
The Art of Relevance and Recommendations

@cchio

slides+code: https://git.io/vXRwv

https://git.io/vXRwv


…i.e. how to hit the ground running 
with recommender systems

slides+code: https://git.io/vXRwv

https://git.io/vXRwv


What do I do?

• Stanford B.S./M.S. Computer Science 

• Research Engineer at Shape Security 

• Organizer, ‘Data Mining for Cyber Security’ meetup group in Silicon Valley 

• Authoring ‘Machine Learning and Security’ (O'Reilly, mid-late 2017) 

• Presented independent research in Adversarial ML at dozens of security/ML 
conferences over last two years



- Bought Justin Bieber 
- Bought Selena Gomez

- Performs a search for Justin Bieber 
- Recommender system suggests 

Selena Gomez





Ways to serve recommendations 
(in desc. order of naivety)

1. Hand-crafted; “our picks” 
2. Global aggregates;  top 10 among all 

users, most recent items 
3. Individualized recommendations based 

on inferred/learned user preferences



MovieLens dataset

1. Activity from MovieLens, a movie 
recommendation service 

2. 100004 ratings, 1296 tags, 9125 movies 
3. 671 users, all selected users rated at 

least 20 movies



How to guess what a user might like?

Explicit Implicit
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Real Problems

1. Cold-start for new users/items 
2. Not leveraging on crowd wisdom 
3. Sparse ratings 
4. Popularity bias/Long-tail problem 
5. Computational efficiency issues



Types of Recommender Systems

1. Content based filtering 
2. Collaborative filtering 
3. Latent-factor based 
4. Multi-armed bandits



Content based filtering

1. Recommendations made based solely on the 
characteristics of the item 

2. Build a profile of a user based on his past likes 
3. System recommends items similar to what a 

user has liked in the past



Content based filtering

1. New items can be recommended 
2. Obscure items will not be neglected 
3. Can be efficiently pre-computed

solves

but
• Finding good features is hard/laborious 
• Cannot recommend to new users without a 

profile



1. Get the active user’s item ratings (explicit + implicit) 
2. Identify other users that made similar ratings on similar items 
3. Recognize items that these similar users liked 
4. Generate a prediction for the active user

Collaborative filtering

User-based



1. Look at items the active user rated 
2. Compute the similarity of these items to other 

items, based on how other users rated all of them 
3. Generate a prediction for the active user

Collaborative filtering

Item-based



Collaborative filtering

1. Leverages heavily on crowd wisdom 
2. No feature engineering required

solves

but
• Cold-start 
• Sparse ratings 
• Cannot recommend obscure items 
• Hard to pre-compute, ratings constantly 

being updated



Latent-factor based

1. Develop a model of user-item relations that 
tries to uncover latent/hidden relationships or 
preferences 

2. Use ML algorithms to model similarities



Latent-factor based

Low-rank matrix factorization



Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 42.8 (2009): 30-37.



Latent-factor based

1. Fixes sparse ratings 
2. Similarity comparisons more efficient

solves

but

• Still not enough recommending new/
unique items to users (long-tail)



The multi-armed bandit problem



1. Each arm x 
A. Wins (output = 1) with a fixed 

unknown probability µx 

B. Loses (output = 0) with a fixed 
unknown probability 1-µx 

2. All you have is posterior probability 
3. How to pull arms to maximize total 

reward?



µ1

µ2

µk

…… …



Naive solution

1. Pull each arm k times (e.g. 100) 
2. Record the mean reward of each arm 
3. Pull the arm with the highest mean 

reward for eternity



Thompson Sampling works real well

1. Maintain a probability function for each 
arm, based on data collected over time 

2. Draw a sample from every arm’s 
probability function 

3. Pull the arm that gives the largest drawn 
sample 

4. Repeat for eternity



k arms → k unique content versions 
goal → maximize user retention, CTR

How does this apply to content A/B testing?



How does this apply to online advertising?

k arms → k distinct page visitors 
goal → maximize ad engagement



How does this apply to clinical trials?

k arms → k distinct treatments 
goal → maximize patient loss



How does this apply to recommender systems?

…you’re running an experiment each time you pull an arm

k arms → k distinct items to recommend 
goal → maximize user interest
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Evaluation



Practical evaluation concerns

RMSE unreasonably 
penalizes a method that 
does well for predicting 
high ratings but not low 
ratings

vs.

•Precision @ Top-5 
•Receiver Operating 
Characteristic (ROC) 
Area Under Curve (AUC)



Prediction diversity, context, order 
are often as important as accuracy

Practical evaluation concerns



Practical evaluation concerns

Cost function - what happens when 
you make a bad recommendation? 



Complexity/Efficiency

• Expensive step is item/customer similarity matching 
• Often too expensive to do at runtime  

• Precompute, good for item-item collab filtering 

• Dimensionality reduction 
• Locality sensitive hashing 
• Clustering



Questions?



Takeaways

1. Implementing collaborative filtering is much 
easier than you think 

2. Use matrix factorization to fix sparse ratings 

3. Exploitation vs. Exploration  
                → using multi-armed bandit algorithms



Practical tips

1. Implicit signals > explicit signals 
2. Optimize for model explainability instead of just accuracy 
3. (More data + simple algorithm) > (less data + complex algorithm)
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