ACID Is So Yesterday:
Maintaining Data Consistency
with Sagas

Chris Richardson
Founder of Eventuate.io

Founder of the original CloudFoundry.com
Author of POJOs in Action

@crichardson

chris@chrisrichardson.net

http://eventuate.io

Presentation goal

Distributed data management challenges
IN @ microservice architecture

Sagas as the transaction model

About Chris

| —

COMMUNICATIONS

Awnght frameworky

Camen
10 THE
EVIRONENT

(hris Richardson

Sign U Forgot passward?

(o(K = [1]» FOUNDRY E— CTTE— T ‘

(S
Ty " e SIGN UP LEARN MORE \
\ v !
- 5 : \ | . \
X 1
"‘ N : . ‘ ‘ :
. N - . g It ; v \ ‘ | , \
2 = Ve i “r ’ A Wb i [.
; SR L LA e e PR S e SRS ¥ guia g \ v LT AT !
DI PCPE O LY e e P S viwte ey N A
. . -
\ ‘
. ‘ .
“" ' [}] S ' \ . ' (]
\ " wum! l'* i . .‘ .HH. 'g + [} ' ’ . [.l ') . b . " .‘ "
» 1 . . -0‘% ' ' L - : . e : .- | Y CLCL T !
. o Rl ¢ . i
. .- . . “' i K —y i 4 y . * . Ll N i e A i
. lat s g v TN 1 " ’ J ' (U
. . | y 7 b | ' . - " NS g\
L) Ny [} ! ; b ook o BT e | . \f ' d ‘
. o - .) ' : . A o)
l] 'y i ‘e ; . . ¥ v ot a4 Y T T oo b .
i X .., 9 { AEes P ' it

A o Gy

About Chris

Consultant and trainer

focusing on modern
applicati

INcludir

on architectures
g MICroservices

(http://www.chrisrichardson.net/)

About Chris

Founder of a startup that Is creating
an open-source/Saas platform
that simplifies the development of
transactional microservices

(http://eventuate.io)

For more information

http://learnmicroservices.io

@crichardson

Agenda

x ACID is not an option
x Overview of sagas
= Coordinating sagas

® Sagas and inter-service communication

@crichardson
LSS

1he microservice architecture
structures
an application as a
set of loosely coupled
services

Microservices enable
continuous delivery/deployment

Process:
Continuous delivery/deployment

Services
testablllty
Enables Enables aﬂd
Successful
Software deployability
Development
Organization: < Architecture:
Small, agile, autonomous, Microservice architecture
cross functional teams Enables

Teams own services

Microservice architecture

@crichardson

Private database

private datalbase server

| 00se coupling =
encapsulated data

Order Service Customer Service

.

v

Order Database Customer Database

e ohi- Lslomer
table
orderTotal creditLimit

@crichardson
LSS

How to maintain data

Invariant:
sum(open order.total) <= customer.creditLimit

Cannot use ACID transactions

Distributed transactions

BEGIN TRANSACTION Private to the

Order Service

SELECT ORDER_TOTAL
FROM ORDERS WHERE CUSTOMER_ID = ?

SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = 7

INSERT INTO ORDERS ... Private to the

Customer Service

COMM'T TRANSACT'ON ~dson

2PC Is not an option

» (Guarantees consistency
BUT

x 2PC coordinator is a single point of failure

Chatty: at least O(4n) messages, with retries O(nA2)
» Reduced throughput due to locks

x Not supported by many NoSQL databases (or message brokers)

CAP theorem = 2PC impacts availability

@crichardson
LSS

Basically

ACID = Avaiable
Soft state

Eventually consistent

http://queue.acm.org/detail.cfm?id=1394128

@crichardson

Agenda

x ACID is not an option
x QOverview of sagas
= Coordinating sagas

® Sagas and inter-service communication

@crichardson
LSS

From a 1987 paper

SAGAS

Hector Garcia-Molina
Kenneth Salem

Department of Computer Science

Princeton University
Princeton, NJ 08544

23443
o0
020202
020202020
0203000000

_JeTe
o 626
IILILILILY

eg0g02020.

