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Presentation goal

Distributed data management challenges
IN @ microservice architecture

Sagas as the transaction model
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About Chris

Consultant and trainer

focusing on modern
applicati

INcludir

on architectures
g MICroservices

(http://www.chrisrichardson.net/)




About Chris

Founder of a startup that Is creating
an open-source/Saas platform
that simplifies the development of
transactional microservices

(http://eventuate.io)




For more information

http://learnmicroservices.io
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Agenda

x ACID is not an option
x Overview of sagas
= Coordinating sagas

® Sagas and inter-service communication

@crichardson
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1he microservice architecture
structures
an application as a
set of loosely coupled
services



Microservices enable
continuous delivery/deployment

Process:
Continuous delivery/deployment

Services
testablllty
Enables Enables aﬂd
Successful
Software deployability
Development
Organization: < Architecture:
Small, agile, autonomous, Microservice architecture
cross functional teams Enables

Teams own services




Microservice architecture
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Private database

private datalbase server




| 00se coupling =
encapsulated data

Order Service Customer Service

.

v

Order Database Customer Database

e ohi- Lslomer
table
orderTotal creditLimit
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How to maintain data

Invariant:
sum(open order.total) <= customer.creditLimit




Cannot use ACID transactions

Distributed transactions

BEGIN TRANSACTION Private to the

Order Service

SELECT ORDER_TOTAL
FROM ORDERS WHERE CUSTOMER_ID = ?

SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = 7

INSERT INTO ORDERS ... Private to the

Customer Service

COMM'T TRANSACT'ON ~dson




2PC Is not an option

» (Guarantees consistency
BUT

x 2PC coordinator is a single point of failure

Chatty: at least O(4n) messages, with retries O(nA2)
» Reduced throughput due to locks

x Not supported by many NoSQL databases (or message brokers)

CAP theorem = 2PC impacts availability

@crichardson
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Basically

ACID = Avaiable
Soft state

Eventually consistent

http://queue.acm.org/detail.cfm?id=1394128
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Agenda

x ACID is not an option
x QOverview of sagas
= Coordinating sagas

® Sagas and inter-service communication
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From a 1987 paper

SAGAS

Hector Garcia-Molina
Kenneth Salem

Department of Computer Science

Princeton University
Princeton, NJ 08544
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f only It were this easy...



Rollback using compensating
fransactions

= ACID transactions can simply rollback

BUT

= Developer must write application logic to “rollback” eventually
consistent transactions

x Careful design required!

@crichardson
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Saga: Every Ti has a Ci

FAILS
11 12
C1 C2
Compensating transections
T1 = T2 = C1




Create Order Saga
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Sagas complicate APl design

= Synchronous APl vs Asynchronous Saga
x Request initiates the saga. When to send back the response?
x Option #1: Send response when saga completes:

+ Response specifies the outcome

- Reduced availability

x Option #2: Send response immediately after creating the saga
(recommended):

+ Improved availability

- Response does not specify the outcome. Client must poll or be notified

@crichardson



Revised Create Order API

= createOrder()
= returns id of newly created order
= NOT fully validated

x getOrder(id)

= Called periodically by client to get outcome of validation

@crichardson



Minimal impact on Ul

= Ul hides asynchronous APl from the user
x Saga will usually appear instantaneous (<= 100ms)

= |f it takes longer = Ul displays “processing” popup

= Server can push notification to Ul

@crichardson
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Lack of isolation = complicates business

logic
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How to cancel a PENDING
Order?

= Don’t = throw an OrderNotCancellableException

= Questionable user experience
x “Interrupt” the Create Order saga?
= Cancel Order Saga: set order.state = CANCELLED
= Causes Create Order Saga to rollback
= But is that enough to cancel the order?
» Cancel Order saga waits for the Create Order saga to complete?
= Suspiciously like a distributed lock

= But perhaps that is ok

@crichardson
LSS



Countermeasure Transaction
Model

SOFTWARE —PRACTICE AND EXPERIENCE, VOL. 28(1), 77-98 (JANUARY 1998)

Semantic ACID Properties in Multidatabases

Using Remote Procedure Calls and Update
Propagations

yrben w zahle?

@crichardson
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Saga structure

® Series of compensatable transactions (Ti,Ci)

= Pjvot transaction (T1)
= “‘Not compensatable or retriable”
= Execute compensating transactions if it fails
x GO/NO GO point

® Set of retriable transactions (Ti)

x Can't fail

@crichardson




Sagas are ACD

= Atomicity

= Saga implementation ensures that all transactions are
executed OR all are compensated

= Consistency
= Referential integrity within a service handled by local databases
= Referential integrity across services handled by application

= Durability
= Durability handled by local databases

@crichardson



Lack of | = anomalies

= | ost update

= [|reads = other transaction writes = Tj (or Gi) writes

= Dirty reads

x || writes = other transaction reads = Ci writes

® Non-repeatable/fuzzy read

= [|reads = other transaction writes = Tj reads

@crichardson
LSS



Countermeasures for reducing
impact of isolation anomalies...

x Commutative updates

® ¢.g. debit account can compensate for a credit account
= \ersion file

= Record history of changes

x Use them to make updates commutative

x e.g. record cancel reservation so that create/cancel = cancel/
create

= Sounds suspiciously like event sourcing

@crichardson
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...Countermeasures for reducing
impact of isolation anomalies...

x Re-read value

= Before modifying value, Tire-reads value that was read by a
previous Ti

= Abort if the value has changed (and possibly restart)
x Pessimistic view

= Minimize the business risk

»  Reduce avallable credit in compensatable transaction

x |ncrease avallable credit in retriable transaction, which will never be
compensated

@crichardson
LSS



...Countermeasures for reducing
impact of isolation anomalies

= Countermeasures by value
= Business risk determine strategy
= High risk => use 2PC/distributed transaction
x Semantic lock
= Compensatable transaction sets flag, retriable transaction releases it
» Flag = lock - prevents other transactions from accessing it
» [lag = warning - treat the data differently, e.g. a pending deposit

» RBequire deadlock detection, e.g. timeout

@crichardson
LSS



Agenda

x ACID is not an option
x Overview of sagas
= Coordinating sagas

® Sagas and inter-service communication

@crichardson
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How 10 sequence the saga
transactions’?

