Stream Processing &
Analytics with Flink

Danny Yuan, Engineer @ Uber
@g9yUayon

Four Kinds of Analytics

- On demand aggregation and pattern detection

- Clustering

- Forecasting

- Pattern detection on geo-temporal data

Two Ingredients

Geo/Spatial Time

Real-time aggregation and pattern matching

Complex Event Processing

Examples

How many cars enter and exit a INn past 5 minutes

CEP with full

Notify me if a partner completed her INn A given area

Patterns in the future

How many will be INn @ given area In the

Patterns in the future

How many will be INn @ given area In the

Important

IS Important

It needs to be scalable

Custom Hexagons

JINGLETOWN FRUITVALE

i_Agj I .'\’1[)r\ l

FERNSIDE

1
=

%

LOCKWOOD
GARDENS

Knowland Park

ELMHURST

“DES 41,
BROOKFIELD
VILLAGE

1,
N
—

%

)

It needs to be scalable

)

It needs to be scalable

- Every hexagon

- Every driver/rider

CEP Pipeline Built on Samza

- No hard-coded CEP rules

- Applying CEP rules per individual entity: topic, driver,
rider, cohorts, and etc

- Flexible checkpointing and statement management

i = N

—3p»{ Web Frontend [= sl >
WWW. backend Cassandra

HTTP
Kafka I > services

RPC services

1,71
/]/ ~\/\

(S
0@ @ --E-R
@

Stats service

‘ \

1\ /’
N
~ ,/
- > / \ \
Preprocessors\ ~ Shufflers Complex event processor Ac@n processor
~ / /)
\ / \ 3
N ~
— — P> Real-time main dataflow ~ /
—» HTTP request Kafka \
A
Real-time notification Cassandra

pr—————n < s

—»» Web Frontend M -

backend Cassandra

—

— HTTP
/(Kafka v services

RPC services

- 9

! o

|

| /,—u __.(W 0_. __.(w O_.O __,(o 0 N
: 8

|

\
'\
/
N . /
~ ,/
d
Preprocessors\ ~ Shufflers Complex event processor 5:(0n processor
. e . .
N s .
N -~)
— — P> Real-time main dataflow ~ /
——— HTTP request Kafka \
\
Real-time notification Cassandra

RESTFUL
—3p» Web Frontend
WWW. - backend " Cassandra

S

AN

([%)

HTTP
v services

RPC services

- 9

’ (P
SOl (= 0.8_{ - P
@

/
| \ Stats service
,\)i /
N
. /
. »;
/7
Preprocessors\ ~ Shufflers Complex event processor y(on processor
~N 7~
~N 7~
— — p=Real-time main dataflow ~ s \ ~
~
~ — -
——» HTTP request —~ — Kafka — \

\
» Real-time notification Cassandra

| = -

RESTFUL
—p Web Frontend
W W W' g backend > Cassandra

— .

—

I HTTP
i | 4| services

RPC services

// -7
/ J/ . _a

>
e =8 &=
@

Stats service

/
/

Z
rd

/7
Shufflers Complex event processor Ac(on processor
e
7~
- —_ S— q _ f—
_ ~
— — P> Real-time main dataflow ™S ~ -
~ ~ . — - \
——— HTTP request — - Kafka —
\
Real-time notification Cassandra

| = -

S RESTFUL
Web Frontend
W W W' g backend > Cassandra

-

—

I HTTP
i | 4| services

RPC services

// -7
/ J/ . _a

()
%
I

‘ \ \{? Stats service
, /
\ o A
N\ /
. .
\ J /
Preprocessors\ ~ Shufflers Complex event processor Ac(on processor
N e :
N -)
— — P Real-time main dataflow ~ s '
——— HTTP request Kafka \
\
Real-time notification Cassandra

