Designing Services for
Resilience Experiments:

Nora Jones, Senior Chaos Engineer
@nora_js

Trending Now

k|

'3 v 5 p
NEW EPISODES o | : NEW EPISODE R 0d

-

FAST ;/V Y

FIELDOF g&

CphoTHE AN Nt
o

| ;» J)'i % & ¥
Tt LOTE, T R
.‘4 SR E e

00 Ow/

_a,;;"’ "~ "RIVERDALE 7

R . Bnq,yslmk

SRR

— THINGS

Trending Now

k|

'3 v 5 p
NEW EPISODES o | : NEW EPISODE R 0d

-

FAST ;/V Y

FIELDOF g&

CphoTHE AN Nt
o

| ;» J)'i % & ¥
Tt LOTE, T R
.‘4 SR E e

00 Ow/

_a,;;"’ "~ "RIVERDALE 7

R . Bnq,yslmk

SRR

— THINGS

Trending Now

k| . NETFLIX 4\»4
p = ™ Galid

B Schi

NEW EPISODES

Popular on Netflix
1 !! o WYY I . \ "15"5 A , » ’ ‘”_‘ B " FIELDOF d
THINGS ~e sl H b W \: TRIVERDALE " 4

[% . Bngvshrsk

B

Because you watched Stranger Things

Whoops, something went wrong...

Netflix Streaming Error
We're having trouble playing this title right now. Please try again later or select a different title.

OREILLY®

Designing Services for
Resilience Experiments: |

Building Confidence in System Behavior
through Experiments

Nora Jones, Senior Chaos Engineer
@nora_js

So, how can teams design services
for resilience testing?

e Failure Injection Enabled

So, how can teams design services
for resilience testing?

e RPC enabled

So, how can teams design services
for resilience testing?

e Fallback Paths
o And ways to discover them

So, how can teams design services
for resilience testing?

e Proper monitoring
o Key business metrics to look for

So, how can teams design services
for resilience testing?

e Proper timeouts
o And ways to discover them

Known Ways to Increase
Confidence in Resilience

Knowhn Ways to Increase
Confidence in Resilience

e Unit Tests

Expected

Inputs / . ! Outputs
Component

| r -

A

Unit Testing

Knowhn Ways to Increase
Confidence in Resilience

e Integration Tests

Inputs

_—

Inputs

——

Component Component
A & B

ServiceA +———= ServiceB

(AY 8 (c)o

Integration Testing

Expected

\ Outputs

Expected
Qutpuls

New Ways to Increase Confidence
In Resilience

e Chaos Experiments

%

Service A Service B

e | © | (<)o)

Chaos Experiments

SPS: Key Business Metric

SPS

Chaos Engineering: Netflix’s ChAP

100%
—“>£ API }O{Personalization}

Chaos Engineering: Netflix’s ChAP

98%
Gateway AP 0 Personalization
%

API Control

Chaos Engineering: Netflix’s ChAP

98%
Gateway AP Personallzatlon
%

API Control]/

Chaos Engineering: Netflix's ChAP

98%
Gateway API 0 Personalization
%
API Control ¥

%

API EXp

Chaos Engineering: Netflix's ChAP

98%
Gateway API Q Personalization
%
API Control ¥

W

0)
API Exp 2

Monitoring

1 1 | 1 | 1 1 1
10: 27 10: 30 10: 33 10: 36 10: 39 10: 42 10: 45 10: 48

Monitoring

i
i
e]
1 1 | 1 | 1 1 1
10: 27 10: 30 10: 33 10: 36 10: 39 10: 42 10: 45 10: 48

1. Have Failure Injection
Testing Enabled.

Sample Failure Injection
Library

https://github.com/norajones/FailurelnjectionLibrary

let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req

let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req

let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req

let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name
do! chaos
return! service req

let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {

- if shouldChaos() then

printfn "%s" name
do! chaos
return! service req

let chaos (name:string) (shouldChaos:unit -> bool) (chaos:Async<unit>) : AsyncFilter<_,_,_,_> =
fun (service:AsyncArrow<_,_>) req —> async {
if shouldChaos() then

printfn "%s" name

= do! chaos

return! service req

Types of Chaos Failures

let failWithException (ex:System.Exception) = async {
raise ex

}

let introduceLatency (latencyMs:unit —> int) = async {
// introduce latency
do! Async.Sleep (latencyMs())

Types of Chaos Failures

let failWithException (ex:System.Exception) = async {
raise ex

}

let introduceLatency (latencyMs:unit —> int) = async {
// introduce latency
do! Async.Sleep (latencyMs())

