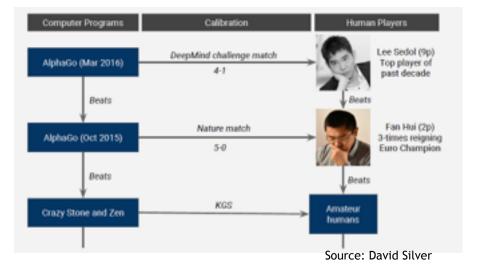
## Al and Security: Lessons, Challenges & Future Directions

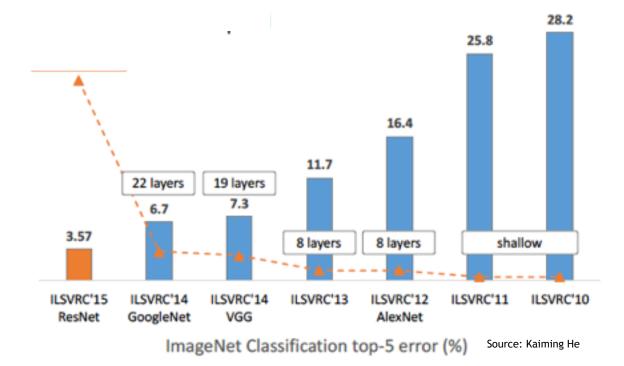
Dawn Song UC Berkeley

### AlphaGo: Winning over World Champion





#### Achieving Human-Level Performance on ImageNet Classification



#### Deep Learning Powering Everyday Products





pcmag.com







# Attacks are increasing in scale & sophistication



# Massive DDoS Caused by IoT Devices



Geographical distribution of Mirai bots in recent DDoS attack

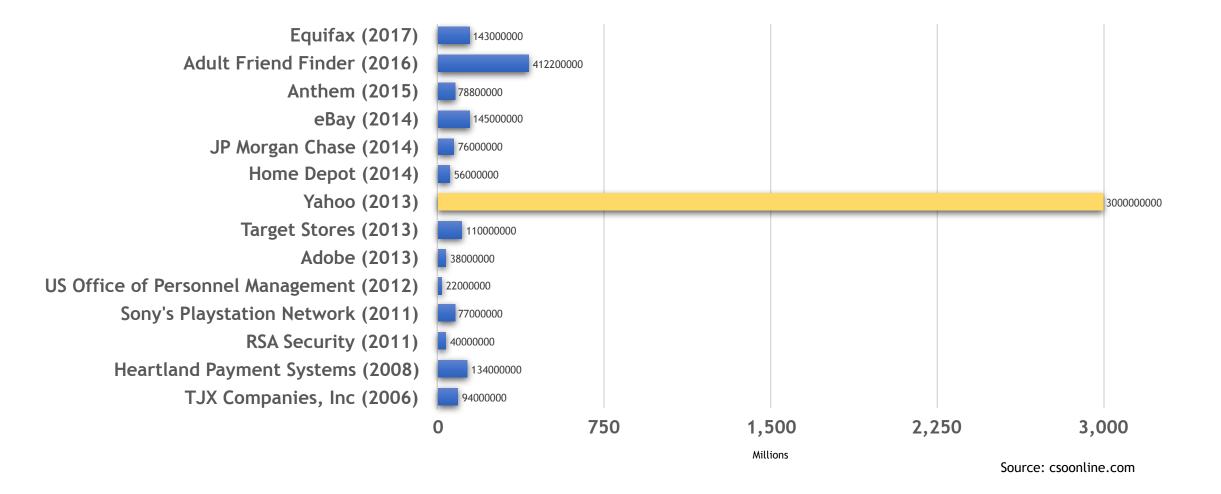
- Botnet of over 400,000 Mirai bots over 160 countries
  - Security cameras/webcams/baby monitors
  - Home routers
- One of the biggest DDoS attacks
  - Over 1Tbps combined attack traffic

# WannaCry: One of the Largest Ransomware Breakout



- Used EternalBlue, an exploit of Windows' Server Message Block (SMB) protocol.
- Infected over 200,000 machines across 150 countries in a few days
- Ask for bitcoin payment to unlock encrypted files

### **Biggest Data Breaches Of the 21st Century**



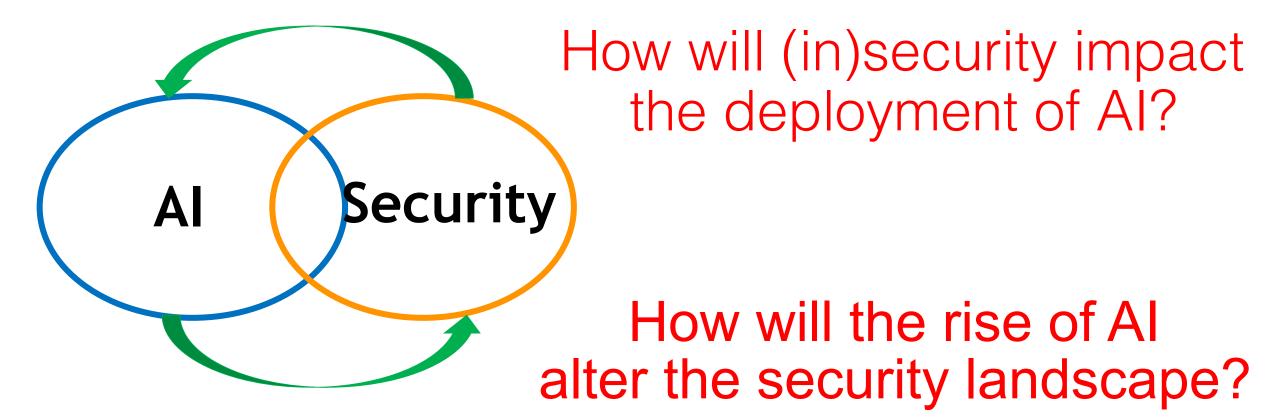
# Attacks Entering New Landscape



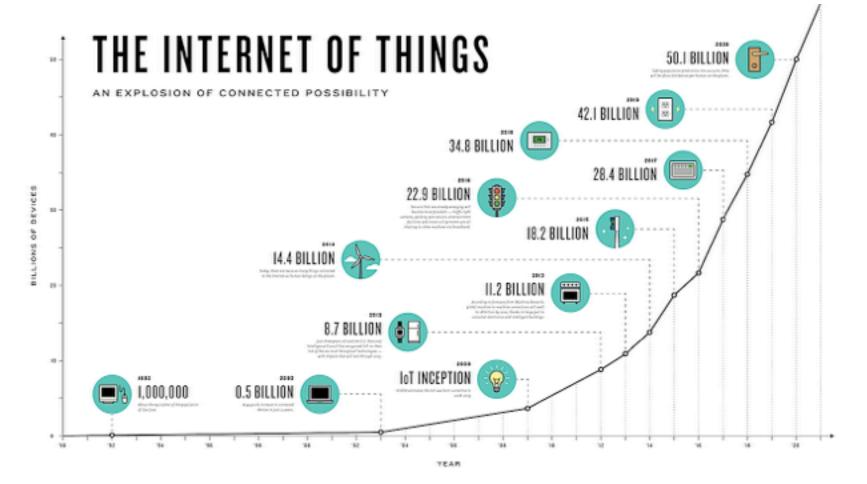
Ukrain power outage by cyber attack impacted over 250,000 customers