i = S

RESTFUL
—p Web Frontend
WWW. > backend ™ Ccassandra

N

—

HTTP
Kafka I > services

RPC services

1,71
/ J/ ~‘_/\‘

/y
— - — Kafka — I Kafka afka —p = ¢
/ §\ AN
AR
\ %
\ \{? Stats service
,\)i /
D /
\ J /
Preprocessors\ ~ Shufflers Complex event processor Ac(on processor
N e k
~ ~ ~
— — P Real-time main dataflow ~ s -
——» HTTP request Kafka \
\
Real-time notification Cassandra

i = S

RESTFUL
—p Web Frontend
WWW. > backend ™ Ccassandra

HTTP
services

/(Kafka O

RPC services

S N

()
@@ =1 -8
@

‘ \ Stats service
'\
‘ \
\‘
N Shuffl Compl fo
Preprocessors = ~_ ufflers omplex event processor Acfion processor
~ 7 ,
~ - _)
— — p» Real-time main dataflow ~ / '
——— HTTP request Kafka \
\
Real-time notification Cassandra

i = S

RESTFUL
—3p» Web Frontend
WWW. > backend ™ cassandra

RPC services

- 9

' o /(Kafka O ' o I services

Stats service

| \

N ¢
Rosc R (Fes FeR)
& e

, /
N A
N
- L
\ J /
Preprocessors\ ~ Shufflers Complex event processor Qc(on processor
~N 7~
N g

™~ 7

- — P Real-time main dataflow S~ /
——» HTTP request Kafka
» Real-time notification { Cassandra j

We need to evolve our architecture for other analytics

Clustering

Manually Created Cluster

GO OFFLINE o] S5 S| B

E—— —

) Silver/Sph
o
olle

Hyattsville

“ <
(inGTO
3"

grc Reagan
fashington "G ,it
ational S
irnort (DCA)

Berkeley

/
Springfiell lexandria \\.

————

Call for algorithmically created clusters

- Clustering based on

Call for algorithmically created cluster

- Clustering based on key performance metrics

- measure the clusters

ELECTION
NOV. 8
\ 4

171 . 4% Clinton

\\N—/W'% 65 Trum

Call for algorithmically created clusters

- Clustering based on key performance metrics
- Continuously measure the clusters

- clustering for business needs

Call for algorithmically created clusters

- Clustering based on key performance metrics
- Continuously measure the clusters
- Different clustering for different business needs

- Create clusters in minutes for

Call for algorithmically created clusters

- Clustering based on key performance metrics

- Continuously measure the clusters

- Different clustering for different business needs
- Create clusters in minutes for all cities

- for other stream analytics

Home-grown Clustering Service

i

*,‘ ﬂ'

u‘

Home-grown Clustering Service

*,‘ ﬂ'

u‘

Home-grown Clustering Service

N - All cities under 3 minutes
- algorithms and measurements

0
o
=

Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements

geo-temporal data for clustering

Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering

Vi,

geo-temporal data for measurement

Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering

Vi,

- Real-time geo-temporal data for measurement

Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering

Vi,

- Real-time geo-temporal data for measurement
- Shared optimizations. To put things in perspective:
- 70,000 hexagons in SF

- Naive distance function requires at least 70,000 x
70,000 = pairs!

Home-grown Clustering Service

N o - All cities under 3 minutes
- Easily pluggable algorithms and measurements
- Historical geo-temporal data for clustering

Vi,

- Real-time geo-temporal data for measurement
- Shared optimizations

- Incremental updates

- Compact data representation

- Memoization

- Avoid anything more complex than

Forecasting

- Every decision is based on forecasting

Forecasting

- Forecasting based on both data and iInput

Forecasting

- Forecasting based on both data and

Forecasting

- Forecasting based on both data and

Anomaly,
or emerging demand? »

B il

HI

Forecasting

- Spatially granular forecasting - down to every hexagon

Forecasting

Spatially granular forecasting - down to every hexagon

Predicated demand jobs for next period: 65.41

Demand jobs in last 45 seconds’ B}

Updated at August 12th 2016, 11:24:24 am (4 seconds ago)
Previous forecast residual: 0.41

ook St

o,
1 U

San Francisco
vy St {101}

Forecasting

- Temporally granular forecasting - down to every minute

Forecasting

- Temporally granular forecasting - down to every minute

Predicated demand jobs for next period: 1.38
Demand jobs in last 60 seconds: 1
Updated at August 3rd 2016, 2:34:03 pm (2 seconds ago)

