
@crichardson

ACID Is So Yesterday:
Maintaining Data Consistency

with Sagas
Chris Richardson

Founder of Eventuate.io
Founder of the original CloudFoundry.com
Author of POJOs in Action

@crichardson
chris@chrisrichardson.net
http://eventuate.io

@crichardson

Presentation goal

Distributed data management challenges
in a microservice architecture

Sagas as the transaction model

@crichardson

About Chris

@crichardson

About Chris

Consultant and trainer
focusing on modern

application architectures
including microservices

(http://www.chrisrichardson.net/)

@crichardson

About Chris

Founder of a startup that is creating
an open-source/SaaS platform

that simplifies the development of
transactional microservices

(http://eventuate.io)

@crichardson

For more information

http://learnmicroservices.io

@crichardson

Agenda

ACID is not an option

Overview of sagas

Coordinating sagas

Sagas and inter-service communication

The microservice architecture
structures

an application as a
set of loosely coupled

services

@crichardson

Microservices enable
continuous delivery/deployment

Process:
Continuous delivery/deployment

Organization:
Small, agile, autonomous,

cross functional teams

Architecture:
Microservice architecture

Enables

Enables Enables

Successful
Software

Development

Services
=

testability
and

deployability

Teams own services

@crichardson

Microservice architecture

Browser

Mobile
Device

Store
Front UI

API
Gateway

Customer
Service

Order
Service

…
Service

Customer
Database

Order
Database

…
Database

HTML

REST

REST

Database per service

@crichardson

Private database
!=

private database server

@crichardson

Loose coupling =
encapsulated data

Order Service Customer Service

Order Database Customer Database

Order table Customer
table

orderTotal creditLimit

@crichardson

How to maintain data
consistency?!?!?

Invariant:
sum(open order.total) <= customer.creditLimit

@crichardson

Cannot use ACID transactions

BEGIN TRANSACTION
…
SELECT ORDER_TOTAL
 FROM ORDERS WHERE CUSTOMER_ID = ?
…
SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = ?
…
INSERT INTO ORDERS …
…
COMMIT TRANSACTION

Private to the
Order Service

Private to the
Customer Service

Distributed transactions

@crichardson

2PC is not an option
Guarantees consistency

BUT

2PC coordinator is a single point of failure

Chatty: at least O(4n) messages, with retries O(n^2)

Reduced throughput due to locks

Not supported by many NoSQL databases (or message brokers)

CAP theorem ⇒ 2PC impacts availability

….

@crichardson

Basically
Available
Soft state
Eventually consistent

http://queue.acm.org/detail.cfm?id=1394128

ACID ⇒

@crichardson

Agenda

ACID is not an option

Overview of sagas

Coordinating sagas

Sagas and inter-service communication

@crichardson

From a 1987 paper

@crichardson

Saga

Use Sagas instead of 2PC
Distributed transaction

Service A Service B

Service A

Local
transaction

Service B

Local
transaction

Service C

Local
transaction

X Service C

@crichardson

Order Service

Create Order Saga

Local transaction

Order
state=PENDING

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service

Local transaction

Order
state=APPROVED

approve
order()

createOrder()

@crichardson

If only it were this easy…

@crichardson

Rollback using compensating
transactions

ACID transactions can simply rollback

BUT
Developer must write application logic to “rollback” eventually
consistent transactions

Careful design required!

@crichardson

Saga: Every Ti has a Ci

T1 T2 …

C1 C2

Compensating transactions

T1 ⇒ T2 ⇒ C1

FAILS

@crichardson

Order Service

Create Order Saga - rollback

Local transaction

Order

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service
Local transaction

Order

reject
order()

createOrder()

FAIL

Insufficient credit

@crichardson

Sagas complicate API design
Synchronous API vs Asynchronous Saga

Request initiates the saga. When to send back the response?

Option #1: Send response when saga completes:

+ Response specifies the outcome

- Reduced availability

Option #2: Send response immediately after creating the saga
(recommended):

+ Improved availability

- Response does not specify the outcome. Client must poll or be notified

@crichardson

Revised Create Order API

createOrder()

returns id of newly created order

NOT fully validated

getOrder(id)

Called periodically by client to get outcome of validation

@crichardson

Minimal impact on UI

UI hides asynchronous API from the user

Saga will usually appear instantaneous (<= 100ms)

If it takes longer ⇒ UI displays “processing” popup

Server can push notification to UI

@crichardson

Lack of isolation ⇒ complicates business
logic

Order Service

Local transaction

Order
state=PENDING

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service
Local transaction
cancelOrder()

?
Time

@crichardson

How to cancel a PENDING
Order?

Don’t ⇒ throw an OrderNotCancellableException

Questionable user experience

“Interrupt” the Create Order saga?

Cancel Order Saga: set order.state = CANCELLED

Causes Create Order Saga to rollback

But is that enough to cancel the order?

Cancel Order saga waits for the Create Order saga to complete?

