Architecting for Failure
in a Containerized World

R
e
: ' - ST -
q Ly 2
- ,.:‘\

Y ol % f Tom Faulhaber

St Infol
o ;. M“ oace

VAN \\\§\

W
%

[STORY,
[HUAL PARIS]

VO Y AGE

[EURCVOYAG

[C2C AQUARIUS]

How can container tech help us
build robust systems?

Key takeaway: an architectural
toolkit for building robust
systems with containers

The Rules

Decomposition Orchestration and
Synchronization

Managing Stateful Apps

Simplicity

Simple means:
"Do one thing!”

The opposite of
simple is complex

Complexity exists
within
components

Complexity exists
between
components

Example: a counter

Service

4060900 B Counter

Service

Example: a counter

0@9909 B Counter

Service

009909 B Counter

Service

Load

—
()]
S,
c

L
4]

22]

State + composition =
complexity

Part 1:
Decomposition

Rule:
Decompose vertically

App Server

Service Service

1 H &
o.n.n-:.-
i=l®

App Server

Rule:
Separation of concerns

Example: Logging

App ——»| Logging Server

Logging

-
Drlver AR org.eclipse.)
:21:07,811 INFO org.eclipse
:21:07,811 INFO org.eclipse.jetty.server.Server - Started @8888ms
Conﬁg :01:43,811 INFO onelog.core - *[[36mStarting “[[Om:get /dataset/Li
143,825 INFO dcp30.server - Retrieving specification from http:
144,025 INFO onelog.core - ~[[36mFinished ~[[@m:get /dataset/Li.
:44,081 INFO dcp30.s3 - Copying from S3: https://baerinex-tiles
144,695 INFO dcp30.s3 - Copy complete: https://baerinex-tiles.s

146,525 INFO dcp3@.process - Processing file: pr_amon_BCSD_rcp4!
123,857 INFO onelog.core - ~[[36mStarting *[[0m:get /dataset/Ky:
123,887 INFO dcp30.server - Retrieving specification from http:
123,947 INFO onelog.core - ~[[36mFinished *[[0m:get /dataset/Ky:.
123,981 INFO dcp30.s3 - Copying from S3: https://baerinex-tiles
124,553 INFO dcp30.s3 - Copy complete: https://baerinex-tiles.s.
124,556 INFO dcp30.s3 - Copying from S3: https://baerinex-tiles
P016-09-26 :03:24,625 INFO dcp30.process - Processing file: tasmax_day_BCSD_h

Example: Logging

——»| Logging Server

org.eclipse.j

S22k INFO org.eclipse.jetty.server.ServerConnector - Started
Sk INFO org.eclipse.jetty.server.Server - Started @8888ms

Logger :01: INFO onelog.core - “[[36mStarting ~[[@m:get /dataset/Li
:01: INFO dcp3@.server - Retrieving specification from htt

:01: INFO onelog.core - *[[36mFinished ~[[@m:get /dataset/Li

INFO dcp3@.s3 - Copying from S3: https://baerinex-tiles

INFO dcp3@.s3 - Copy complete: https://baerinex-tiles.s

INFO dcp3@.process - Processing file: pr_amon_BCSD_rcp4

INFO onelog.core - *[[36mStarting ~[[@m:get /dataset/Ky.

INFO dcp3@.server - Retrieving specification from http:

INFO onelog.core - *[[36mFinished ~[[@m:get /dataset/Ky

INFO dcp3@.s3 - Copying from S3: https://baerinex-tiles

INFO dcp30.s3 - Copy complete: https://baerinex-tiles.s

INFO dcp3@.s3 - Copying from S3: https://baerinex-tiles

P016-09-26 06:03: INFO dcp3@.process - Processing file: tasmax_day_BCSD_h

Logging
Driver

Config

Aspect-oriented programming

Rule:
Constrain state

Sesston Store

relational DB

Rule:
Battle-tested tools

Rule:
High code churn
—Easy restart

Rule:
No start-up order!

time

time

time

time

time

time

Rule:
Consider higher-order failure

The Rules

Decomposition Orchestration and
Synchronization
Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
restart
No start-up order! Managing Stateful Apps
Consider higher-order
failure

Part 2:
Orchestration and
Synchronization

Rule:
Use Framework Restarts

 Mesos: Marathon always restarts

o Kubernetes: RestartPolicy=Always

e Docker: Swarm always restarts

Rule:
Create your own framework

Mesos
Master

Mesos Mesos Mesos
Agent | Agent N Agent

Framework & . .
Driver § Framework M Framework FE Framework
: Executor [Executor [Executor

Rule:
Use
Synchronized State

Synchronized State

Tools: Patterns:

- zookeeper - leader election
- etcd - shared counters
- consul - peer awareness

- work partitioning

Rule:
Minimize
Synchronized State

Even battle-tested state management is a headache.