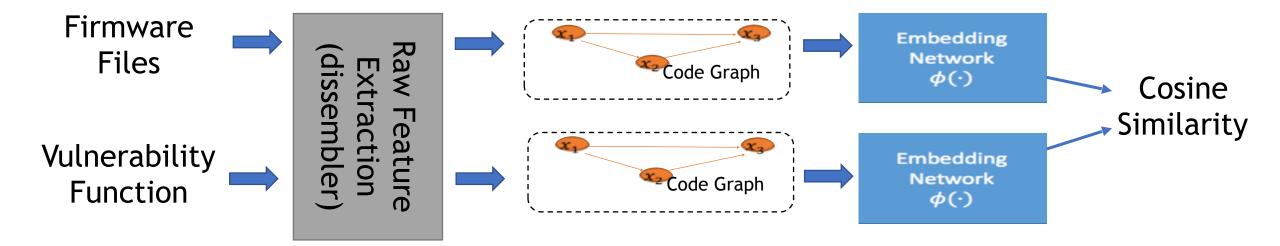
Millions of dollars lost in targeted attacks in SWIFT banking system



IoT devices are plagued with vulnerabilities from third-party code



### Deep learning for vulnerability detection in IoT Devices



Neural Network-based Graph Embedding for Cross-Platform Binary Code Search [XLFSSY, ACM Computer and Communication Symposium 2017]

### Deep learning for vulnerability detection in IoT Devices

Training time: Previous work: > 1 week Our approach: < 30 mins

Serving time (per function): Previous work: a few mins Our work: a few milliseconds 10,000 times faster

| Function Name               | Vendor           | Firmware                                                   | Binary File           | Similarity  |
|-----------------------------|------------------|------------------------------------------------------------|-----------------------|-------------|
| cold get new session ticket | D-Link           | DAP-1563_FIRMWARE_1.00                                     | wpa_supplicant.actgs  | 0.562374508 |
| port_check_v6               | D-Link           | DES-1210-28_REV0_FIRM/WARE_3.12.015                        | in.ftpd.acfgi         | 0.955408692 |
| sub_436E7C                  | TP-Link          | TD-W89708_V1_\$40634                                       | racoon.actgs          | 0.954742393 |
| sub_43EE7C                  | TP-Link          | TD-W8970_V1_130828                                         | racoon.actgs          | 0.954742290 |
| pria_parse_file             | TP-Link          | Anther_05_V1_340804                                        | racoon.acfgs          | 0.545834435 |
| ub_41288C                   | TP-Link          | TD-W89708_V1_\$40634                                       | racoon.actgs          | 0.549583828 |
| sub_43288C                  | TP-Link          | TD-W8970_V1_130828                                         | racoon.actgs          | 0.549583828 |
| ssf3 get new session ticket | D0-wrt           | dd-wrLx24-23858 NEWD-2 K3.x mega-WNR3500v2 VC              | openypn.acfgs         | 0.54668287  |
| ucSetUsbipServer            | TP-Link          | WDR4900_V2_130115                                          | httpd.acfgs           | 0.546312308 |
| coll_get_new_session_ticket | Netgear          | tomato-Cisco-M30v2-NVRAM32K-1.28.87-NSx-MIPSR2-130-PL-Mini | Hbssl.so.1.0.0.acfgs  | 0.545933044 |
| sill_get_new_session_ticket | Tomato_by_Shibby | tomato-K26-L28.AT-MIPSA1-109-Mini                          | Ibssl.so.1.0.0.acfgs  | 0.545933044 |
| oil get_new_session_ticket  | Tomato_by_Shibby | tomato-K26USB-1.28.87-NSx-MIPSR2-110-VPW                   | Hbssl.so.1.0.0.acfgs  | 0.945932984 |
| coll get new session ticket | Tomato_by_shibby | tomato E4200USB NVRAMER 1.28.RT MIPSR2 110 PL 8T           | libest.so.1.0.0.actgs | 0.945932984 |
| sill_get_new_session_ticket | Tomato_by_Shibby | tomate-E3000USB-NVRAM6K-1.28.RT-MIP5R2-110-8T-VPN          | Hbssl.so.1.0.0.actgs  | 0.545932984 |
| old_get_new_session_ticket  | Tomato_by_Shibby | tomato-K26USB-1_28.87-MIPSRI-189-AIO                       | Hbssl.so.1.0.0.acfgs  | 0.945932984 |
| coll_get_new_session_ticket | Tomato_by_shibby | tomato-Netgear-3500Lv2-K26U58-1.28.RT-NSs-209-AIO          | Host.so.1.0.0.actgs   | 0.945932984 |
| ord_get_new_session_ticket  | Tomato_by_Shibby | tomate-64200US8-NVRAM80K-1.28.RT-MIP5R2-109-AIO            | Ideal.so.1.0.0.actgs  | 0.545932984 |
| ull_get_new_session_ticket  | Tomato_by_Shibby | tomato-E1550USB-NVRAM6K-1.28.RT-NSx-MIP5R2-110-Nocat-VPN   | Hbssl.so.1.0.0.acfgs  | 0.945932984 |
| coll get new secsion ticket | Tomato_by_Shibby | tomato-K26USB-1.28.87 NSx-MIPSR2-115-PL-L600N              | Host.so.1.0.0.actgs   | 0.945932984 |
| ss13 get new session ticket | Tomato_by_Shibby | tomato-E1550USB-NVRAM80K-1.28.RT-NEx-MIP5R2-110-8T-VPN     | libest.so.1.0.0.actgs | 0.945932984 |
| ull_get_new_session_ticket  | Tomato_by_Shibby | tomato-E3000USB-NVRAM6K-1.38.RT-MIPSR2-308-PL-VPN          | HossLap.1.0.0.acfgs   | 0.945932984 |
| coll get new session ticket | Tomato_by_shibby | tomato-E1550USB-NVRAM60K-1.28.RT-NSx-MIPSR2-110-Mega-VPN   | Host.so.1.0.0.acfgs   | 0.945932984 |
| cold get new session ticket | Tomato_by_Shibby | tomato-E1200v2-NVRAM64K-1.28.87-N5x-MIPSR2-108-PL-Max      | libest.so.1.0.0.actgs | 0.545932984 |
| ull_get_new_session_ticket  | Tomato_by_Shibby | tomato-K26USB-1_28.87-MIPSR1-109-Mega-VPN                  | Host.so.1.0.0.acfgs   | 0.945932984 |
| coll get new session ticket | Tomato_by_Shibby | tomato-E3000USB-NVRAM60K-1.28.RT-MIPSR2-109-Big-VPN        | Heat so.1.0.0.actgs   | 0.545932984 |
| cold get new session ticket | Tomato by Shibby | tomato-64200USB-NVRAM60K-1.28.RT-MIPSR2-508-PL-Nocat-VPN   | libert.so.1.0.0.actgs | 0.545932984 |
| uil get new session ticket  | Tomato_by_Shibby | tomato-Netgear-3500Lv2-K26U58-1.2E.RT-N5e-110-ND-AID       | Hest.so.1.0.0.actgs   | 0.945932994 |
| coll get new session ticket | Tomato by Shibby | tomato-64200USB-NVRAM6K-1.28.RT-MIPSR2-509-Nocat-VPN       | Hosel ap. 1.0.0 actgs | 0.945932984 |

