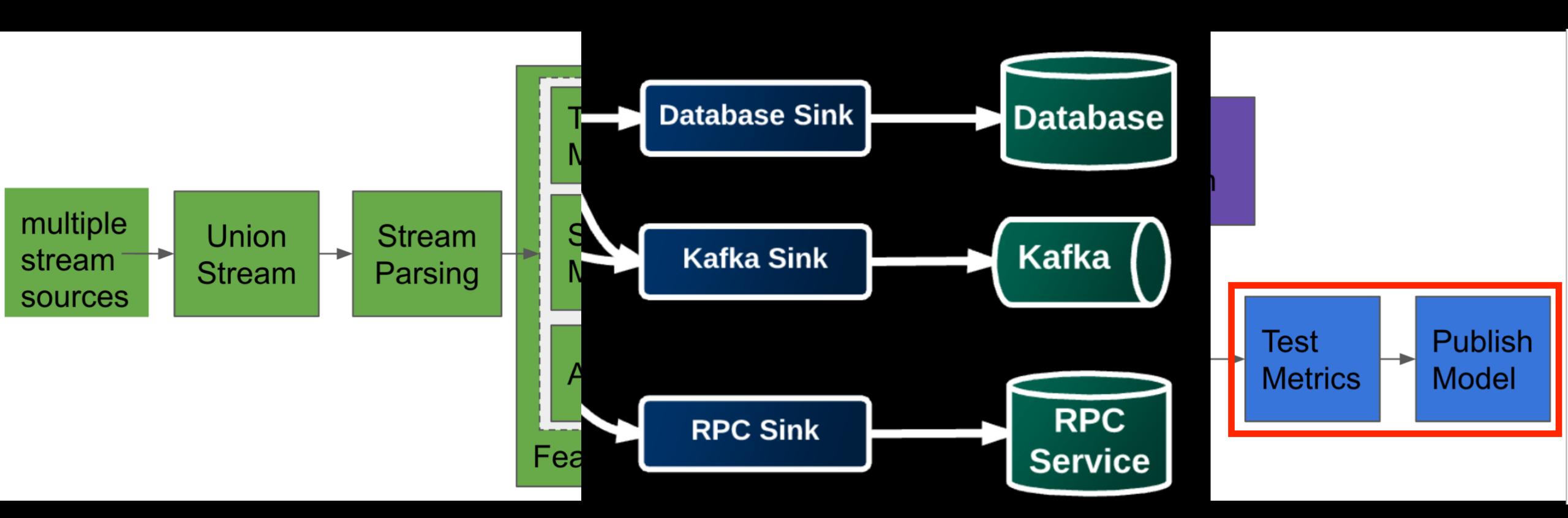










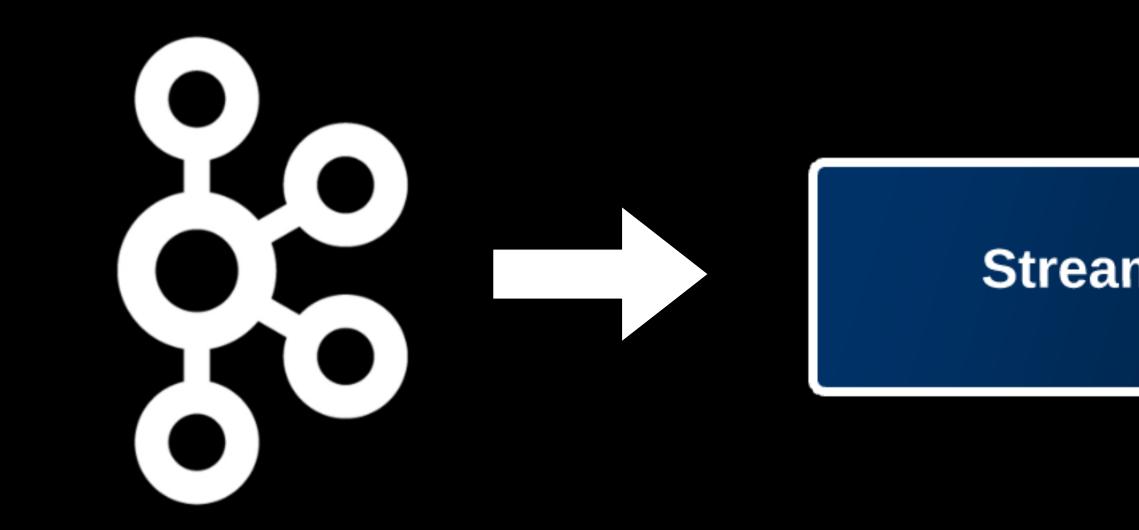


- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters
- Ensure exactly-once by proper data modeling
- Use external state store to avoid too much snapshotting
- Standardize monitoring and data validation