@crichardson

026%0%6¢
020%0°0

020262620

0202020

202020202020

f only It were this easy...

Rollback using compensating
fransactions

= ACID transactions can simply rollback

BUT

= Developer must write application logic to “rollback” eventually
consistent transactions

x Careful design required!

@crichardson
LSS

Saga: Every Ti has a Ci

FAILS
11 12
C1 C2
Compensating transections
T1 = T2 = C1

Create Order Saga

o
®
o
®
o

J
®
®
®
o
J

0505050303050 OO DL P ILY
05000 0500030060050 503
2930, 0g0g0s00000
eSe® \ 00000 '
RN , 0000050
eg000: 0g0;
0300000505000
006000000600
I

S
o,
3
PRI

cos ‘
05000000000 00000
0500000202020

IIRITIITI

Sagas complicate APl design

= Synchronous APl vs Asynchronous Saga
x Request initiates the saga. When to send back the response?
x Option #1: Send response when saga completes:

+ Response specifies the outcome

- Reduced availability

x Option #2: Send response immediately after creating the saga
(recommended):

+ Improved availability

- Response does not specify the outcome. Client must poll or be notified

@crichardson

Revised Create Order API

= createOrder()
= returns id of newly created order
= NOT fully validated

x getOrder(id)

= Called periodically by client to get outcome of validation

@crichardson

Minimal impact on Ul

= Ul hides asynchronous APl from the user
x Saga will usually appear instantaneous (<= 100ms)

= |f it takes longer = Ul displays “processing” popup

= Server can push notification to Ul

@crichardson
LSS

Lack of isolation = complicates business

logic

>
®
0
o,
D,
o
®
0
o

J

D50
225°
DO,
020
059,
L
059,
0.9,
059,
0.9,
059

0000000000¢

©6%0%6°,
0500000
0g0g000 0 0
02020202020

How to cancel a PENDING
Order?

= Don’t = throw an OrderNotCancellableException

= Questionable user experience
x “Interrupt” the Create Order saga?
= Cancel Order Saga: set order.state = CANCELLED
= Causes Create Order Saga to rollback
= But is that enough to cancel the order?
» Cancel Order saga waits for the Create Order saga to complete?
= Suspiciously like a distributed lock

= But perhaps that is ok

@crichardson
LSS

Countermeasure Transaction
Model

SOFTWARE —PRACTICE AND EXPERIENCE, VOL. 28(1), 77-98 (JANUARY 1998)

Semantic ACID Properties in Multidatabases

Using Remote Procedure Calls and Update
Propagations

yrben w zahle?

@crichardson
LSS

Saga structure

® Series of compensatable transactions (Ti,Ci)

= Pjvot transaction (T1)
= “‘Not compensatable or retriable”
= Execute compensating transactions if it fails
x GO/NO GO point

® Set of retriable transactions (Ti)

x Can't fail

@crichardson

Sagas are ACD

= Atomicity

= Saga implementation ensures that all transactions are
executed OR all are compensated

= Consistency
= Referential integrity within a service handled by local databases
= Referential integrity across services handled by application

= Durability
= Durability handled by local databases

@crichardson

Lack of | = anomalies

= | ost update

= [|reads = other transaction writes = Tj (or Gi) writes

= Dirty reads

x || writes = other transaction reads = Ci writes

® Non-repeatable/fuzzy read

= [|reads = other transaction writes = Tj reads

@crichardson
LSS

Countermeasures for reducing
impact of isolation anomalies...

x Commutative updates

® ¢.g. debit account can compensate for a credit account
= \ersion file

= Record history of changes

x Use them to make updates commutative

x e.g. record cancel reservation so that create/cancel = cancel/
create

= Sounds suspiciously like event sourcing

@crichardson
LSS

...Countermeasures for reducing
impact of isolation anomalies...

x Re-read value

= Before modifying value, Tire-reads value that was read by a
previous Ti

= Abort if the value has changed (and possibly restart)
x Pessimistic view

= Minimize the business risk

» Reduce avallable credit in compensatable transaction

x |ncrease avallable credit in retriable transaction, which will never be
compensated