Identified vulnerabilities among top 50: Previous work: 10/50

Our approach: 42/50

# AI Enables Stronger Security Capabilities

- Automatic vulnerability detection & patching
- Automatic agents for attack detection, analysis, & defense

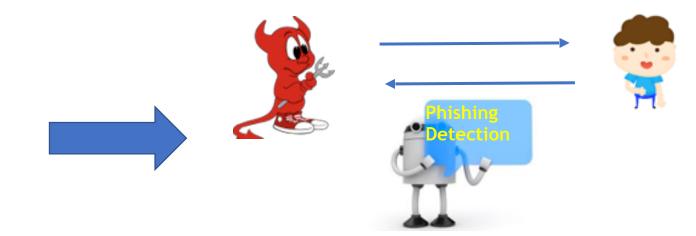


One fundamental weakness of cyber systems is humans

80+% of penetrations and hacks start with a social engineering attack 70+% of nation state attacks [FBI, 2011/Verizon 2014]

# AI Enables Chatbot for Phishing Detection





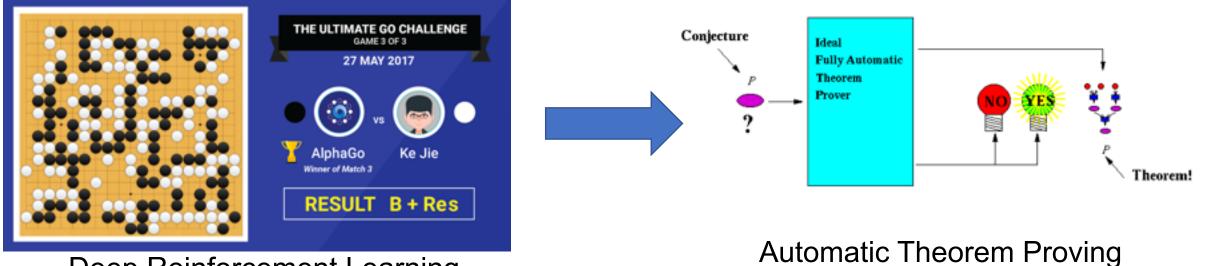
Chatbot for booking flights, finding restaurants

Chatbot for social engineering attack detection & defense

# AI Enables Stronger Security Capabilities

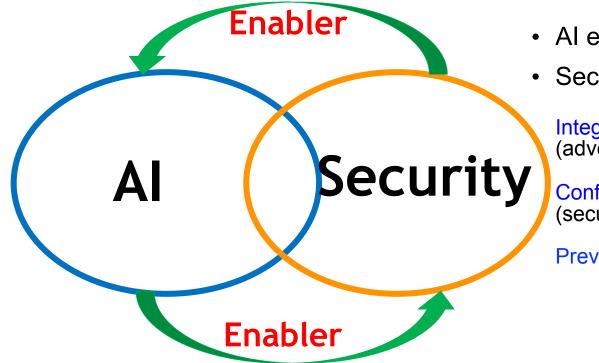
- Automatic vulnerability detection & patching
- Automatic agents for attack detection, analysis, & defense
- Automatic verification of software security

### Al Agents to Prove Theorems & Verify Programs



Deep Reinforcement Learning Agent Learning to Play Go

for Program Verification



- Al enables new security capabilities
- Security enables better AI

Integrity: produces intended/correct results (adversarial machine learning)

Confidentiality/Privacy: does not leak users' sensitive data (secure, privacy-preserving machine learning)

Preventing misuse of AI

#### AI and Security: AI in the presence of attacker

Important to consider the presence of attacker



- History has shown attacker always follows footsteps of new technology development (or sometimes even leads it)
- The stake is even higher with AI
  - As AI controls more and more systems, attacker will have higher & higher incentives
  - As AI becomes more and more capable, the consequence of misuse by attacker will become more and more severe

# Al and Security: Al in the presence of attacker

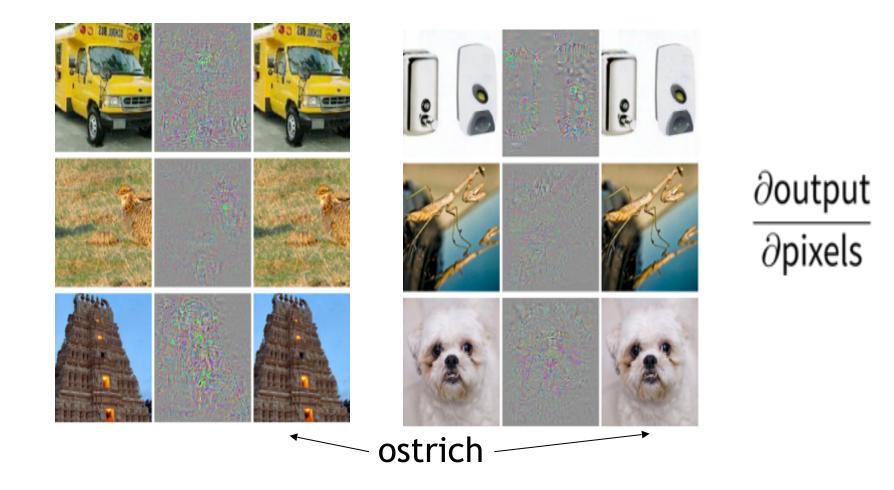
#### Attack Al

- Cause the learning system to not produce intended/correct results
- · Cause learning system to produce targeted outcome designed by attacker
- · Learn sensitive information about individuals
- Need security in learning systems

#### • Misuse Al

- Misuse AI to attack other systems
  - Find vulnerabilities in other systems; Devise attacks
- Need security in other systems

# Deep Learning Systems Are Easily Fooled



Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. Intriguing properties of neural networks. ICLR 2014.









# STOP Signs in Berkeley

### **Adversarial Examples in Physical World**

Adversarial examples in physical world remain effective under different viewing distances, angles, other conditions



Evtimov, Ivan, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. "Robust Physical-World Attacks on Machine Learning Models." *arXiv preprint arXiv:1707.08945* (2017).