Previous forecast residual: -0.75

50/

3

Oakland

Su‘ii i

(61)

Alam

[78) f 101 %

Pattern Detection

Similarity of different metrics across geolocation and time
Metric outliers across geolocations and time

Frequent occurrences of certain patterns

Clustered behavior

Anomalies

Common Requirements in Pattern Detection

- Not just traditional time series analysis

- Incorporating insights on marketplace data

- Required both historical data and real-time input

- Spatially granular patterns - down to every hexagon

- Temporally granular patterns - down to every minute

Example: Anomaly Detection

- Simple time series analysis
- For a single geo area
- Can be noisy

A More Realistic Anomaly Detection

- /
L. -
SN ~ N \
- - (>()()‘/)()<)‘{;)‘r)<1 /\‘(x
\c{‘\ P -
>

» “
: o TP . SN . ——c
< (1(’} N OO A ~ - > R -

- - <O
O o

L - _ - 3 > a2
- o = = ()‘,<>‘,‘,‘)()<)()()()(,"/‘ S " .~

[- O O H B O .

’jy()_(y"‘()()()‘->()(>~<>()()()()()4 RO 5 O
/ Y L A

o & N
- e / . - N x . =
— 7 et
> < > < >

‘y"*‘(\(LA A A I I A Al eI AL et Il Il Il el E OO
e \)

N
o e - o
- N /)
L -

>)t\/xi"(“"k()()o(
L)(—’) \XO‘Y‘,/H/ \)d‘/\

- y()(ru<)<)({

/\t)()(’(\\)
)_(/\ D(/ -~ =
L - >

()<J\()()O()(’,L_>O(>.(><Y‘JU \)()O(S T e T o & P -
. :’A\)()

O €O OOy (‘Dp

VA AN

2 ﬁl\)(:r(. -

HYOQY)I) <>

T d

R S R S T e = =

Example: Anomaly Detection

- - - L -)
Pl o - > CO €< > ¥ \)()() j),t)(l \,L
p— ~ =
< R~ < -
o’

-
,()\ / e < = D
L SN > - D = e = PSP Oy AT E I E el >

= -
&H><)()<>()()<>(,‘# = e PO -

[- . O H B O

— ’AA(,O()()()()—()(H)()()()<H)\)()<><n N
k(,')‘ <> < L -
7 = P

F o
R - /" N

-
-
> L - N /" . > <
= ‘\ > O™
)<’</)(

‘,‘N\(P e e e e e e e e e e e e e e e = e e e
- (\
»

—

e WL

- O

<
- L - K
\ D(/ N e P PN L S W \ =)\(
- > ™ = = S = e = - - \)

> nndiil
/\)('(,‘\; R, / ‘\/Xy" - -

(>O()‘)‘>)()f‘r‘)()")‘>i>-<r*\)‘)‘y‘)
= S o = PSS - TN =

r‘y/(\ >()(/;‘)4/y\)o‘)‘()<)/‘)\tl\

<>
E =>
2 > ———
L)\)—(/\/) ~ - e R e = -

%M(\J*J“W*‘JYOU(_’>JL’\’J\“’ NS I - e e

Example: Anomaly Detection

What's the right architecture to support the analytics use cases?