Suspiciously like a distributed lock

But perhaps that is ok

@crichardson

Countermeasure Transaction
Model

@crichardson

Saga structure
Series of compensatable transactions (Ti,Ci)

Pivot transaction (Ti)

“not compensatable or retriable”

Execute compensating transactions if it fails

GO/NO GO point

Set of retriable transactions (Ti)

Can't fail

@crichardson

Sagas are ACD
Atomicity

Saga implementation ensures that all transactions are
executed OR all are compensated

Consistency

Referential integrity within a service handled by local databases

Referential integrity across services handled by application

Durability

Durability handled by local databases

@crichardson

Lack of I ⇒ anomalies

Lost update

Ti reads ⇒ other transaction writes ⇒ Tj (or Ci) writes

Dirty reads

Ti writes ⇒ other transaction reads ⇒ Ci writes

non-repeatable/fuzzy read

Ti reads ⇒ other transaction writes ⇒ Tj reads

@crichardson

Countermeasures for reducing
impact of isolation anomalies…

Commutative updates

e.g. debit account can compensate for a credit account

Version file

Record history of changes

Use them to make updates commutative

e.g. record cancel reservation so that create/cancel = cancel/
create

Sounds suspiciously like event sourcing

@crichardson

…Countermeasures for reducing
impact of isolation anomalies…

Re-read value

Before modifying value, Ti re-reads value that was read by a
previous Ti

Abort if the value has changed (and possibly restart)

Pessimistic view

Minimize the business risk

Reduce available credit in compensatable transaction

Increase available credit in retriable transaction, which will never be
compensated

@crichardson

...Countermeasures for reducing
impact of isolation anomalies

Countermeasures by value

Business risk determine strategy

High risk => use 2PC/distributed transaction

Semantic lock

Compensatable transaction sets flag, retriable transaction releases it

Flag = lock - prevents other transactions from accessing it

Flag = warning - treat the data differently, e.g. a pending deposit

Require deadlock detection, e.g. timeout

@crichardson

Agenda

ACID is not an option

Overview of sagas

Coordinating sagas

Sagas and inter-service communication

@crichardson

How to sequence the saga
transactions?

After the completion of transaction Ti “something” must
decide what step to execute next

Success: which T(i+1) - branching

Failure: C(i - 1)

@crichardson

Choreography: distributed decision making

vs.

Orchestration: centralized decision making

@crichardson

Option #1: Choreography-based
coordination using events

Order
Service

Customer
Service

Order created

Credit Reserved

Credit Limit Exceeded

Create Order

OR

Customer

creditLimit
creditReservations
...

Order

state
total
…

create()
reserveCredit()

approve()/reject()

Benefits and drawbacks of
choreography
Benefits

Simple, especially when
using event sourcing

Participants are loosely
coupled

Drawbacks

Cyclic dependencies -
services listen to each
other’s events

Overloads domain objects,
e.g. Order and Customer
know too much

Events = indirect way to
make something happen

@crichardson

Order Service

Option #2: Orchestration-based saga
coordination

Local transaction

Order
state=PENDING

createOrder()

Customer Service

Local transaction

Customer

reserveCredit()

Order Service

Local transaction

Order
state=APPROVED

approve
order()

createOrder()
CreateOrderSaga

@crichardson

A saga (orchestrator)
is a persistent object

that
tracks the state of the saga

and
invokes the participants

@crichardson

Saga behavior
On create:

Invokes a saga participant

On reply:

Determine which saga participant to invoke next

Invokes saga participant

Updates its state

…

@crichardson

Order Service

CreateOrderSaga orchestrator

Customer Service

Create Order

Customer

creditLimit
creditReservations
...

Order
state
total…

reserveCredit()
CreateOrder

Saga

OrderService

create()

create()

approve()
creditReserved()

@crichardson

CreateOrderSaga definition

Sequence of
steps

step = (Ti, Ci)

Build command
to send

Saga’s Data

@crichardson

Customer Service command
handler Route command

to handler

Reserve
credit

Make reply message

@crichardson

Eventuate Tram Sagas

Open-source Saga framework

Currently for Java

https://github.com/eventuate-tram/eventuate-tram-sagas

Benefits and drawbacks of
orchestration
Benefits

Centralized coordination
logic is easier to understand

Reduced coupling, e.g.
Customer knows less

Reduces cyclic
dependencies

Drawbacks

Risk of smart sagas
directing dumb services

@crichardson

Agenda

ACID is not an option

Overview of sagas

Coordinating sagas

Sagas and inter-service communication

@crichardson

Saga
Participant

About Saga orchestrator ⇔
participant communication

Saga
Orchestrator

Saga
Participant

command

reply

Saga must complete even if there are transient failures

@crichardson

Use asynchronous messaging

Ensures sagas complete when
participants are temporarily unavailable

@crichardson

Create Order Saga -
messaging
Order Service

Create
Order
Saga

Message
Broker

Customer
Service

Customer

Customer
Request
Channel

Saga Reply
Channel

Reserve
Credit

Reserve
Credit
Reply

@crichardson

Messaging must be
transactional

Service

Database Message Broker

update publish

How to
make atomic
without 2PC?

@crichardson

Option #1: Use database
table as a message queue

ACID
transaction

See BASE: An Acid Alternative, http://bit.ly/ebaybase

DELETE

?
Customer
Service

ORDER_ID CUSTOMER_ID TOTAL

99

CUSTOMER_CREDIT_RESERVATIONS table

101 1234

ID TYPE DATA DESTINATION

MESSAGE table

84784 CreditReserved {…} …

INSERT INSERT

Message
Publisher

QUERY

Message
Broker

Publish

Local transaction

reserveCredit()

@crichardson

Publishing messages

Poll the MESSAGE table (ok)

OR

Tail the database transaction log
(better)

@crichardson

Eventuate Tram

Open-source framework for transactional messaging

Send and receive messages

Publish and subscribe to domain events

Send commands and replies

Currently, for Java

https://github.com/eventuate-tram/eventuate-tram-core

@crichardson

Option #2: Event sourcing:
event-centric persistence

Service

Event Store

save events
and

publish

Event table

Entity type Event
id

Entity
id

Event
data

Order 902101 …OrderApproved

Order 903101 …OrderShipped

Event
type

Order 901101 …OrderCreated

Every state change ⇒ event

@crichardson

Summary

Microservices tackle complexity and accelerate development

Database per service is essential for loose coupling

Use sagas to maintain data consistency across services

Use transactional messaging to make sagas reliable

@crichardson

@crichardson chris@chrisrichardson.net

http://learnmicroservices.io

Questions?