#### **Drive-by Test**

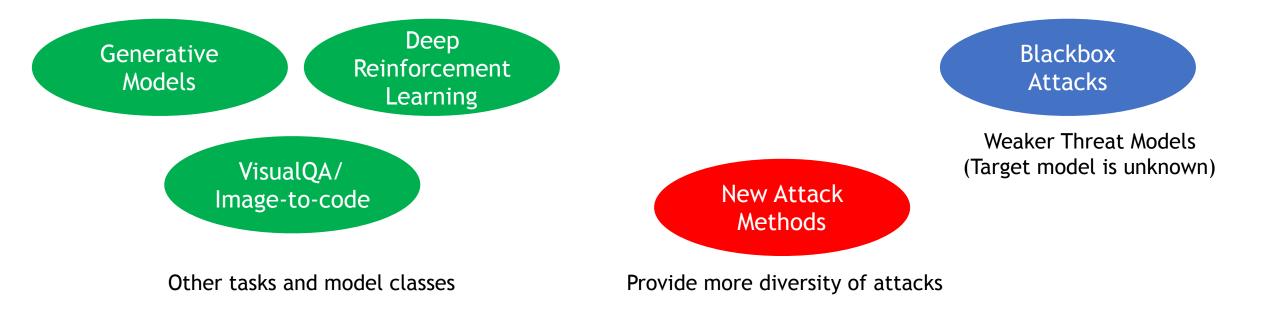


Adversarial examples in physical world & remain effective under different viewing distances, angles, other conditions

# Adversarial Examples Are Prevalent in Deep Learning Systems

### Adversarial Examples Prevalent in Deep Learning Systems

- Most existing work on adversarial examples:
  - Image classification task
  - Target model is known
- Our investigation on adversarial examples:



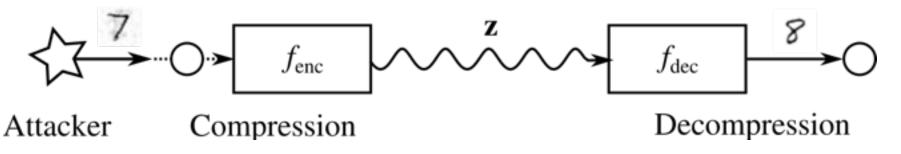
### Generative models

- VAE-like models (VAE, VAE-GAN) use an intermediate latent representation
- An **encoder**: maps a high-dimensional input into lowerdimensional latent representation **z**.
- A **decoder:** maps the latent representation back to a high-dimensional reconstruction.

$$\mathbf{x} \rightarrow \begin{bmatrix} \text{Encoder} \\ f_{\text{enc}} \end{bmatrix} \rightarrow \mathbf{z} \rightarrow \begin{bmatrix} \text{Decoder} \\ f_{\text{dec}} \end{bmatrix} \rightarrow \hat{\mathbf{x}}$$

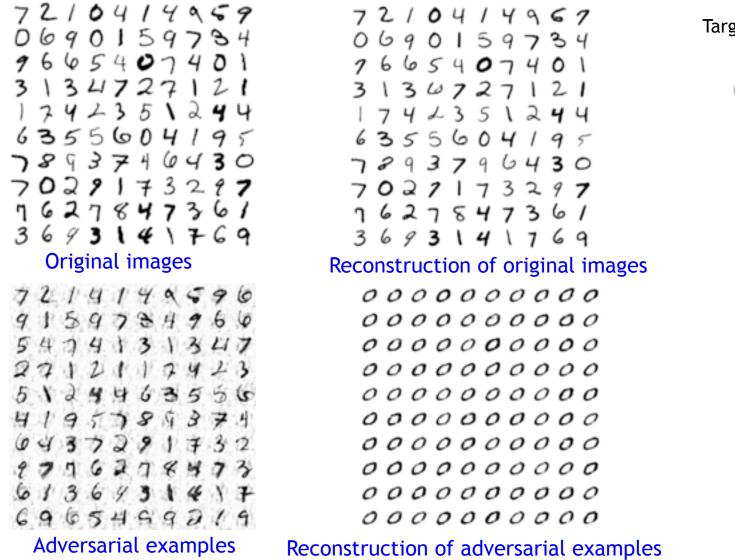
### Adversarial Examples in Generative Models

- An example attack scenario:
  - Generative model used as a compression scheme



• Attacker's goal: for the decompressor to reconstruct a different image from the one that the compressor sees.

### Adversarial Examples for VAE-GAN in MNIST



Target Image

0

Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models

### Adversarial Examples for VAE-GAN in SVHN



Original images





Reconstruction of original images



Reconstruction of adversarial examples

Target Image



Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models

### Adversarial Examples for VAE-GAN in SVHN

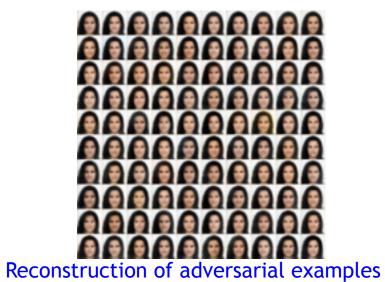




Adversarial examples



Reconstruction of original images

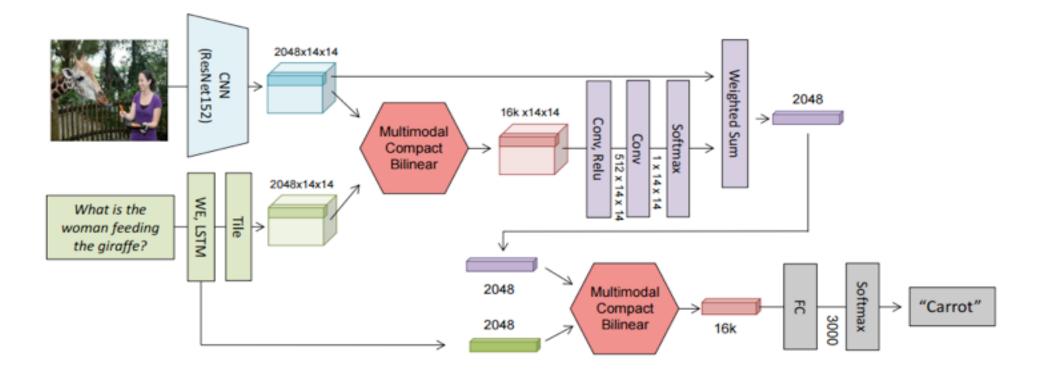


Target Image



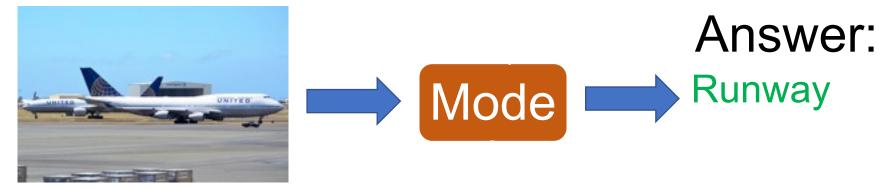
Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models

# Visual Question & Answer (VQA)



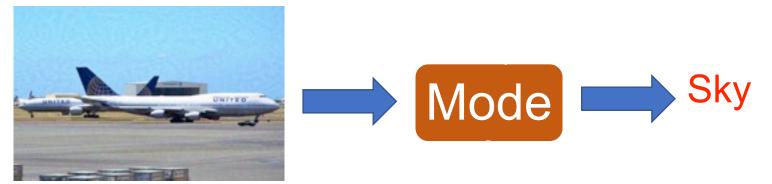
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, Fukui et al., https://arxiv.org/abs/1606.01847

Q: Where is the plane?