= After the completion of transaction Ti “something” must
decide what step to execute next

® Success: which T(i+1) - branching

= Failure: C(i - 1)

@crichardson



Choreography: distributed decision making
VS.

Orchestration: centralized decision making




Option #1: Choreography-based
coordination using events

Create Order Order created

~ Order Credit Reserved Customer

S gt gnsmeenioes 00

create()
approve()/reject() Credit lelt Exceeded reserveCredit()
Order Customer
State creditLimit

total creditBeservations
@crichardson




Benetfits and drawbacks of
choreography

Benefits Drawbacks
® Simple, especially when x Cyclic dependencies -
using event sourcing services listen to each

sess other’s events
= Participants are loosely

coupled x  Overloads domain objects,
e.g. Order and Customer
know too much

= Fvents = indirect way to
make something happen



Option #2: Orchestration-based saga

coordination

createOrder()
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A saga (orchestrator)
'S a persistent object
that
tracks the state of the saga
zlgle
Invokes the participants



Saga behavior

x On create:
= |nvokes a saga participant

x On reply:
= Determine which saga participant to invoke next
= |nvokes saga participant

= Updates its state

@crichardson
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CreateOrderSaga orch
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CreateOrdersSaga definition

Saga’s Data

public class CreateOrderSaga implements SimpleSaga<CreateOrderSagaData>

private SagaDefinition<CreateOrderSagaData> sagaDefinition =

step()
.withCompensation(this::reject)

step() Seqguence of
.invokeParticipant(this::reserveCredit)

.step() StepS
.invokeParticipant(this::approve)

Lbuild();

step = (T;, Ci)

public SagaDefinition<CreateOrderSagaData> getSagaDefinition() { return this.sagaDefinition; }

@Override

private CommandWithDestination reserveCredit(CreateOrderSagaData data) {
long orderId = data.getOrderId();
Long customerId = data.getOrderDetails().getCustomerId();
Money orderTotal = data.getOrderDetails().getOrderTotal();
return send(new ReserveCreditCommand(customerId, orderld
.to("customerService")

build(); Build command
to send

@crichardson



Customer Service command
handler

public class CustomerCommandHandler {

Route command
to handler

@Autowired
private CustomerRepository customerRepository;

public CommandHandlers commandHandlerDefinitions(
return SagaCommandHandlersBuilder
. fromChannel("customerService")
.onMessage(ReserveCreditCommand.class, this::reserveCredit)
Lbuild();
}

public Message reserveCredit(CommandMessage<ReserveCreditCommand> cm) {
ReserveCreditCommand cmd = cm.getCommand();
long customerId = cmd.getCustomerId();
Customer customer = customerRepository.findOne(customerlId);
try {
customer.reserveCredit(cmd.getOrderId(), cmd.getOrderTotal());
return withSuccess(new CustomerCreditReserved());
catch (CustomerCreditLimitExceededException e) {
return withFailure(new CustomerCreditReservationFailed()); RGSGI’VG

credit

@crichardson
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Eventuate Tram Sagas

x  Open-source Saga framework
= Currently for Java

= Nttps://github.com/eventuate-tram/eventuate-tram-sagas

@crichardson
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Benefits and drawbacks of
orchestration

Benefits Drawbacks
= Centralized coordination = Risk of smart sagas
logic Is easier to understanad directing dumb services

= Reduced coupling, e.g.
Customer knows less

»= Reduces cyclic
dependencies



Agenda

x ACID is not an option
x Overview of sagas
= Coordinating sagas

®  Sagas and inter-service communication
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About Saga orchestrator

participant communication

command

reply

<

Saga must complete even if there are transient failures

@crichardson
LSS



or:lal

Use asynchronous messaging

—NSUres sagas comp

clpants are temporar

ete when

Iy unavailable

@crichardson




Create Order Saga -

messaging
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Messaging must be
transactional How to

make atomic
without 2PC?
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Database - Message Broker
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OPTIC : G & =
AL C
o G2 & Q8!
ﬁ‘l@wgiﬁ
e . ot ireserveCreditO
‘ransaction . § . |
Publish
Customer Message | »
Service Publisher
Local transaction A by ; \ J
______________________________________________ n
i Message
INSERT : Broker
QUERY
|
ORDER_ID CUSTOMER_ID TOTAL ID TYPE DATA | DESTINATION
99 101 1234 84784 | CreditReserved | {...}

- See BASE: An Acid Alternative, http://bit.ly/ebaybase




Publishing messages

Poll the MESSAGE table (ok)
OR

lall the database transaction log
(better)



Eventuate Iram

x  Open-source framework for transactional messaging
= Send and receive messages
= Publish and subscribe to domain events
x Send commands and replies

= Currently, for Java

® Nttps://qgithub.com/eventuate-tram/eventuate-tram-core

@crichardson
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Option

2. Event sourcing:

event-centric persistence

Service

save events
and
publish

Event Store

Every state change = event

Event table
101 Order 901  OrderCreated
101 Order 902  OrderApproved
O3B Order 903  OrderShipped
@crichardson



Summary

= Microservices tackle complexity and accelerate development
= Database per service Is essential for loose coupling
® se sagas to maintain data consistency across services

® Use transactional messaging to make sagas reliable

@crichardson
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