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How do I break up my monolith?
How do I architect my app with microservices?
What infrastructure do I need in place before I 

can benefit from microservices?
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● Building a cloud application using 
microservices in 2013

● Distributed systems engineers
● Multiple services
● Prototyping was really fast

● … then  we launched and things 
slowed down… 
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Microservices at Datawire ...
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Debugging Velocity  (or lack thereof)

4



datawire.io

Tooling
Architecture

Process!!!
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Debugging our Pipeline
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Velocity comes from Process, not 
Architecture
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Service Oriented Architecture
Service Oriented Development
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Stability/Maturity

Velocity

Prototype Production Mission critical
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Stability/Maturity

Velocity

Prototype Production Mission critical
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A single process is inefficient
(Forces a single Stability vs Velocity Tradeoff)

11



datawire.io 12

Define

Code

Test

Release

Prod
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Define

Code

Test

Release

Prod

Centralized process

● Specialized teams
● Fixed policies (e.g., 

release criteria)
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A single process doesn’t scale
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How do I break up my monolith?
How do I break up my process?
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Microservices lets you run multiple processes!



datawire.io

Microservices is a distributed 
development architecture 

workflow.
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Stability/Maturity

Velocity

Prototype Production Mission critical

● How do I get to Continuous Deployment incrementally?
● How do I limit the scope of PCI (audit process)?
● How do I ship feature X as fast as possible?
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Microservices is ...

● Multiple workflows
○ Including your existing workflow!
○ Workflows designed for different 

stability/velocity tradeoffs
● Simultaneous workflows
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Doing things this way shifts how people operate!

● Requires both organizational and technical changes
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Organizational Implementation
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You gotta give in order to get
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Education

● Everyone exposed to full dev cycle

Communication

● Nobody speaks the same language

Delegation

● Small teams own big important parts
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But you get a lot
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Education

● Specialists become generalists -> Better holistic systems
● Learning, personal growth -> Job satisfaction

Communication

● Conflict -> Collaboration

Delegation

● Massive organizational scale
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Create self-sufficient, autonomous 
software teams.
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Why self-sufficiency and autonomy?

● Self-sufficient
○ Team does not need to rely on other teams to achieve its goals

● Autonomy
○ Team is able to independently make (process) decisions on how to achieve its goals
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Eliminate centralized specialist functions
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Centralized architecture Centralized infrastructure / ops*
(You might need a platform team)
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Think Spinoff
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Monolith
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Monolith

Microservice
Team
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Technical Implementation
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The Workflows
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Prototype Production Users 
& Growth Mission CriticalStage

Goals
Fast Feedback

from both
Tools & Users

Add Features
&

Don’t Disrupt 
Users

Stability
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One Platform, Parallel Workflows, Seamless Transitions
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Stage 1: Rapid 
development, 
early users

Stage 2: Users Stage 3: Internal 
users, couplingStage

Goals Doesn’t crash...
Minimal 
disruption to 
users...

No cascade 
failures...
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Minimal 
disruption to 
users...

No cascade 
failures...Doesn’t crash...

Minimal 
disruption to 
users...

No cascade 
failures...
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from both

Tools & Users

Add Features
&

Don’t Disrupt 
Users

Stability
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Kubernetes / Docker / Envoy give you the infra you need
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How do I actually use these technologies to 
build my workflows?
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Stage 1: Prototyping

Org Problem:
You need buy-in for prototyping in 

production

Goal:
Fast Feedback from both Tools and 

Users

Tech Problem:
You can’t run microservices locally
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Strategy:
Self Service Provisioning

&
Development Containers
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Make this fast and easy!

● Too much friction leads to accidental coupling

Provide fast self-service provisioning
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Problem: Coding on remote infra is slow...

VM based pipeline:

● Deploy time: maybe 45 minutes?

Docker based pipeline:

● Deploy time: maybe a few minutes?

Hacking react on my laptop with live reload:

● Maybe 1-2 seconds?

Hacking flask on my laptop with live reload:

● Instantaneous
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How can we do better?
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Develop inside a container

Helps with onboarding and jumping between services:

● Single source of truth for build & dependencies
● Consistent and portable dev environment

You can make a faster feedback loop:

1. Sync local files -> remote build
2. Sync local files -> local build; snapshot image; deploy in seconds
3. Sync local files -> local build; proxy into remote cluster

Shameless self promotion:

● See https://forge.sh for (2) and https://telepresence.io for (3)
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https://forge.sh
https://telepresence.io
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Fast Deploy == Resilience
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Stage 2: Production Users & Growth

Org Problems:
Recognize the Tradeoff

&
How to measure user impact

Goal:
Add Features

&
Don’t Disrupt Users

Tech Problem:
Software Bugs
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Strategy:
Genetic Diversity

(Multiversion Deployment)
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Multiple versions for software redundancy
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End user

Primary version

Canary version

Dev version
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Stage 3: Mission Critical

Org Problem:
Avoid regressing

Goal:
Stability

Tech Problem:
L7 Observability
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Strategy:
Service Level Objectives

&
L7 Observability
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Cascade Failures
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A B C D EX
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Summary

1. Start with: “How do I break up my monolithic process?”
2. Spinoff self sufficient & autonomous teams
3. Build awesome tooling for Service Oriented Development
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Thank you!

● rhs@datawire.io
● If you want to learn more about these ideas, check out our hands-on tutorial here:

○ https://datawire.io/faster

● If you’re interested in any of our open source tools, check them out:
○ https://forge.sh for deployment
○ https://www.telepresence.io for real-time live coding
○ https://www.getambassador.io self-service API Gateway built on Envoy
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