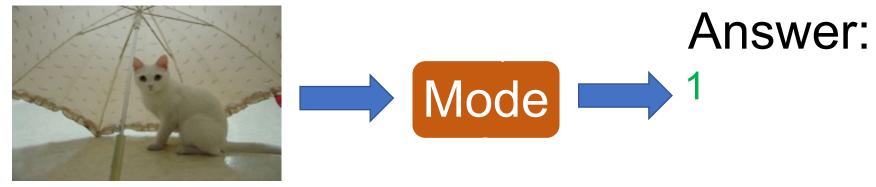
Benign image

Fooling VQA Target: Sky



**Adversarial example** 

Q: How many cats are there?



Benign image

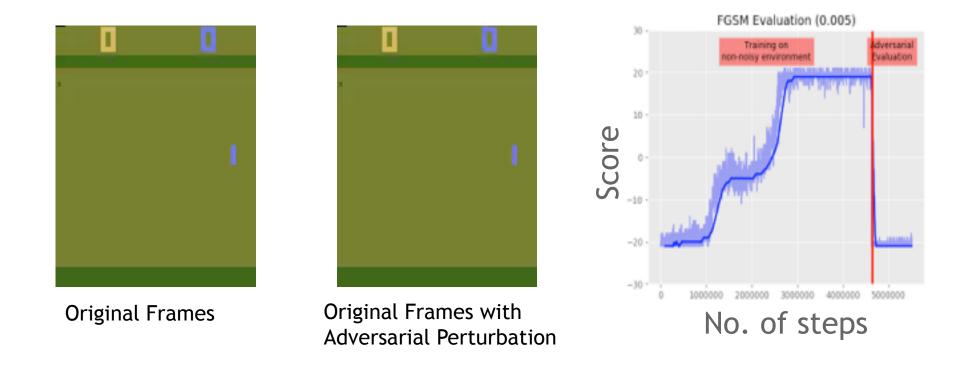
Fooling VQA

Target: 2



**Adversarial example** 

#### Adversarial Examples Fooling Deep Reinforcement Learning Agents



Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop 2017].

## A General Framework for Black-box attacks

- Zero-Query Attack (Previous methods)
  - Random perturbation
  - Difference of means
  - Transferability-based attack
    - Practical Black-Box Attacks against Machine Learning [Papernot et al. 2016]
    - Ensemble transferability-based attack [Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song: Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017]
- Query Based Attack (new method)
  - Finite difference gradient estimation
  - Query reduced gradient estimation
  - Results: similar effectiveness to whitebox attack
  - A general active query game model

## Black-box Attack on Clarifai



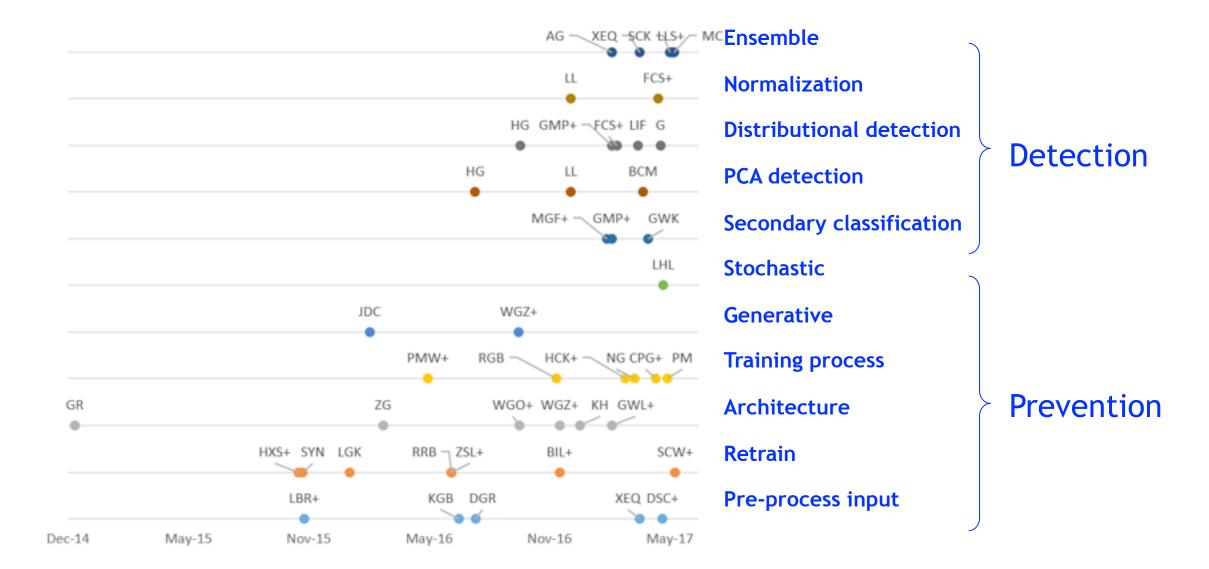
Original image, classified as "drug" with a confidence of 0.99



Adversarial example, classified as "safe" with a confidence of 0.96

The Gradient-Estimation black-box attack on Clarifai's Content Moderation Model

### Numerous Defenses Proposed



#### No Sufficient Defense Today

• Strong, adaptive attacker can easily evade today's defenses

- Ensemble of weak defenses does not (by default) lead to strong defense
  - Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song [WOOT 2017]
- Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
  - Nicholas Carlini and David Wagner [AlSec 2017]

# Adversarial Machine Learning

- Adversarial machine learning:
  - Learning in the presence of adversaries
- Inference time: adversarial example fools learning system
  - Evasion attacks
    - Evade malware detection; fraud detection
- Training time:
  - Attacker poisons training dataset (e.g., poison labels) to fool learning system to learn wrong model
    - Poisoning attacks: e.g., Microsoft's Tay twitter chatbot
  - Attacker selectively shows learner training data points (even with correct labels) to fool learning system to learn wrong model
  - Data poisoning is particularly challenging with crowd-sourcing & insider attack
  - Difficult to detect when the model has been poisoned
- Adversarial machine learning particularly important for security critical system

#### Security will be one of the biggest challenges in Deploying AI







# Security of Learning Systems

- Software level
- Learning level
- Distributed level

# Challenges for Security at Software Level

- No software vulnerabilities (e.g., buffer overflows & access control issues)
  - Attacker can take control over learning systems through exploiting software vulnerabilities

# Challenges for Security at Software Level

- No software vulnerabilities (e.g., buffer overflows & access control issues)
- Existing software security/formal verification techniques apply



Progression of different approaches to software security over last 20 years

# Security of Learning Systems

- Software level
- Learning level
- Distributed level

#### Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events

# Regression Testing vs. Security Testing in Traditional Software System

|           | <b>Regression Testing</b>                               | Security Testing                                                   |
|-----------|---------------------------------------------------------|--------------------------------------------------------------------|
| Operation | Run program on <b>normal</b><br>inputs                  | Run program on <b>abnormal/</b><br><b>adversarial</b> inputs       |
| Goal      | Prevent <b>normal</b> users<br>from encountering errors | Prevent <b>attackers</b> from<br>finding <b>exploitable</b> errors |

