
The Art of Relevance and Recommendations

@cchio

slides+code: https://git.io/vXRwv

https://git.io/vXRwv

…i.e. how to hit the ground running
with recommender systems

slides+code: https://git.io/vXRwv

https://git.io/vXRwv

What do I do?

• Stanford B.S./M.S. Computer Science

• Research Engineer at Shape Security

• Organizer, ‘Data Mining for Cyber Security’ meetup group in Silicon Valley

• Authoring ‘Machine Learning and Security’ (O'Reilly, mid-late 2017)

• Presented independent research in Adversarial ML at dozens of security/ML
conferences over last two years

- Bought Justin Bieber
- Bought Selena Gomez

- Performs a search for Justin Bieber
- Recommender system suggests

Selena Gomez

Ways to serve recommendations
(in desc. order of naivety)

1. Hand-crafted; “our picks”
2. Global aggregates; top 10 among all

users, most recent items
3. Individualized recommendations based

on inferred/learned user preferences

MovieLens dataset

1. Activity from MovieLens, a movie
recommendation service

2. 100004 ratings, 1296 tags, 9125 movies
3. 671 users, all selected users rated at

least 20 movies

How to guess what a user might like?

Explicit Implicit

How to guess what a user might like?

Jure Leskovec , Stanford CS246

Real Problems

1. Cold-start for new users/items
2. Not leveraging on crowd wisdom
3. Sparse ratings
4. Popularity bias/Long-tail problem
5. Computational efficiency issues

Types of Recommender Systems

1. Content based filtering
2. Collaborative filtering
3. Latent-factor based
4. Multi-armed bandits

Content based filtering

1. Recommendations made based solely on the
characteristics of the item

2. Build a profile of a user based on his past likes
3. System recommends items similar to what a

user has liked in the past

Content based filtering

1. New items can be recommended
2. Obscure items will not be neglected
3. Can be efficiently pre-computed

solves

but
• Finding good features is hard/laborious
• Cannot recommend to new users without a

profile

1. Get the active user’s item ratings (explicit + implicit)
2. Identify other users that made similar ratings on similar items
3. Recognize items that these similar users liked
4. Generate a prediction for the active user

Collaborative filtering

User-based

1. Look at items the active user rated
2. Compute the similarity of these items to other

items, based on how other users rated all of them
3. Generate a prediction for the active user

Collaborative filtering

Item-based

Collaborative filtering

1. Leverages heavily on crowd wisdom
2. No feature engineering required

solves

but
• Cold-start
• Sparse ratings
• Cannot recommend obscure items
• Hard to pre-compute, ratings constantly

being updated

Latent-factor based

1. Develop a model of user-item relations that
tries to uncover latent/hidden relationships or
preferences

2. Use ML algorithms to model similarities

Latent-factor based

Low-rank matrix factorization

Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 42.8 (2009): 30-37.

Latent-factor based

1. Fixes sparse ratings
2. Similarity comparisons more efficient

solves

but

• Still not enough recommending new/
unique items to users (long-tail)

The multi-armed bandit problem

1. Each arm x
A. Wins (output = 1) with a fixed

unknown probability µx

B. Loses (output = 0) with a fixed
unknown probability 1-µx

2. All you have is posterior probability
3. How to pull arms to maximize total

reward?

µ1

µ2

µk

…… …

Naive solution

1. Pull each arm k times (e.g. 100)
2. Record the mean reward of each arm
3. Pull the arm with the highest mean

reward for eternity

Thompson Sampling works real well

1. Maintain a probability function for each
arm, based on data collected over time

2. Draw a sample from every arm’s
probability function

3. Pull the arm that gives the largest drawn
sample

4. Repeat for eternity

k arms → k unique content versions
goal → maximize user retention, CTR

How does this apply to content A/B testing?

How does this apply to online advertising?

k arms → k distinct page visitors
goal → maximize ad engagement

How does this apply to clinical trials?

k arms → k distinct treatments
goal → maximize patient loss

How does this apply to recommender systems?

…you’re running an experiment each time you pull an arm

k arms → k distinct items to recommend
goal → maximize user interest

How does this apply to recommender systems?

…you’re running an experiment each time you pull an arm

k arms → k distinct items to recommend
goal → maximize user interest

Evaluation

Practical evaluation concerns

RMSE unreasonably
penalizes a method that
does well for predicting
high ratings but not low
ratings

vs.

•Precision @ Top-5
•Receiver Operating
Characteristic (ROC)
Area Under Curve (AUC)

Prediction diversity, context, order
are often as important as accuracy

Practical evaluation concerns

Practical evaluation concerns

Cost function - what happens when
you make a bad recommendation?

Complexity/Efficiency

• Expensive step is item/customer similarity matching
• Often too expensive to do at runtime

• Precompute, good for item-item collab filtering

• Dimensionality reduction
• Locality sensitive hashing
• Clustering

Questions?

Takeaways

1. Implementing collaborative filtering is much
easier than you think

2. Use matrix factorization to fix sparse ratings

3. Exploitation vs. Exploration
 → using multi-armed bandit algorithms

Practical tips

1. Implicit signals > explicit signals
2. Optimize for model explainability instead of just accuracy
3. (More data + simple algorithm) > (less data + complex algorithm)

@cchio

slides+code: https://git.io/vXRwv