Shared abstraction: multi-dimensional geo-temporal data

Shared abstraction: multi-dimensional geo-temporal data

- Time series by

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

- Flexible - tumbling, sliding, conditionally triggered

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible - tumbling, sliding, conditionally triggered

- e.g8. event-based triggers

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time

- Flexible - tumbling, sliding, conditionally triggered
- e.g. event-based triggers
- e.g., triggers of computation results

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing

o — R —
- T —
e ——
—
o ———
=
-
’- — e
"l
’l
— -
o -~
———
- - .
——
'lu'
o "'
-
- I~
—— —
S — A
-
-
- m—
-
N ——
— -"
~
—— — -
— — —
- -
—
e ————
s
- -
—
-~ -
.
|"
I — -
-
——
g
-
-~
~—
=
o —
—
p— \‘
— — ~
—
g—
T
i —
- =
f
—
S~
.
=
—
— .
~
\‘\\' -
/'
-
L
=
- \l’
-
——
| All'
—
.
——
-—
N
——
— -
e
-
p— ll’
'.\l
- — ‘f'
o
i
-
I\‘
—
A
=
.
.
-~
>
— —_—
—_ - -
— e
S
<
-
-
-
-
- ———
-
-
. —
—
—
—
‘\
= -
——
—
. - -
S —
ly'
—m—— .
-
— —
— e —
e ——

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

Y(t)=aX(t)+ (1 —a)Y(t—1)

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

Y(t)=aX(t)+ (1 —a)Y(t—1)

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

Y(t)=aX(t)+ (1 —a)Y(t—1)

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

Y(t)=aX(t)+ (1 —a)Y(t—1)

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

processing. E.g.,

V() = aX(t) + (1—afY(t— 1)

State

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

- Stateful processing

stream

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

- Stateful processing

stream

- Real-time streams: streams

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

- Stateful processing

stream

- Real-time streams: streams
- Batch: streams

Shared abstraction: multi-dimensional geo-temporal data

- Time series by event time
- Flexible windowing - tumbling, sliding, conditionally triggered

- Stateful processing

stream

- Real-time streams: streams
- Batch: streams
- s/lambda/kappa

Apache Flink

- Ordering by event time
- Flexible windowing with watermark and triggers
- Exactly-once semantics

- Built-in state management and checkpointing
- Nice data flow APIs

Mental Picture for Processing Geo-temporal Data

Processing
by geo area
Hexagon A
City-wide
processing
Hexagon B
Processing
SF by geo area
i - Processing
Multiple Data Unified /'l by geo area
Sources Stream Geo Area A
LA City-wide
processing
Geo Area B
Processing
by geo area
a City
Processing
by geo area
City-wide Geo Area A
processing
Geo Area B
Processing
by geo area

(wmdowlo_.(wmowzo

.(Window K] o

Mental Picture for Processing Geo-temporal Data

Processing
by geo area
Hexagon A
City-wide
processing
Hexagon B
Processing
SF by geo area
. W / Processing
Multiple Data Unified by geo area
Sources Stream \ Geo Area A
LA City-wide
processing
Geo Area B
Processing
by geo area
a City
Processing
by geo area
City-wide Geo Area A
processing
Geo Area B
Processing
by geo area

(wmdowlo_.(wmowzo

.(Window K] o

Mental Picture for Processing Geo-temporal Data

Processing
by geo area
Hexagon A
City-wide
processing
/ Hexagon B
Processing
SF by geo area
i - Processing
Multiple Data Unified /'l by geo area
Sources Stream \ Geo Area A
LA City-wid
~— y-widae
processing
Geo Area B
Processing
by geo area
a City
Processing
by geo area
City-wide Geo Area A
processing
Geo Area B
Processing
by geo area

(Window 1 O—y(Window 2 (\

)

.(Window K] o

Mental Picture for Processing Geo-temporal Data

Processing
by geo area

Hexagon A

City-wide /
processing \

/ Hexagon B
Processing

SF \'l by geo area
i - Processing
Multiple Data Unified by geo area
Sources Stream Geo Area A
LA. City-wide -
processing \
Geo Area B
Processing
by geo area
a City
Processing
by geo area
City-wide | || SeoAreah
processing
Geo Area B
Processing
by geo area

(Window 1 O—y(Window 2 (\

)

