
Testing	in	Production

Quality	Software	Faster

Michael	Bryzek
mike@flow.io /	@mbryzek

Cofounder	/	CTO	Flow

Cofounder	/	ex-CTO	Gilt	



Think about the last

Feature you deployed

To production….



Is	It	Working?



Right	now	in	production?



How	do	you	know?



Feeling	anxious?



7

Let’s	remove	that	anxiety



About Me

www.flow.io

www.gilt.com



Software Quality is Hard

Think	end	to	end	for	entire	lifecycle	of	code

Testing	in	Production	is	a	powerful	technique

to	help	us	build	quality	software



True	continuous	delivery

No	staging	environments

Don’t	run	code	locally

Life at Flow: Delivering Quality Software



True Continuous Delivery

Automated	tests	/	No	safeguards

Assume	Continuous	Delivery	in	Design	Process

Many small releases

github.com/flowcommerce/delta



“I							my	staging	environment”
Said	Nobody	Ever



No Staging Environments

Bottlenecks

Fragile

Difficult	to	understand	failure

Expensive	(30-40%	of	budget	common)

Create	the	wrong	incentives



Don’t run code locally

If	unsure,	write	the	test!

Learn	to	trust your	tests



Quality Through Architecture

Extreme	Isolation

• Rich	event	streams

• Own	DNS,	load	balancer

• Private	database

• No	shared	state

• Stop	cascading	failures

• “Delay” not “Outage”



Let’s	look	at	real	examples

Successfully	“testing	in	production”



Example: Know That Checkout Works

Bot places an order every few minutes

Identify test orders and immediately cancel



Example: Support “Sandbox” Accounts

”SaaS”	– even	for	internal	accounts

Mark	individual	accounts	as	sandbox

One	API	Key	for	all	sandbox	accounts

"every	service	is	a	third	party"



Example: End to End Integration Tests

Create	Sandbox	Org

Run	tests

Delete	Sandbox	Org

“Safe	and	Repeatable”



Example: Using Sandbox Account for Test Orders



Example: Verifying Proxy Server Works as Expected

https://github.com/flowvault/proxy



Operating	As	Expected



But	sometimes	things	go	wrong

Even	to	the	best	of	teams



Considerations

Make	production	access	explicit	(not	the	default)

Use	defined	paths	(e.g.	API	calls)

Restrict	sensitive	data

Design	for	side	effects



Unexpected	Benefits



Perfect Documentation



Capture request/response of API Calls



Great Demos



Tooling: API | Builder 
(formerly known as apidoc)

29

www.apibuilder.io

Version	control	for	APIs

Backwards	Compatibility

High	Quality	Mocks



High Quality Mocks – From Specs

Full	Mock	Generated

Implement	Only	What

You	Need	To	Test

www.apibuilder.io



Tooling: Real Time DB Monitoring

https://www.vividcortex.com/blog/2014/04/22/visualizing-impact-index-change/



Tooling: Super Simple Alerts from Log

Log	a	prefix
Schedule	a	real	time	alert



Key Takeaways – Design Production to be Testable

Trust	your	tests,	run	in	production
Leverage	continuous	delivery
Invest	in	techniques	like	sandbox	accounts,	mocks
Instrument	production	for	real-time	feedback



Thank	You!

We’re	hiring:	https://www.flow.io/careers

Michael	Bryzek
mike@flow.io /	@mbryzek

Cofounder	/	CTO	Flow

Cofounder	/	ex-CTO	Gilt