ZooKeeper Failure Modes
While ZooKeeper can play a useful role in a backend infrastructure stack as shown above, like all software sys-
tems, it can fail. Here are some possible reasons:

¢ Too many connections: Let's say someone brought up a large Hadoop job that needs to communicate
with some of the core Pinterest services. For service discovery, the workers need to connect to ZooKeeper.
If not properly managed, this could temporarily overload the ZooKeeper hosts with a huge volume of in-
coming connections, causing it to get slow and partially unavailable.

¢ Too many transactions: When there’s a surge in ZooKeeper transactions, such as a large number of
servers restarting in a short period and attempting to re-register themselves with ZooKeeper (a variant of
the thundering herd problem). In this case, even if the number of connections isn't too high, the spike in
transactions could take down ZooKeeper.

® Protocol bugs: Occasionally under high load, we've run into protocol bugs in ZooKeeper that result in
data corruption. In this case, recovery usually involves taking down the cluster, bringing it back up from a
clean slate and then restoring data from backup.

e Human errors: In all software systems, there’s a possibility of human error. For example, we've had a
manual replacement of a bad ZooKeeper host unintentionally take the whole ZooKeeper quorum offline for
a short time due to erroneous configuration being put in place.

e Network partitions: While relatively rare, network connectivity issues resulting in a network partition of

the quorum hosts can result in downtime till the guorum can be restored.

(Source: http://blog.cloudera.com/blog/2014/03/zookeeper-resilience-at-pinterest/)

The Rules

Decomposition

Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
restart
No start-up order!
Consider higher-order
failure

Orchestration and
Synchronization

Use framework restarts
Create your own framework
Use synchronized state
Minimize synchronized state

Managing Stateful Apps

Part 3:
Managing Stateful Apps

Rule (repeat!):
Always use battle-tested tools!

(State is the weak point)

Rule:
Choose the DB architecture

Option 1: External DB

Execution cluster

!

Database cluster

Option 1: External DB

Pros Cons
e Somebody else’s problem! * Not really somebody else’s
problem!
e Can use a DB designed for
clustering directly « Higher latency/no reference
locality

 Can use DB as a service
« Can't leverage orchestration,
etc.

Option 2: Run on Raw HW

Option 2: Run on Raw HW

Pros Con

* Use existing recipes e Orchestration doesn’t help with
failure

* Have local data

* |ncreased management
* Manage a single cluster complexity

Option 3: In-memory DB

Option 3: In-memory DB

Pros Cons

* No need for volume tracking * Bets all machines won't go
down

* Fast

 Bets on orchestration
e Have local data framework

« Manage a single cluster

Optlon 4; Use Orchestratlon

Option 4: Use Orchestration

Pros Cons
e Orchestration manages e Currently the least mature
volumes

* Not well supported by vendors
* One model for all programs

» Have local data

e Single cluster

Option 5: Roll Your Own

Mesos
Master 5

Option 5: Roll Your Own

Pros Cons

* Very precise control * You're on your own!

* You decide whether to use * Wedded to a single
containers orchestration platform

e Have local data * Not battle testea

e Can be system aware

Rule:
Have replication

The Rules

Decomposition

Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
restart
No start-up order!
Consider higher-order
failure

Orchestration and
Synchronization

Use framework restarts
Create your own framework
Use synchronized state
Minimize synchronized state

Managing Stateful Apps

Battle-tested tools
Choose the DB architecture
Have replication

FIn

References

* Rich Hickey:
“Are We There Yet?” (https://www.infog.com/presentations/Are-\We-
There-Yet-Rich-Hickey)
“Simple Made Easy” (https://www.infog.com/presentations/Simple-
Made-Easy-QCon-L.ondon-2012)

« David Greenberg, Building Applications on Mesos, O’Reilly, 2016

e Joe Johnston, et al., Docker in Production: Lessons from the
Trenches, Bleeding Edge Press, 2015

The Rules

Decomposition

Decompose vertically
Separation of concerns
Constrain state
Battle-tested tools
High code churn, easy
restart
No start-up order!
Consider higher-order
failure

Orchestration and
Synchronization

Use framework restarts
Create your own framework
Use synchronized state
Minimize synchronized state

Managing Stateful Apps

Battle-tested tools
Choose the DB architecture
Have replication