@crichardson
LSS

...Countermeasures for reducing
impact of isolation anomalies

= Countermeasures by value
= Business risk determine strategy
= High risk => use 2PC/distributed transaction
x Semantic lock
= Compensatable transaction sets flag, retriable transaction releases it
» Flag = lock - prevents other transactions from accessing it
» [lag = warning - treat the data differently, e.g. a pending deposit

» RBequire deadlock detection, e.g. timeout

@crichardson
LSS

Agenda

x ACID is not an option
x Overview of sagas
= Coordinating sagas

® Sagas and inter-service communication

@crichardson
LSS

How 10 sequence the saga
transactions’?

= After the completion of transaction Ti “something” must
decide what step to execute next

® Success: which T(i+1) - branching

= Failure: C(i - 1)

@crichardson

Choreography: distributed decision making
VS.

Orchestration: centralized decision making

Option #1: Choreography-based
coordination using events

Create Order Order created

~ Order Credit Reserved Customer

S gt gnsmeenioes 00

create()
approve()/reject() Credit lelt Exceeded reserveCredit()
Order Customer
State creditLimit

total creditBeservations
@crichardson

Benetfits and drawbacks of
choreography

Benefits Drawbacks
® Simple, especially when x Cyclic dependencies -
using event sourcing services listen to each

sess other’s events
= Participants are loosely

coupled x Overloads domain objects,
e.g. Order and Customer
know too much

= Fvents = indirect way to
make something happen

Option #2: Orchestration-based saga

coordination

createOrder()

9,
J)JJ

o
o,
©5°,

%o

0o,

o,
)Q)

°
o,

o

02620
JJJﬁ 0002020
2020202020
000000000000

0:%96%6%0°.
05959, €
0202626 °%06°

o
o

0g050 20
IS
09050000

A saga (orchestrator)
'S a persistent object
that
tracks the state of the saga
zlgle
Invokes the participants

Saga behavior

x On create:
= |nvokes a saga participant

x On reply:
= Determine which saga participant to invoke next
= |nvokes saga participant

= Updates its state

@crichardson
LSS

CreateOrderSaga orch

R
03000
00020
06000
Create Order sesss
2333
o))
0.9

JrderServic

05050050
2IITITIIIIIIN

3IRITIRITIIIIHIIHIIINN
L - ®,
J))JJJJL’ W 7
02020 I
0202620 VIS

0202020020020 20020200 0 0

0202020202060 202020 %0

0202020202020 2620 2020202020
0202020202020 20202020 202020 20

02020202020%020202020202020 202

©.0.0.0_.0.06_.0.0_0_.0_.0_0_0_0_0_ ¢ X & C
0,0,.0,.0.0,.0,.0,.0_.0.0.0,.0_.0,0,0,_0, 3 J a.«“g‘ g sl
9:0-0-0-0-0-0-0-0-0-0-0-0-0-0_ o0 0 > ~raditl imit

IIITIILILILILILILILIL IS
0,0,.0.0.06.0.0.0_.0_0_0_0_0_0_0 @
0202020202020 20202020 20202020
1=0-0-0-0_-0_-0_0_-0_-0_-0_-0_0. ﬂ . I .
Jﬁ)ijJﬁJﬂJ)J 3= ~red lv qu “ (a3 ons
j0g0g0s60030 0
egog0ces0ce

0.0

egeo000!

