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Four Kinds of Analytics

- On demand aggregation and pattern detection 

- Clustering 

- Forecasting 

- Pattern detection on geo-temporal data



Two Ingredients 

Geo/Spatial Time



Real-time aggregation and pattern matching



Slide title

Complex Event Processing



How many cars enter and exit a user defined area in past 5 minutes

Examples



It doesn’t have to be within a time or area
CEP with full historical context

Notify me if a partner completed her 100th trip in a given area just now? 



Patterns in the future

How many first-time riders will be dropped off in a given area in the next 5 

minutes?
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It needs to be scalable

- Every hexagon 

- Every driver/rider



CEP Pipeline Built on Samza

- No hard-coded CEP rules 

- Applying CEP rules per individual entity: topic, driver, 

rider, cohorts, and etc 

- Flexible checkpointing and statement management
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We need to evolve our architecture for other analytics



Clustering



Slide title Manually Created Cluster
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Slide titleCall for algorithmically created clusters

- Clustering based on key performance metrics 

- Continuously measure the clusters 

- Different clustering for different business needs 

- Create clusters in minutes for all cities 

- Foundation for other stream analytics
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Home-grown Clustering Service

- All cities under 3 minutes 

- Easily pluggable algorithms and measurements 

- Historical geo-temporal data for clustering 

- Real-time geo-temporal data for measurement 

- Shared optimizations. To put things in perspective: 

- 70,000 hexagons in SF 

- Naive distance function requires at least 70,000 x 

70,000 = 4.9 billion pairs!



Slide title
Home-grown Clustering Service

- All cities under 3 minutes 

- Easily pluggable algorithms and measurements 

- Historical geo-temporal data for clustering 

- Real-time geo-temporal data for measurement 

- Shared optimizations 

- Incremental updates 

- Compact data representation 

- Memoization 

- Avoid anything more complex than O(nlog(n)) 



Forecasting
- Every decision is based on forecasting



Forecasting
- Forecasting based on both historical data and stream input
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Forecasting
- Forecasting based on both historical data and stream input

  Anomaly,  
or emerging demand?



Forecasting
- Spatially granular forecasting - down to every hexagon
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Forecasting
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Forecasting
- Temporally granular forecasting - down to every minute



Pattern Detection

- Similarity of different metrics across geolocation and time 

- Metric outliers across geolocations and time 

- Frequent occurrences of certain patterns 

- Clustered behavior 

- Anomalies



Common Requirements in Pattern Detection

- Not just traditional time series analysis 

- Incorporating insights on marketplace data 

- Required both historical data and real-time input 

- Spatially granular patterns - down to every hexagon 

- Temporally granular patterns - down to every minute 



Example: Anomaly Detection

- Simple time series analysis 

- For a single geo area 

- Can be noisy



A More Realistic Anomaly Detection



Example: Anomaly Detection



Example: Anomaly Detection



What’s the right architecture to support the analytics use cases?



Shared abstraction: multi-dimensional geo-temporal data



- Time series by event time
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- Stateful processing. E.g.,
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- Time series by event time 

- Flexible windowing - tumbling, sliding, conditionally triggered 

- Stateful processing 

- Unified stream 

- Real-time streams: unbounded streams 
- Batch: bounded streams 
- s/lambda/kappa

Shared abstraction: multi-dimensional geo-temporal data



- Ordering by event time 

- Flexible windowing with watermark and triggers  

- Exactly-once semantics  

- Built-in state management and checkpointing 

- Nice data flow APIs

Apache Flink



Mental Picture for Processing Geo-temporal Data
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A Simple Example: simple prediction

Sources	

			.fromKafka()	

			.config(config)	

			.cluster(aCluster)	

			.topics(topicList)



A Simple Example

assignTimestampsAndWatermarks



A Simple Example

keyBy(…)



A Simple Example

.timeWindow(…)



A Simple Example

.flatMap(…)



A Simple Example

.keyBy(…)



A Simple Example

.apply(statefulFn)



A Simple Example

.addSink(…)



High Level Data Flow
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High Level Data Flow



Geotemporal API for efficiency
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Geotemporal API for productivity



Forecasting as an example
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Forecasting as an example



Lessons Learned

- Make sure you have robust infrastructure support 

- Scaling up, namely single-node optimization matters 

- Ensure exactly-once by proper data modeling 

- Use external state store to avoid too much snapshotting 

- Standardize monitoring and data validation
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Lessons Learned

- Make sure you have robust infrastructure support 

- Scaling up, namely single-node optimization matters 

- Ensure exactly-once by proper data modeling 

- Standardize monitoring and data validation



Choose a Stream Processing Platform



Thank You