- Make sure you have robust infrastructure support

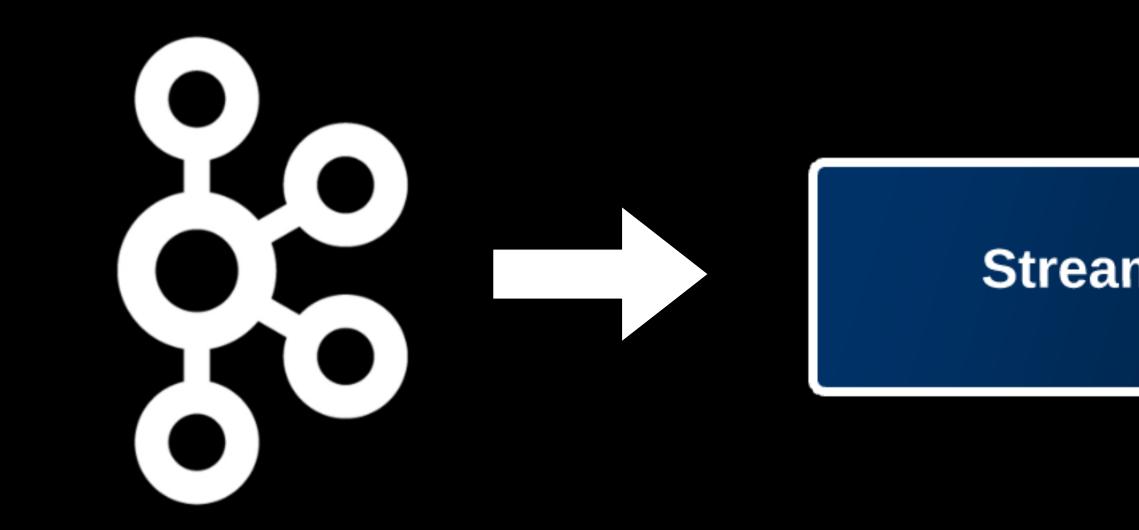
Stream System

- Make sure you have robust infrastructure support

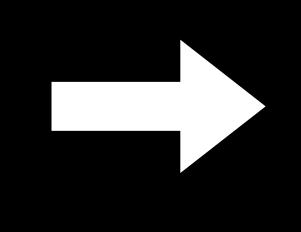


Stream System

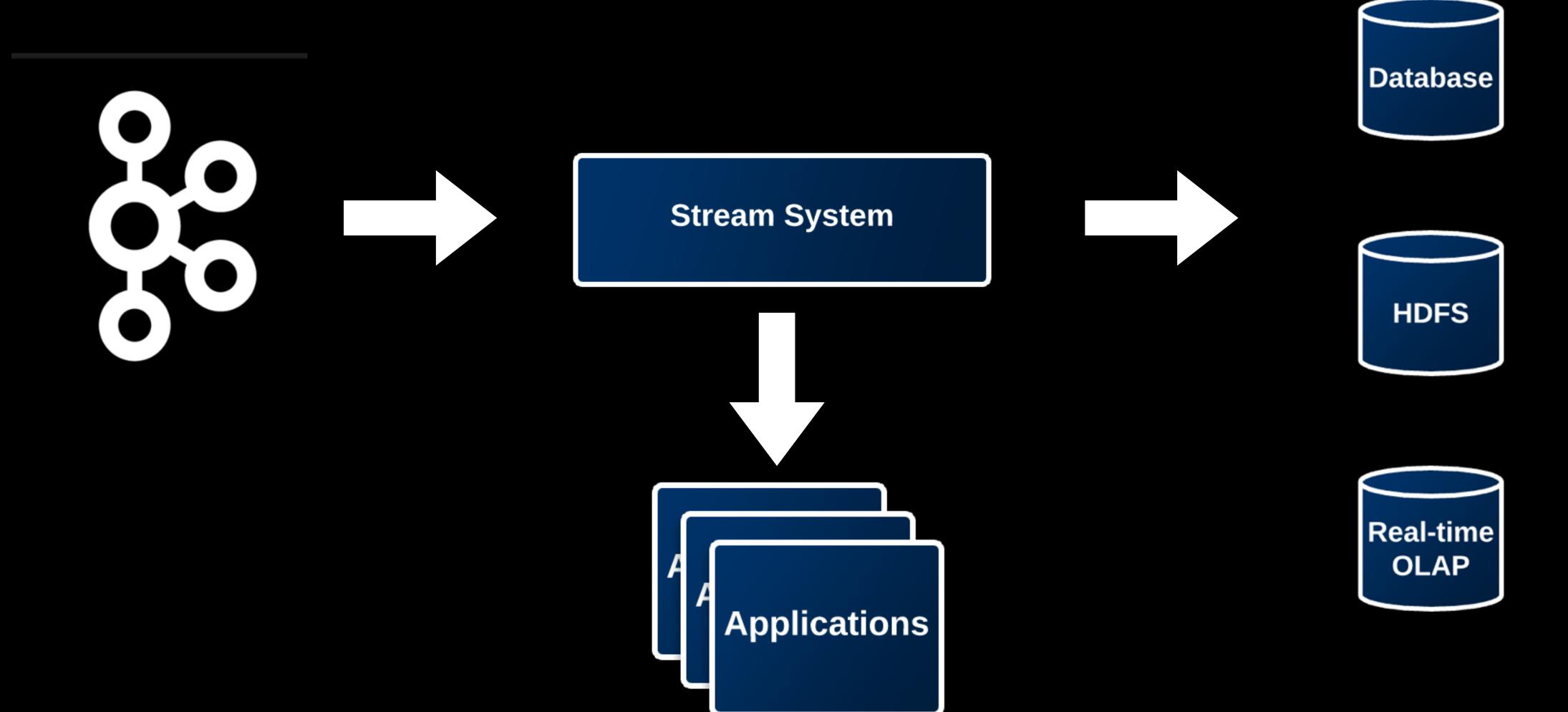
- Make sure you have robust infrastructure support



Stream System



- Make sure you have robust infrastructure support



- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters

- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters
- Ensure exactly-once by proper data modeling

- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters
- Ensure exactly-once by proper data modeling
- Use external state store to avoid too much snapshotting
- Standardize monitoring and data validation

- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters
- Ensure exactly-once by proper data modeling
- Standardize monitoring and data validation

Choose a Stream Processing Platform

beam

Thank You