D,

@crichardson
e

CreateOrdersSaga definition

Saga’s Data

public class CreateOrderSaga implements SimpleSaga<CreateOrderSagaData>

private SagaDefinition<CreateOrderSagaData> sagaDefinition =

step()
.withCompensation(this::reject)

step() Seqguence of
.invokeParticipant(this::reserveCredit)

.step() StepS
.invokeParticipant(this::approve)

Lbuild();

step = (T;, Ci)

public SagaDefinition<CreateOrderSagaData> getSagaDefinition() { return this.sagaDefinition; }

@Override

private CommandWithDestination reserveCredit(CreateOrderSagaData data) {
long orderId = data.getOrderId();
Long customerId = data.getOrderDetails().getCustomerId();
Money orderTotal = data.getOrderDetails().getOrderTotal();
return send(new ReserveCreditCommand(customerId, orderld
.to("customerService")

build(); Build command
to send

@crichardson

Customer Service command
handler

public class CustomerCommandHandler {

Route command
to handler

@Autowired
private CustomerRepository customerRepository;

public CommandHandlers commandHandlerDefinitions(
return SagaCommandHandlersBuilder
. fromChannel("customerService")
.onMessage(ReserveCreditCommand.class, this::reserveCredit)
Lbuild();
}

public Message reserveCredit(CommandMessage<ReserveCreditCommand> cm) {
ReserveCreditCommand cmd = cm.getCommand();
long customerId = cmd.getCustomerId();
Customer customer = customerRepository.findOne(customerlId);
try {
customer.reserveCredit(cmd.getOrderId(), cmd.getOrderTotal());
return withSuccess(new CustomerCreditReserved());
catch (CustomerCreditLimitExceededException e) {
return withFailure(new CustomerCreditReservationFailed()); RGSGI’VG

credit

@crichardson

Make reply message

Eventuate Tram Sagas

x Open-source Saga framework
= Currently for Java

= Nttps://github.com/eventuate-tram/eventuate-tram-sagas

@crichardson
LSS

Benefits and drawbacks of
orchestration

Benefits Drawbacks
= Centralized coordination = Risk of smart sagas
logic Is easier to understanad directing dumb services

= Reduced coupling, e.g.
Customer knows less

»= Reduces cyclic
dependencies

Agenda

x ACID is not an option
x Overview of sagas
= Coordinating sagas

® Sagas and inter-service communication

@crichardson
LSS

About Saga orchestrator

participant communication

command

reply

<

Saga must complete even if there are transient failures

@crichardson
LSS

or:lal

Use asynchronous messaging

—NSUres sagas comp

clpants are temporar

ete when

Iy unavailable

@crichardson

Create Order Saga -

messaging

21010000000 00000000000 eeess

0 0000000000000000000000000000006

00006 0000000060000000000000000660

AN

)00 0000000000000 eeeeeeeeeeeeeeeeee

@crichardson

Messaging must be
transactional How to

make atomic
without 2PC?

~ Service

- - - e e o =
- -
=0 -
- -
- -
- [
-~
~

publishz)

-~ -
~ -
-
)i <
"® 4 - - >
R e I VR D D

Database - Message Broker

@crichardson
LSS

OPTIC : G & =
AL C
o G2 & Q8!
ﬁ‘l@wgiﬁ
e . ot ireserveCreditO
‘ransaction . § . |
Publish
Customer Message | »
Service Publisher
Local transaction A by ; \ J
__ n
i Message
INSERT : Broker
QUERY
|
ORDER_ID CUSTOMER_ID TOTAL ID TYPE DATA | DESTINATION
99 101 1234 84784 | CreditReserved | {...}

- See BASE: An Acid Alternative, http://bit.ly/ebaybase

Publishing messages

Poll the MESSAGE table (ok)
OR

lall the database transaction log
(better)

Eventuate Iram

x Open-source framework for transactional messaging
= Send and receive messages
= Publish and subscribe to domain events
x Send commands and replies

= Currently, for Java

® Nttps://qgithub.com/eventuate-tram/eventuate-tram-core

@crichardson
LSS

Option

2. Event sourcing:

event-centric persistence

Service

save events
and
publish

Event Store

Every state change = event

Event table
101 Order 901 OrderCreated
101 Order 902 OrderApproved
O3B Order 903 OrderShipped
@crichardson

Summary

= Microservices tackle complexity and accelerate development
= Database per service Is essential for loose coupling
® se sagas to maintain data consistency across services

® Use transactional messaging to make sagas reliable

@crichardson

» @crichardson chris@chrisrichardson.net

——

http://learnmicroservices.io