# Regression Testing vs. Security Testing in Learning System

|          | Regression Testing                                                                       | Security Testing                                                                                            |
|----------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Training | Train on noisy training<br>data:<br>Estimate resiliency against<br>noisy training inputs | Train on poisoned training<br>data: Estimate resiliency<br>against poisoned training<br>inputs              |
| Testing  | Test on <b>normal</b> inputs:<br>Estimate generalization<br>error                        | Test on <b>abnormal/</b><br><b>adversarial</b> inputs:<br>Estimate resiliency against<br>adversarial inputs |

#### Challenges for Security at Learning Level

- Evaluate system under adversarial events, not just normal events
  - Regression testing vs. security testing
- Reason about complex, non-symbolic programs

#### Decades of Work on Reasoning about Symbolic Programs

#### • Symbolic programs:

- E.g., OS, File system, Compiler, web application, mobile application
- Semantics defined by logic
- Decades of techniques & tools developed for logic/symbolic reasoning
  - Theorem provers, SMT solvers
  - Abstract interpretation

## Era of Formally Verified Systems

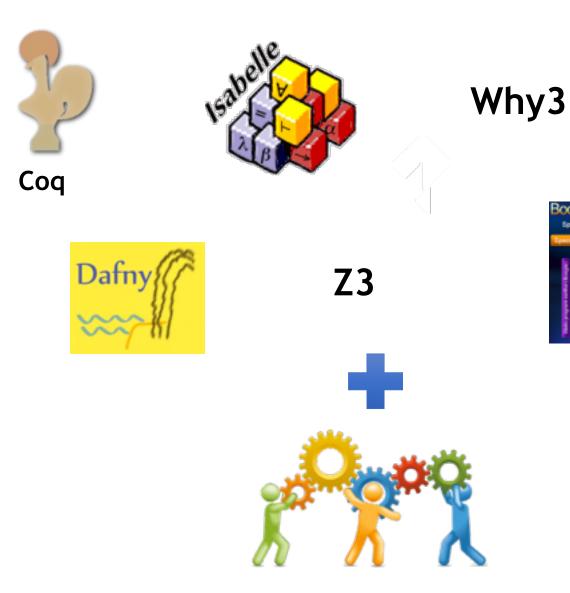
Verified: Micro-kernel, OS, File system, Compiler, Security protocols, Distributed systems





# FSCQ CertiKOS miTLS/Everest EasyCrypt CompCert

#### Powerful Formal Verification Tools + Dedicated Teams



No Sufficient Tools to Reason about Non-Symbolic Programs

- Symbolic programs:
  - Semantics defined by logic



- Theorem provers, SMT solvers
- Abstract interpretation
- Non-symbolic programs:
  - No precisely specified properties & goals
  - No good understanding of how learning system works
  - Traditional symbolic reasoning techniques do not apply





#### Challenges for Security at Learning Level

- Evaluate system under adversarial events, not just normal events
  - Regression testing vs. security testing
- Reason about complex, non-symbolic programs
- Design new architectures & approaches with stronger generalization & security guarantees

Neural Program Synthesis

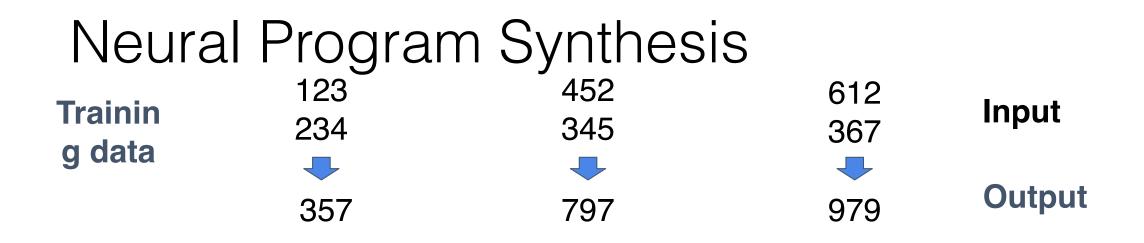
#### Can we teach computers to write code?



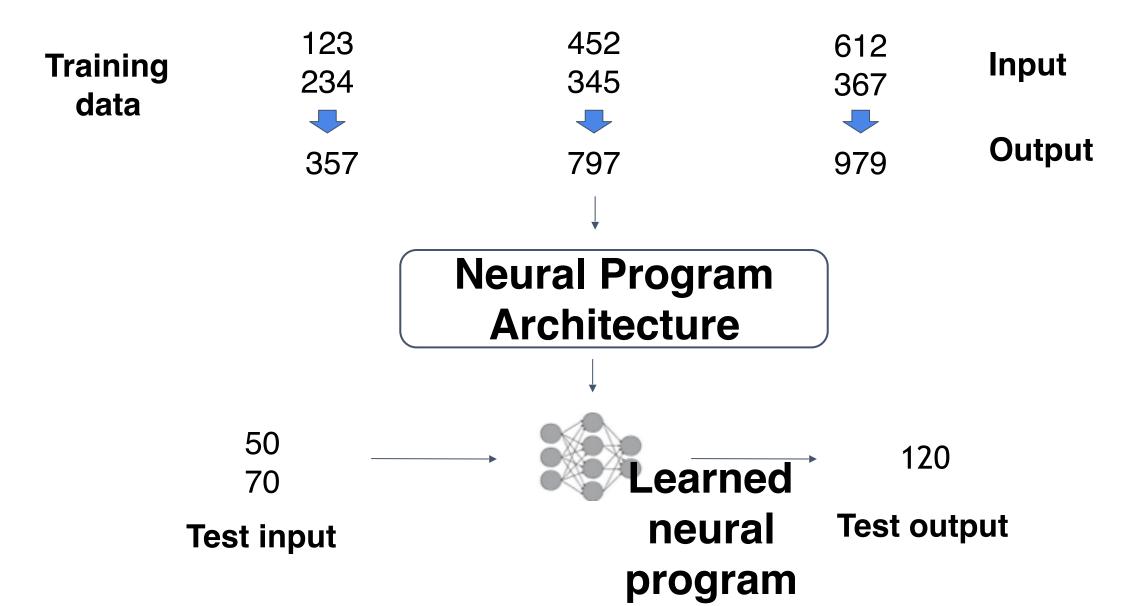
Example Applications:

- End-user programming
- Performance optimization of code
- Virtual assistant

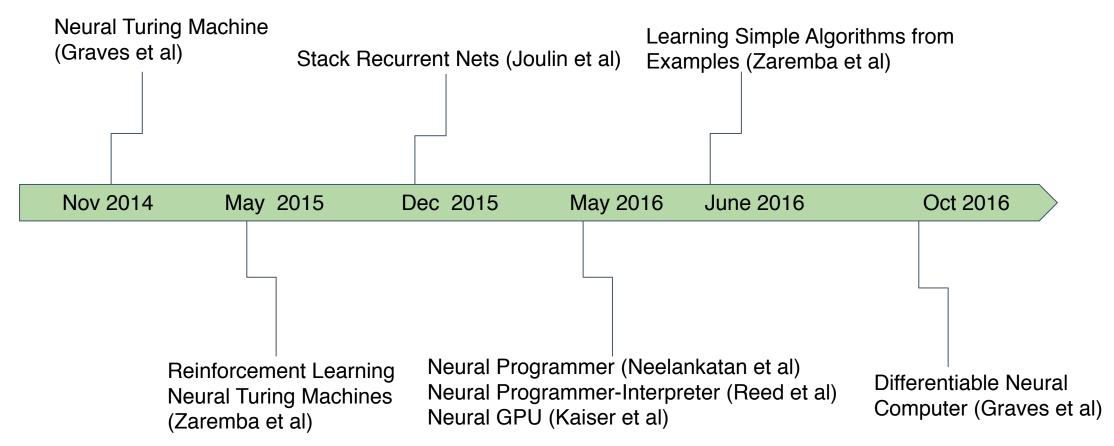
"Software is eating the world" --- az16 Program synthesis can automate this & democratize idea realization



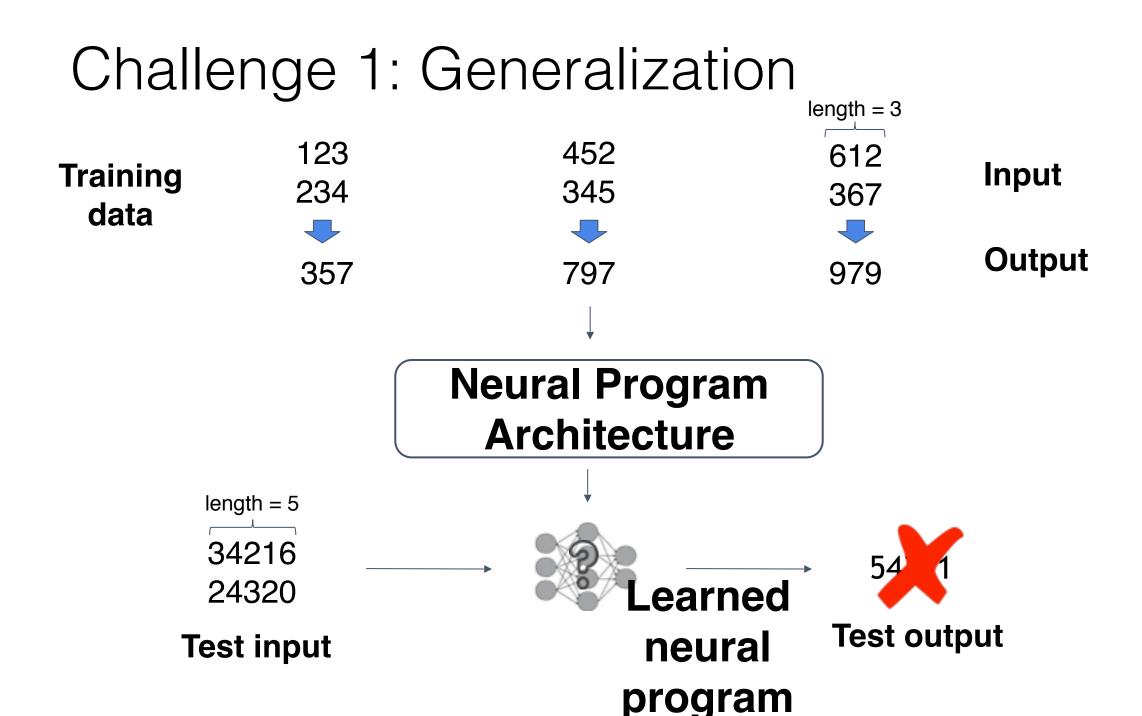
### Neural Program Synthesis



## Neural Program Architectures



Neural Program Synthesis Tasks: Copy, Grade-school addition, Sorting, Shortest Path



#### Challenge 2: No Proof of Generalization length = 3123 452 612 Input Trainin 234 345 367 g data √ $\mathbf{-}$ Output 357 797 979 **Neural Program Architecture** length = 534216 58536 24320 Learned **Test output Test input** neural

nrodram

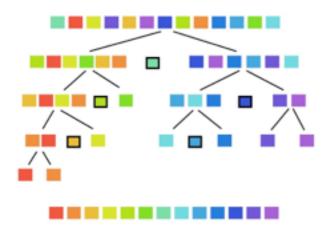
## **Our Approach: Introduce Recursion**

#### Learn recursive neural programs

Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion [ICLR 2017, **Best Paper Award**]

## Recursion

- Fundamental concept in Computer Science and Math
- Solve whole problem by reducing it to smaller subproblems (*reduction rules*)
- Base cases (smallest subproblems) are easier to reason about



Quicksort

#### Our Approach: Making Neural Programming Architectures Generalize via Recursion

- Proof of Generalization:
  - Recursion enables provable guarantees about neural programs
  - Prove perfect generalization of a learned recursive program via a verification procedure
    - Explicitly testing on all possible base cases and reduction rules (Verification set)
- Learn & generalize faster as well
  - Trained on same data, non-recursive programs do not generalize well

| ength of Array | Non-Recursive | Recursive |  |
|----------------|---------------|-----------|--|
| 3              | 100%          | 100%      |  |
| 5              | 100%          | 100%      |  |
| 7              | 100%          | 100%      |  |
| 11             | 73.3%         | 100%      |  |
| 15             | 60%           | 100%      |  |
| 20             | 30%           | 100%      |  |
| 22             | 20%           | 100%      |  |
| 25             | 3.33%         | 100%      |  |
| 30             | 3.33%         | 100%      |  |
| 70             | 0%            | 100%      |  |
|                |               |           |  |



Jonathon Cai, Richard Shin, Dawn Song: Making Neural Programming Architectures Generalize via Recursion [ICLR 2017, Best Paper Award ]

#### Lessons

- Program architecture impacts generalization & provability
- Recursive, modular neural architectures are easier to reason, prove, generalize
- Explore new architectures and approaches enabling strong generalization & security properties for broader tasks

#### Challenges for Security at Learning Level

- Evaluate system under adversarial events, not just normal events
- Reason about complex, non-symbolic programs
- Design new architectures & approaches with stronger generalization & security guarantees
- Reason about how to compose components

# **Compositional Reasoning**

- Building large, complex systems require compositional reasoning
  - Each component provides abstraction
    - E.g., pre/post conditions
  - Hierarchical, compositional reasoning proves properties of whole system

• How to do abstraction, compositional reasoning for non-symbolic programs?

