
Designing Services for 
Resilience Experiments:
Lessons from Netflix

Nora Jones, Senior Chaos Engineer
@nora_js













Designing Services for 
Resilience Experiments:
Lessons from Netflix

Nora Jones, Senior Chaos Engineer
@nora_js



So, how can teams design services 
for resilience testing?

● Failure Injection Enabled



So, how can teams design services 
for resilience testing?

● Failure Injection Enabled
● RPC enabled



So, how can teams design services 
for resilience testing?

● Failure Injection Enabled
● RPC enabled
● Fallback Paths

○ And ways to discover them



So, how can teams design services 
for resilience testing?

● Failure Injection Enabled
● RPC enabled
● Fallback Paths

○ And ways to discover them
● Proper monitoring

○ Key business metrics to look for



So, how can teams design services 
for resilience testing?

● Failure Injection Enabled
● RPC enabled
● Fallback Paths

○ And ways to discover them
● Proper monitoring

○ Key business metrics to look for
● Proper timeouts

○ And ways to discover them



Known Ways to Increase 
Confidence in Resilience



Known Ways to Increase 
Confidence in Resilience

● Unit Tests





Known Ways to Increase 
Confidence in Resilience

● Integration Tests





New Ways to Increase Confidence 
in Resilience

● Chaos Experiments





SPS: Key Business Metric





Chaos Engineering: Netflix’s ChAP

API Personalization
100%



Chaos Engineering: Netflix’s ChAP

APIGateway Personalization

API Control

1%

98%



Chaos Engineering: Netflix’s ChAP

APIGateway Personalization

API Control

1%

98%



Chaos Engineering: Netflix’s ChAP

APIGateway Personalization

API Control

API Exp
1%

1%

98%



Chaos Engineering: Netflix’s ChAP

APIGateway Personalization

API Control

API Exp
1%

1%

98%



Monitoring



Monitoring

SHORTED



1. Have Failure Injection 
Testing Enabled.



Sample Failure Injection 
Library

https://github.com/norajones/FailureInjectionLibrary















Types of Chaos Failures 



Types of Chaos Failures 



Criteria&API







Automating Creation of Chaos 
Experiments



2. Have Good Monitoring in 
Place for Configuration 
Changes.



Have Good Monitoring in Place

● RPC Enabled



Have Good Monitoring in Place

● RPC Enabled
○ Associated Hystrix Commands



Have Good Monitoring in Place

● RPC Enabled
○ Associated Hystrix Commands

■ Associated Fallbacks



Have Good Monitoring in Place

● RPC Enabled
○ Associated Hystrix Commands

■ Associated Fallbacks
● Timeouts



Have Good Monitoring in Place

● RPC Enabled
○ Associated Hystrix Commands

■ Associated Fallbacks
● Timeouts
● Retries



Have Good Monitoring in Place

● RPC Enabled
○ Associated Hystrix Commands

■ Associated Fallbacks
● Timeouts
● Retries
● All in One Place!





● Java library managing REST clients to/from 
different services

● Fast failing/fallback capability

RPC/Ribbon 



RPC/Ribbon Timeouts 



RPC Timeouts

At what point does the service give up?



Retries

Immediately retrying a failure after an operation 
is not usually a great idea.



Retries

Understand the logic between your timeouts and 
your retries.



Circuit Breakers/Fallback Paths



Hystrix Commands/Fallback Paths

If your service is non-critical, ensure that there 
are fallback paths in place. 



Fallback Strategies

Static Content Cache Fallback 
Service



Fallback Strategies

Know what your fallback strategy is and how to 
get that information.







3.Ensure Synergy 
between Hystrix 
Timeouts, RPC timeouts, 
and retry logic.







ChAP’s Monocle



ChAP’s Monocle



ChAP’s Monocle





There isn’t always money in 
microservices



Criticality Score



Criticality Score

RPS Stats Range bucket * number of retries * number of Hystrix Commands = Criticality 
Score



Criticality Score

RPS Stats Range bucket * number of retries * number of Hystrix Commands = Criticality 
Score



Criticality Score

RPS Stats Range bucket * number of retries * number of Hystrix Commands = Criticality 
Score



Criticality Score

RPS Stats Range bucket * number of retries * number of Hystrix Commands = Criticality 
Score



Chaos Success Stories



“We ran a chaos experiment which 
verifies that our fallback path works 
and it successfully caught a issue in 
the fallback path and the issue was 

resolved before it resulted in any 
availability incident!”



“While [failing calls] we discovered an increase in 
license requests for the experiment cluster even 

though fallbacks were all successful...



“While [failing calls] we discovered an increase in 
license requests for the experiment cluster even 
though fallbacks were all successful. ...This likely 
means that whoever was consuming the fallback 

was retrying the call, causing an increase in 
license requests.”



Don’t lose sight of your 
company’s customers.



Takeaways

● Designing for resiliency testability is a shared 
responsibility.

● Configuration changes can cause outages.
● Have explicit monitoring in place on 

antipatterns in configuration changes.

@nora_js



Questions?
@nora_js