.(Window K] o

Mental Picture for Processing Geo-temporal Data

Processing
/ by geo area
Hexagon A
City-wide /
processing \
Hexagon B
\ Processing
SF by geo area
P e — _'l Processing
ultiple Data nifne by geo area
Sources Stream / 49
Geo Area A
LA City-wide -
processing
Geo Area B
\ Processing
by geo area
a City
Processing
/ by geo area
City-wide __GeoAreal
processing

Geo Area B

\ Processing
by geo area

(Window 1 O—y(Window 2 (\

)

.(Window K] o

Mental Picture for Processing Geo-temporal Data

Processing
by geo area

Hexagon A
City-wide
processing
Hexagon B
\ Processing
SF by geo area
P e — ’l Processing
ultiple Data nifne by geo area
Sources Stream / 49
Geo Area A
LA City-wide
processing
Geo Area B
\ Processing
by geo area
a City
Processing
/ by geo area
City-wide Geo Area A
processing

Geo Area B

by geo area

\ ‘| Processing

(Window 1 O—y(Window 2 (\

)

.(Window K] o

Mental Picture for Processing Geo-temporal Data

Processing
by geo area
Hexagon A
City-wide
processing
Hexagon B
Processing
SF by geo area
i - Processing
Multiple Data Unified /'l by geo area
Sources Stream Geo Area A
LA City-wide
processing
Geo Area B
Processing
by geo area
a City
Processing
by geo area
City-wide Geo Area A
processing
Geo Area B
Processing
by geo area

(Window 1 O—y(Window 2 (\

)

.(Window K] o

A Simple Example: simple prediction

o] =] = o] o [o [o [) e [+
Sources

. fromKafka()

.config(config)

.cluster(aCluster)

.topics(topiclList)

A Simple Example

Extract/decode Kev bv cit Window by Spatial Key by Stateful
timestamp A event time Smoothing hex prediction

assignTimestampsAndiWatermarks

A Simple Example

Extract/decode Kev by Ci Window by Spatial Key by Stateful
timestamp y by city event time Smoothing hex prediction

keyBy(...)

A Simple Example

Extract/decode Kev bv cit Window by Spatial Key by Stateful
timestamp A event time Smoothing hex prediction

. timeWindow(...)

A Simple Example

Extract/decode Rerhy cit Window by Spatial Key by Stateful
timestamp gy 1ty event time Smoothing hex prediction

.flatMap(...)

S

A Simple Example

Extract/decode Kev by Ci Window by Spatial Key by Stateful
timestamp y by city event time Smoothing hex prediction

.keyBy(...)

A Simple Example

Extract/decode Kev bv cit Window by Spatial Key by Stateful
timestamp A event time Smoothing hex prediction

.apply(statefulFn)

A Simple Example

Extract/decode Kev by Ci Window by Spatial Key by Stateful
timestamp y by city event time Smoothing hex prediction

.addSink(...)