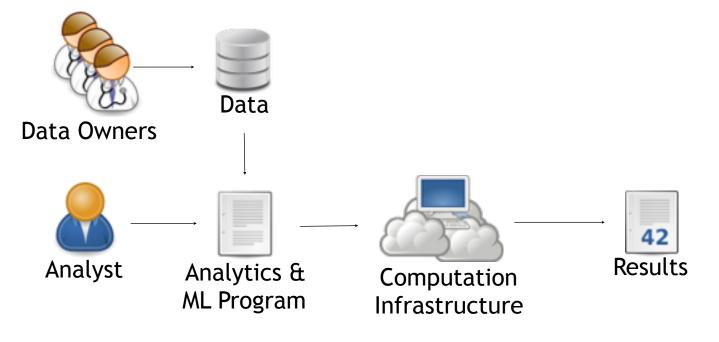
# Security of Learning Systems

- Software level
- Learning level
  - Evaluate system under adversarial events, not just normal events
  - Reason about complex, non-symbolic programs
  - Design new architectures & approaches with stronger generalization & security guarantees
  - Reason about how to compose components
- Distributed level
  - Each agent makes local decisions; how to make good local decisions achieve good global decision?

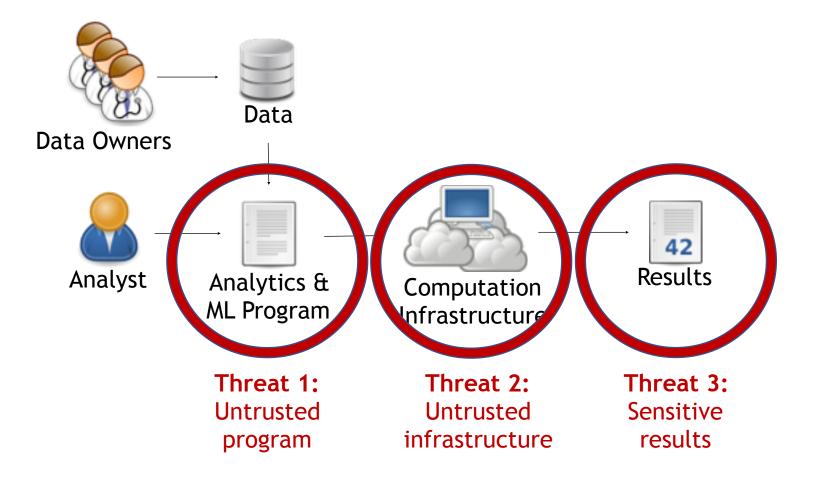
# AI and Security: AI in the presence of attacker

- Attack Al
  - Integrity:
    - Cause learning system to not produce intended/correct results
    - Cause learning system to produce targeted outcome designed by attacker
  - Confidentiality:
    - Learn sensitive information about individuals
  - Need security in learning systems
- Misuse Al
  - Misuse AI to attack other systems
    - Find vulnerabilities in other systems
    - Target attacks
    - Devise attacks
  - Need security in other systems

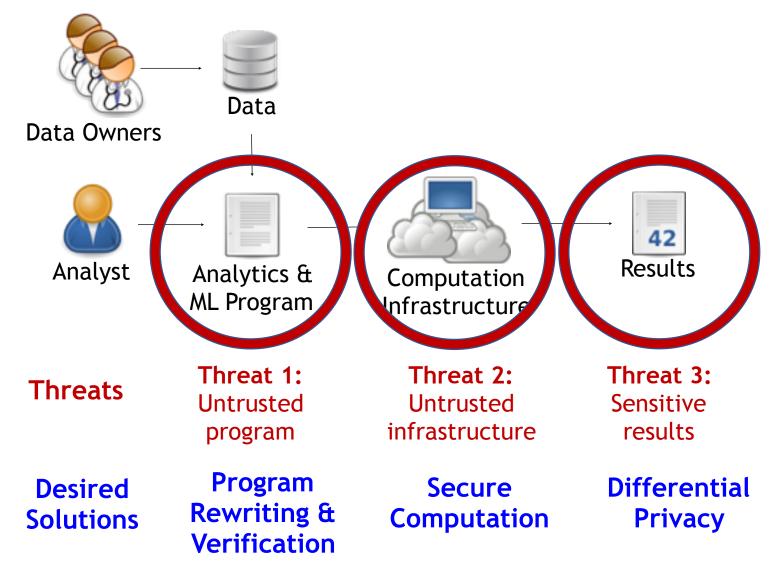
# Current Frameworks for Data Analytics & Machine Learning



#### **Current Frameworks Insufficient**



#### Desired Solutions for Confidentiality/Privacy



# AI and Security: AI in the presence of attacker

- Attack Al
  - Integrity:
    - Cause learning system to not produce intended/correct results
    - Cause learning system to produce targeted outcome designed by attacker
  - Confidentiality:
    - Learn sensitive information about individuals
  - Need security in learning systems
- Misuse Al
  - Misuse AI to attack other systems
    - Find vulnerabilities in other systems
    - Target attacks
    - Devise attacks
  - Need security in other systems

### Misused AI can make attacks more effective



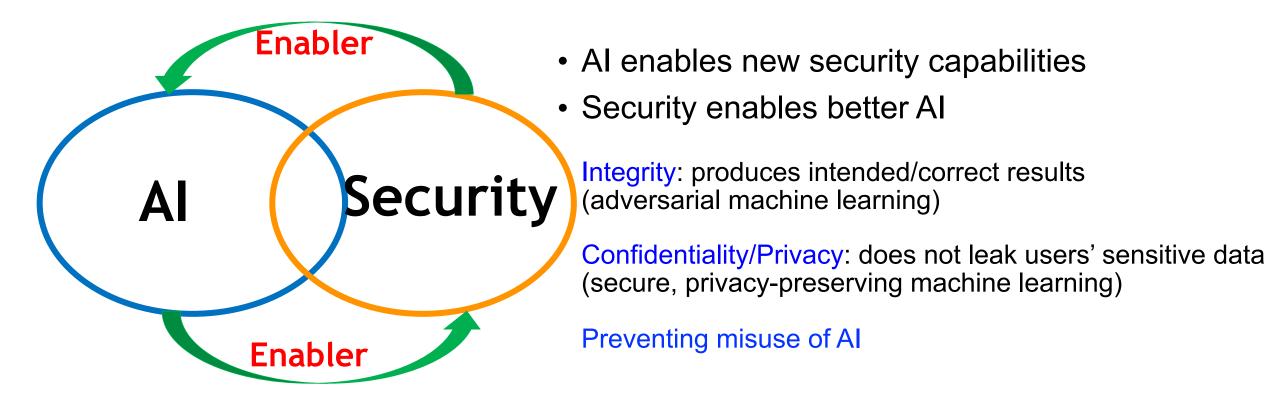
Deep Learning Empowered Bug Finding



Deep Learning Empowered Phishing Attacks

| V4XBG |  |  |  |  |  |
|-------|--|--|--|--|--|
|       |  |  |  |  |  |

Captcha Solving



Future of AI and Security

How to better understand what security means for AI, learning systems?

How to detect when a learning system has been fooled/compromised?

How to build better resilient systems with stronger guarantees?

How to build privacy-preserving learning systems?

#### Security will be one of the biggest challenges in Deploying AI.

#### Let's tackle the big challenges together!





























