
Architecting for Failure
in a Containerized World

Tom Faulhaber
Infolace

How can container tech help us
build robust systems?

Key takeaway: an architectural
toolkit for building robust
systems with containers

The Rules
Decomposition Orchestration and

Synchronization

Managing Stateful Apps

Simplicity

Simple means:
“Do one thing!”

The opposite of
simple is complex

Complexity exists
within

components

Complexity exists
between

components

Example: a counter

Counter
Service

1 2 3 4 50 …

Counter
Service

1 2 3 4 50 …x Counter
Service

1 2 3 4 50

1 2 3 4 50 1 2 3 4 50

Example: a counter

Counter
Service

1 2 3 4 50 …

Counter
Service

1 2 3 4 50 …Lo
ad

B
al
an
ce
r

1 2 3 4 50 1 2 3 4 50

State + composition =
complexity

Part 1:
Decomposition

Rule:
Decompose vertically

App Server

Service
#1

Service
#2

Service
#3

App Server

Rule:
Separation of concerns

Example: Logging
App

Core
Code

Logging
Driver

Config

Logging Server

Example: Logging

Logger

App

Core
Code

Logging
Driver

Config

Logging Server

StdOut

Aspect-oriented programming

Rule:
Constrain state

Relational DB

Session Store

Rule:
Battle-tested tools

Redis

MySQL

Rule:
High code churn
→Easy restart

Rule:
No start-up order!

time

a

b

c

d

time

x

a

b

c

d

time

x

a

b

c

d

x
x
x

time

x

a

b

c

d

x
x
x

time

a

b

c

d

time

a

b

c

d

time

a

b

c

d

Rule:
Consider higher-order failure

The Rules
Decomposition

Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
 restart
No start-up order!
Consider higher-order
 failure

Orchestration and
Synchronization

Managing Stateful Apps

Part 2:
Orchestration and
Synchronization

Rule:
Use Framework Restarts

• Mesos: Marathon always restarts

• Kubernetes: RestartPolicy=Always

• Docker: Swarm always restarts

Rule:
Create your own framework

Mesos
Agent

Framework
Executor

Mesos
Master

Framework
Driver

Mesos
Agent

Framework
Executor

Mesos
Agent

Framework
Executor

Rule:
Use

Synchronized State

Synchronized State
Tools:
- zookeeper
- etcd
- consul

Patterns:
- leader election
- shared counters
- peer awareness
- work partitioning

Rule:
Minimize

Synchronized State

Even battle-tested state management is a headache.

(Source: http://blog.cloudera.com/blog/2014/03/zookeeper-resilience-at-pinterest/)

The Rules
Decomposition

Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
 restart
No start-up order!
Consider higher-order
 failure

Orchestration and
Synchronization

Use framework restarts
Create your own framework
Use synchronized state
Minimize synchronized state

Managing Stateful Apps

Part 3:
Managing Stateful Apps

Rule (repeat!):
Always use battle-tested tools!

(State is the weak point)

Rule:
Choose the DB architecture

Option 1: External DB
Execution cluster

Database cluster

Option 1: External DB
Pros

• Somebody else’s problem!

• Can use a DB designed for
clustering directly

• Can use DB as a service

Cons

• Not really somebody else’s
problem!

• Higher latency/no reference
locality

• Can’t leverage orchestration,
etc.

Option 2: Run on Raw HW

HDFS

Mesos

Marathon

App

HDFS

Mesos

Marathon

App

HDFS

Mesos

Marathon

App

Option 2: Run on Raw HW
Pros

• Use existing recipes

• Have local data

• Manage a single cluster

Cons

• Orchestration doesn’t help with
failure

• Increased management
complexity

Option 3: In-memory DB

Mesos

Marathon

App

MemSQL

Mesos

Marathon

App

MemSQL

Mesos

Marathon

App

MemSQL

Option 3: In-memory DB
Pros

• No need for volume tracking

• Fast

• Have local data

• Manage a single cluster

Cons

• Bets all machines won’t go
down

• Bets on orchestration
framework

Option 4: Use Orchestration
Mesos

Marathon

App

Cassandra

Mesos

Marathon

App

Cassandra

Mesos

Marathon

App

Cassandra

Option 4: Use Orchestration
Pros

• Orchestration manages
volumes

• One model for all programs

• Have local data

• Single cluster

Cons

• Currently the least mature

• Not well supported by vendors

Option 5: Roll Your Own
Mesos

Marathon

App

ImageMgr

Mesos
Master

Framework

Mesos

Marathon

App

ImageMgr

Mesos

Marathon

App

ImageMgr

Option 5: Roll Your Own
Pros

• Very precise control

• You decide whether to use
containers

• Have local data

• Can be system aware

Cons

• You’re on your own!

• Wedded to a single
orchestration platform

• Not battle tested

Rule:
Have replication

The Rules
Decomposition

Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
 restart
No start-up order!
Consider higher-order
 failure

Orchestration and
Synchronization

Use framework restarts
Create your own framework
Use synchronized state
Minimize synchronized state

Managing Stateful Apps

Battle-tested tools
Choose the DB architecture
Have replication

Fin

References
• Rich Hickey: 

“Are We There Yet?” (https://www.infoq.com/presentations/Are-We-
There-Yet-Rich-Hickey) 
“Simple Made Easy” (https://www.infoq.com/presentations/Simple-
Made-Easy-QCon-London-2012)

• David Greenberg, Building Applications on Mesos, O’Reilly, 2016

• Joe Johnston, et al., Docker in Production: Lessons from the
Trenches, Bleeding Edge Press, 2015

The Rules
Decomposition

Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
 restart
No start-up order!
Consider higher-order
 failure

Orchestration and
Synchronization

Use framework restarts
Create your own framework
Use synchronized state
Minimize synchronized state

Managing Stateful Apps

Battle-tested tools
Choose the DB architecture
Have replication