EENINE
OLAP
Hors

HTTP Source

Kafka Stream Source

Batch Data Source

Geotemporal API

High Level Data Flow

Database Sink Database
Data

Transformer

Data
Flow
Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

EENINE
OLAP
Hors

HTTP Source

Kafka Stream Source

Batch Data Source

Geotemporal API

High Level Data Flow

Database Sink Database
Data

Transformer

Data
Flow
Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

EENINE
OLAP

HTTP Source

Kafka Stream Source

Batch Data Source

Geotemporal API

High Level Data Flow

Database Sink Database

Data
Transformer

Data
Flow
Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

EENINE
OLAP

HTTP Source

Kafka Stream Source

Batch Data Source

Geotemporal API

High Level Data Flow

Database Sink Database
Data

Transformer

Data
Flow
Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

EENINE
OLAP

HTTP Source

Kafka Stream Source

Batch Data Source

Geotemporal API

High Level Data Flow

Database Sink Database
Data

Transformer

Data
Flow
Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

High Level Data Flow

EENINE
OLAP

HTTP Source Database Sink Database

Kafka Stream Source
Batch Data Source

Data

Transformer

Data
Flow
Adapter

Stream Processing Abstraction Layer

Geotemporal API

EENINE
OLAP
Hors

HTTP Source

Kafka Stream Source

Batch Data Source

Geotemporal API

High Level Data Flow

Database Sink Database

Data

Transformer

Flow

Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

High Level Data Flow

Realtime
OLAP
HTTP Source
m‘ Kafka Stream Source

| Batch Data Source

Stream Processing Abstraction Layer

Database

Data
Transformer

Data
Flow
Adapter

EENINE
OLAP
Hors

HTTP Source

Kafka Stream Source

Batch Data Source

Geotemporal API

High Level Data Flow

EE——]
Database Sink Database
Data
Transformer
Flow m
Adapter
|3 —
RPC Sink RPC
Service

Stream Processing Abstraction Layer

High Level Data Flow

EEUNE m—
OLAP : .
Database Sink Database

HTTP Source
Data

m‘ Kafka Stream Source
| Batch Data Source

Geotemporal API

Transformer

Data
Flow
Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

(B RN] AN

High Level Data Flow

EEUNE m—
OLAP : .
Database Sink Database

HTTP Source
Data

m‘ Kafka Stream Source
| Batch Data Source

Geotemporal API

Transformer

Data
Flow
Adapter

RPC Sink RPC
Service

Stream Processing Abstraction Layer

Flink

Fernwo«

Geotemporal API for efficiency

Pasadena

San Dimas
\

LOS ANGELES

Diamond Bar

Fruntington Park Rowland Heights

;)
- ! .
-

e

Signal Hil

Long Beach

Cla

>simi Valley

Thousand
OdkS' i

o Y PNy

Malibu

%, Mofiica
J

Lancaste

Palmdale

Santa
Clarita

La Canada
Flintridge

5 —

A‘J
BurbBank

§— Pasadé’
L gGlendale” FASATEEE Ty o dia
. ¥

. o el 1 1 2 /‘\/V
1 . o~

. - Ay -
3 - \ .

et ke 1 % : L, (
{ Bqverly L : ;-

L M L osAngéles

Lo’

SantaA i

El Monte

2

. H Whittier
% ~Alglewood .
.‘-/" 3;_ 'l,j; —= :5_‘“ ":_;_L DO\.',, lt",'

. Norwalk
Compton —

| 1

Hawthorne

.

1 X
‘¢
S

" _Lakewood ¥
T¢rrance Carmsap.”

Rancho Long Beach

. Palos
Verdes

AZU Sd
West

Coviha Pomoné
3

Cu
Ontario

: Chino

Fullerton

Anaheim
Villa Park

Orange

Santa Ana

Geotemporal API for efficiency

wathAar f‘f‘"lt reyre () [+¢ "L" @ 'AE‘B addlaiBidTalal
reetMap contnibutors (c) CartoDB, CartoDB attributions

Geotemporal API for productivity

private static ForkJoinPool fjPool new ForkJoinPool

public void postProcessResult(QueryResult
Immwtab\eMap<HexagonCoord, BucketWrapper> hexagons HexagonAggregationUtility.bul ldHexagonMap(t, hexField);

List<BucketWrapper> buckets Lists.newArraylList hexagons.values

fiPool. invoke(new KRingProcessor (SEQUENTIAL THRESHOLD, hexagons, buckets, @, buckets.size

private class KRingProcessor extends RecursiveTask<List<BucketWrapper>>
private int sequentialThreshold;
private int low;
private int high;

private ImmutableMap<HexagonCoord, BucketWrapper> data;
private List<BucketWrapper> buckets;

KRingProcessor(int . ’
ImmutableMap<HexagonCoord, BucketWrapper
List<BucketWrapper
int /, int

sequentialThreshold
data 3
buckets

Low

high

protected List<BucketWrapper> compute
if (high low <= sequentialThreshold
for (int i low; 1 < high; |
BucketwWrapper bucket buckets.get
Map<String, Object> values bucke? » 1By 3 getValues
Af (values.containsKey hexField alues.containsKey metric
processBucket (data, bucke?

return buckets;
else
int mid Low high Low 2;
KRingProcessor left new KRingProcessor sequentialThreshold, data, buckets, low, mid);
KRingProcessor right new KRingProcessor sequentialThreshold, data, buckets, mid, high);
left. fork();
right.compute
left.joinl);

return buckets;

private void processBucket(Map<Hexag BucketWrapper , BucketWrapper

Havananl anerd havlCnaned ' narlCaned

YesuuLnG .