// Defines the requirements that need to be met before injecting chaos
let simpleTimeBasedFailure () = System.DateTime.Now.Millisecond = @

let simpleTimeBasedLatency (latency:int) =

fun () —
if simpleTimeBasedFailure() then latency
else @

// API
let defChaos (a) =
a

|> chaos '"chaos exception" simpleTimeBasedFailure (failWithException (new System.OutOfMemoryException("chaos")))

|> chaos "chaos latency 5sec" simpleTimeBasedFailure (introducelLatency (simpleTimeBasedLatency 5000))

// API
let defChaos (a) =
a

|> chaos '"chaos exception" simpleTimeBasedFailure (failWithException (new System.OutOfMemoryException("chaos")))

|> chaos "chaos latency 5sec" simpleTimeBasedFailure (introducelLatency (simpleTimeBasedLatency 5000))

Automating Creation of Chaos
Experiments

2. Have Good Monitoring in
Place for Configuration
Changes.

Have Good Monitoring in Place

e RPC Enabled

Have Good Monitoring in Place

e RPC Enabled

o Associated Hystrix Commands

Have Good Monitoring in Place

e RPC Enabled

o Associated Hystrix Commands
m Associated Fallbacks

Have Good Monitoring in Place

e RPC Enabled

o Associated Hystrix Commands
m Associated Fallbacks

e [imeouts

Have Good Monitoring in Place

e RPC Enabled

o Associated Hystrix Commands
m Associated Fallbacks

e [imeouts
e Retries

Have Good Monitoring in Place

e RPC Enabled

o Associated Hystrix Commands
m Associated Fallbacks

e [imeouts
e Retries
e Allin One Place!

Lorin Hochstein :
: Following v
@lhochstein

Hypothesis: config changes are more
dangerous than code changes.

2:21 PM - 6 Oct 2017

sretweets 25likes P T EOQBE G & O

Q6 15 9z O

RPC/Ribbon

e Java library managing REST clients to/from
different services
e Fast failing/fallback capability

RPC/Ribbon Timeouts

RPC Timeouts

At what point does the service give up?

Retries

Immediately retrying a failure after an operation
IS not usually a great idea.

Retries

Understand the logic between your timeouts and
your retries.

- » \t
77
HYSTRIX

DEFEND YOUR APP

Hystrix Commands/Fallback Paths

If your service is non-critical, ensure that there
are fallback paths in place.

Fallback Strategies

Static Content

A
N

Cache

~.

Fallback
Service

Fallback Strategies

Know what your fallback strategy is and how to
get that information.

countSuccess countFallbackSuccess

Ll L L L] L}
L L L L L = = - - -
e R e e e n 13:10 13:20 13:30 13:40 13:50

countFailure countTimeout

ool ™ 1

1 1 T 1 T
13:10 13:20 13:30 13:40 13:50 19:10 13:20 13:30 13:40 13:%8

3.Ensure Synergy
between Hystrix
Timeouts, RPC timeouts,
and retry logic.

ChAP’s Monocle

Read Timeout Connection Max Auto Max Auto Retries Max Average
Sequence Timeout Retries Next Server RPS RPS Hystrix Commands
150 600 0 1 50 35 PersonalizationDependencyCommand

300

ChAP’s Monocle

Retries
RPC Next Max Average
Service Name Client N\ame Timeout Retries Server RPS RPS Hystrix Commands

+ myService myClient 5000 0] 0 0 Unwrapped RPC calll A

ChAP’s Monocle

RPC
Service Name Client Name NIWS App Name Timeout Retries

<4 dinosaur DINOSAUR dinosaur 4000 1

There isn't always money in
microservices

"

There's always money2ing
the bananga stand, tsc'iscl

Criticality Score

Criticality Score

RPS Stats Range bucket *

Max Average
RPS RPS

17,285 12,640

Criticality Score

number of retries *

Max Auto
Max Auto Retries Next
Retries Server

Criticality Score

number of Hystrix Commands

Hystrix Commands

PersonalizationDependencyCommand

Criticality Score

RPS Stats Range bucket * number of retries * number of Hystrix Commands = Criticality
Score

Chaos Success Stories

“We ran a chaos experiment which
verifies that our fallback path works
and it successfully caught a issue in
the fallback path and the issue was
resolved before it resulted in any
availability incident!”

“While [failing calls] we discovered an increase in
license requests for the experiment cluster even
though fallbacks were all successful...

... This likely
means that whoever was consuming the fallback
was retrying the call, causing an increase In
license requests.”

Don’t lose sight of your
customers.

@nora_js

Takeaways

e Designing for resiliency testability is a shared
responsibility.

e Configuration changes can cause outages.

e Have explicit monitoring in place on
antipatterns in configuration changes.

Questions?

@nora_js