Geotemporal API for productivity

private static ForkJoinPool fjPool new ForkJoinPool

public void postProcessResult(QueryResult
Immwtab\eMap<HexagonCoord, BucketWrapper> hexagons HexagonAggregationUtility.bul ldHexagonMap(t, hexField);

List<BucketWrapper> buckets Lists.newArraylList hexagons.values

fiPool. invoke(new KRingProcessor (SEQUENTIAL THRESHOLD, hexagons, buckets, @, buckets.size

private class KRingProcessor extends RecursiveTask<List<BucketWrapper>>
private int sequentialThreshold;
private int low;
private int high;

private ImmutableMap<HexagonCoord, BucketWrapper> data;
private List<BucketWrapper> buckets;

KRingProcessor(int . ’
ImmutableMap<HexagonCoord, BucketWrapper
List<BucketWrapper
int /, int

sequentialThreshold
data 3
buckets

Low

high

protected List<BucketWrapper> compute
if (high low <= sequentialThreshold
for (int i low; 1 < high; |
BucketwWrapper bucket buckets.get
Map<String, Object> values bucke? » 1By 3 getValues
Af (values.containsKey hexField alues.containsKey metric
processBucket (data, bucke?

return buckets;
else
int mid Low high Low 2;
KRingProcessor left new KRingProcessor sequentialThreshold, data, buckets, low, mid);
KRingProcessor right new KRingProcessor sequentialThreshold, data, buckets, mid, high);
left. fork();
right.compute
left.joinl);

return buckets;

Havananl anerd havlCnaned ' narlCaned

YesuuLnG .

Geotemporal API for productivity

private static ForkJoinPool fjPool new ForkJoinPool

public void postProcessResult(QueryResult
Immwtab\eMap<HexagonCoord, BucketWrapper> hexagons HexagonAggregationUtility.bul ldHexagonMap(t, hexField);

List<BucketWrapper> buckets Lists.newArraylList hexagons.values

fiPool. invoke(new KRingProcessor (SEQUENTIAL THRESHOLD, hexagons, buckets, @, buckets.size

private class KRingProcessor extends RecursiveTask<List<BucketWrapper>>
private int sequentialThreshold;
private int low;
private int high;

private ImmutableMap<HexagonCoord, BucketWrapper> data;
private List<BucketWrapper> buckets;

KRingProcessor(int . ’
ImmutableMap<HexagonCoord, BucketWrapper
List<BucketWrapper
int /, int

sequentialThreshold
data 3
buckets

Low

high

protected List<BucketWrapper> compute
if (high low <= sequentialThreshold
for (int i low; 1 < high; |
BucketwWrapper bucket buckets.get
Map<String, Object> values bucke? » 1By 3 getValues
Af (values.containsKey hexField alues.containsKey metric
processBucket (data, bucke?

return buckets;
else
int mid Low high Low 2;
KRingProcessor left new KRingProcessor sequentialThreshold, data, buckets, low, mid);
KRingProcessor right new KRingProcessor sequentialThreshold, data, buckets, mid, high);
left. fork();
right.compute
left.joinl);

return buckets;

return hexag ntext.mapGeoArea
private void processBucket(Map<Hexag BucketWrapper , BucketWrapper x ntext rea >

double incrementalValue Q;

Havananl anerd havlCnaned ' narlCaned

YesuuLnG .

Forecasting as an example

) ("

Streams External Data

Operators & Computation DAGs

i

Feature Generation

' i

 Offline Model Fitting | | Online Models

l '

Predictions, Metrics & Visualizations

r

.

Forecasting as an example

Streams External Data

Operators & Computation DAGs

i

Feature Generation

' l

 Offline Model Fitting | | Online Models

l '

Predictions, Metrics & Visualizations

s

.

Forecasting as an example

Streams

External Data

Feature Generation

i

 Offline Model Fitting

'

l

(Online Models

'

s

.

Predictions, Metrics & Visualizations

Forecasting as an example

o

Streams

s

External Data

Feature Generation

 Offline Model Fitting

l

(Online Models

'

s

.

Predictions, Metrics & Visualizations

Forecasting as an example

) ("

Streams External Data

Operators & Computation DAGs

i

Feature Generation

'

(Online Models

'

Predictions, Metrics & Visualizations

Forecasting as an example

) ("

Streams External Data

Operators & Computation DAGs

i

Feature Generation

i

 Offline Model Fitting

l

Predictions, Metrics & Visualizations

s

.

Forecasting as an example

) ("

Streams External Data

Operators & Computation DAGs

i

Feature Generation

' l

 Offline Model Fitting | | Online Models

s

Predictions, Metrics & Visualizations

.

Forecasting as an example

multiple
stream "
sources

Stream

Parsing

Model
Training /
Selection

Test Publish
Metrics Model

Feature generation

Forecasting as an example

SOurces

multiple Stream

stream — ~ Parsing I ' Management {

.':.’Ir(;?rﬁ:] / Test Publish
; Accessors Selectign Metrics Model

Feature generation

Triggers /
Metronomes

multiple Union Stream State
stream " gyream ~ Parsing | Management | Response
sources ;

FEEUNE
OLAP esSSors
HTTP Source
Data
< _______________
m. Kafka Stream Source Data

Flow re generation

Adapter

Batch Data Source

Forecasting as an example

multiple
stream
sources

Stream

Parsing

Model
Training /
Selection

Test Publish
Metrics Model

Feature generation

Forecasting as an example

multiple

Stream

sources
Model

Training /
Selection

Test Publish
Metrics Model

Feature generation

Forecasting as an example

multiple
stream
sources

Siream Responses

Parsing

Model
Training /
Selection

Test Publish
Metrics Model

Feature generation

Forecasting as an example

multiple
stream
sources

Stream

Parsing

Model
Training /
Selection

Test Publish
Metrics Model

Feature generation

Forecasting as an example

multiple
stream
sources

Stream

Parsing

Model
Training /
Selection

Test Publish
Metrics Model

Feature generation

Forecasting as an example

multiple
stream
sources

Stream

Parsing

Model
Training /
Selection

Test Publish
Metrics Model

Feature generation

Forecasting as an example

Database

| Database Sink
n:ultlple Union Stream | [N
sticail Stream Parsing : m
sources ;

I
Service

Lessons Learned

- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters

- Ensure exactly-once by proper data modeling
- Use external state store to avoid too much snapshotting

- Standardize monitoring and data validation

Lessons Learned

- Make sure you have robust infrastructure support

Stream System

Lessons Learned

- Make sure you have robust infrastructure support

»

Lessons Learned

- Make sure you have robust infrastructure support
<

L
» Stream System # ﬂ

Real-time
OLAP

Lessons Learned

- Make sure you have robust infrastructure support

» #
II Applications

Database

Real-time
OLAP

Lessons Learned

- Make sure you have robust infrastructure support

- Scaling up, namely single-node optimization matters

Lessons Learned

- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters

- Ensure exactly-once by proper data modeling

Lessons Learned

- Make sure you have robust infrastructure support
- Scaling up, namely single-node optimization matters

- Ensure exactly-once by proper data modeling
- Use external state store to avoid too much snapshotting

- Standardize monitoring and data validation

Lessons Learned

- Make sure you have robust infrastructure support

- Scaling up, namely single-node optimization matters
- Ensure exactly-once by proper data modeling

- Standardize monitoring and data validation

Choose a Stream Processing Platform

peam

Sdmiad

K’

Spa

Thank You

